
HAL Id: inria-00292027
https://inria.hal.science/inria-00292027v1
Submitted on 4 Nov 2008 (v1), last revised 8 Jun 2009 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tree Automata with Global Constraints
Emmanuel Filiot, Jean-Marc Talbot, Sophie Tison

To cite this version:
Emmanuel Filiot, Jean-Marc Talbot, Sophie Tison. Tree Automata with Global Constraints. 12th In-
ternational Conference on Developments in Language Theory (DLT), Sep 2008, Kyoto, Japan. pp.314-
326. �inria-00292027v1�

https://inria.hal.science/inria-00292027v1
https://hal.archives-ouvertes.fr

Tree Automata with Global Constraints

Emmanuel Filiot1 Jean-Marc Talbot2 Sophie Tison1

1 INRIA Lille - Nord Europe, Mostrare Project, University of Lille 1 (LIFL, UMR
8022 of CNRS)

2 University of Provence (LIF, UMR 6166 of CNRS), Marseille

Abstract. A tree automaton with global tree equality and disequality
constraints, TAGED for short, is an automaton on trees which allows to
test (dis)equalities between subtrees which may be arbitrarily faraway.
In particular, it is equipped with an (dis)equality relation on states, so
that whenever two subtrees t and t′ evaluate (in an accepting run) to two
states which are in the (dis)equality relation, they must be (dis)equal.
We study several properties of TAGEDs, and prove decidability of empti-
ness of several classes. We give two applications of TAGEDs: decidability
of an extension of Monadic Second Order Logic with tree isomorphism
tests and of unification with membership constraints. These results sig-
nificantly improve the results of [10].

1 Introduction

The emergence of XML has strengthened the interest in tree automata, as it is
a clean and powerful model for XML tree acceptors [20, 21]. In this context, tree
automata have been used, for example, to define schemas, and queries, but also
to decide tree logics, to type XML transformations, and even to learn queries.
However, it is known that sometimes, expressiveness of tree automata is not
sufficient. This is the case for instance in the context of non-linear rewriting
systems, for which more powerful tree acceptors are needed to decide interesting
properties of those rewrite systems. For example, the set of ground instances of
f(x, x) is not regular.
Tree automata with constraints have been introduced to overcome this lack of
expressiveness [3, 9, 13, 14]. In particular, the transitions of these tree automata
are fired as soon as the subtrees of the current tree satisfy some structural
(dis)equality. But typically, these constraints are kept local to preserve decidabil-
ity of emptiness and good closure properties – in particular, tests are performed
between siblings or cousins –. In the context of XML, and especially to define tree
patterns, one need global constraints. For instance, it might be useful to repre-
sent the set of ground instances of the pattern X(author(x), author(x)), where
X is a binary context variable, and x is an author which occurs at least twice (we
assume this pattern to be matched against XML trees representing a bibliogra-
phy). In this example, the two subtrees corresponding to the author might be
arbitrarily faraway, making the tree equality tests more global. Patterns might
be more complex, by the use of negation (which allow to test tree disequalities),

Boolean operations, and regular constraints on variables. In [10], we study the
spatial logic TQL, which in particular, allows to define such patterns. We proved
decidability of a powerful fragment of this logic, by reduction to emptiness test
of a new class of tree automata, called Tree Automata with Global Equalities
and Disequalities (TAGEDs for short). These are tree automata A equipped
with an equality =A and a disequality 6=A relation on (a subset of) states. A
tree t is accepted by A if there is a computation of A on t which leads to an
accepting state, and whenever two subtrees of t evaluate to two states q1, q2 such
that q1 =A q2 (resp. q1 6=A q2), then these two subtrees must be structurally
equal (resp. structurally different). TAGEDs may be interesting on their own,
since they are somehow orthogonal to usual automata with constraints [3]. In-
deed, if we view equality tests during computations as an equivalence relation
on a subset of nodes (two nodes being equivalent if their rooted subtrees are
successfully tested to be equal), in the former, there are a bounded number of
equivalence classes of unbounded cardinality, while in the latter, there might be
an unbounded number of equivalence classes of bounded cardinality.
The main result of [10] was decidability of emptiness of a subclass of TAGEDs,
called bounded TAGEDs, which allow only a bounded number (by some con-
stant independent of the tree) of (dis)equality tests on the run. In this paper,
we prove several properties of TAGED-definable languages (closure by union
and intersection, non-closure by complement). We prove results on TAGEDs
(non-determinization, undecidability of universality). The other main results are
decidability of emptiness of several classes of TAGEDs which significantly im-
proves the result of [10], and uses different and simpler techniques. In particular,
we prove a pumping lemma for TAGEDs which performs a bounded number of
disequality tests along paths (and arbitrarily many equality tests).
We give two applications of TAGEDs. The first is decidability of an extension
of MSO with tree isomorphism tests. The second application concerns a first-
order disunification problems, with (regular) membership constraints. Dealing
with membership constraints has been done in several papers. In [8], the au-
thors prove solvability of first-order formulas whose atoms are either equations
between terms or membership constraints t ∈ L where L is a regular tree lan-
guage. In [16], the authors propose an algorithm to solve iterated matching of
hedges against terms with flexible arity symbols, one-hole context and sequence
variables constrained to range over a regular language. In this paper, we extend
the logic of [8] with context variables (with arbitrarily many holes, and mem-
bership constraints) to allow arbitrary depth matching. Context unification is
still an open problem, but motivated by XML tasks, we do not need to do full
context unification. We prefer to impose a strong linearity condition on context
variables. We prove that, even with this restriction, solvability of first-order for-
mulas over these atoms is undecidable. We introduce an existential fragment for
which satisfiability is decidable by reduction to emptiness of a class of TAGEDs.

Related Work Extensions of tree automata which allow for syntactic equality
and disequality tests between subterms have already been defined by adding
constraints to the rules of automata. E.g., adding the constraint 1.2 = 2 to

a rule means that one can apply the rule at position π only if the subterm
at position π.1.2 is equal to the subterm at position π.2. Testing emptiness of
the recognized language is undecidable in general [18] but two classes with a
decidable emptiness problem have been emphasized. In the first class, automata
are deterministic and the number of equality tests along a path is bounded [9]
whereas the second restricts tests to sibling subterms [3]. This latter class has
recently been extended to unranked trees [14], the former one has been extended
to equality modulo equational theories [13]. But, contrarily to TAGEDs, in all
these classes, tests are performed locally, typically between sibling or cousin
subterms. Automata with local and global equality tests, using one memory,
have been considered in [6]. Their emptiness problem is decidable, and they can
simulate positive TAGEDs (TAGEDs performing only equality tests) which use
at most one state per runs to test equalities. Finally, automata for DAGs are
studied in [2, 4], they cannot be compared to positive TAGEDs, as they run
on DAG representations of trees (with maximal sharing), and in TAGEDs, we
cannot impose every equal subtrees to evaluate in the same state in a successful
run.

We only sketch the proofs, but all the missing proofs are in the full paper version
[24] and in the thesis [11].

Acknowledgements We are very grateful to Florent Jacquemard and Camille
Vacher from the LSV (Cachan) for their valuable comments on the paper.

2 Trees and TAGED

Binary trees We start from a ranked alphabet Σ ranged over binary symbols
f and constant symbols a. A binary tree t is a ground term over Σ. The set of
binary trees over Σ is denoted by TΣ. The set of nodes of a tree t ∈ TΣ , denoted
by Nt, is defined inductively as a set of words over {1, 2} by: Na = {ǫ} and
Nf(t1,t2) = {ǫ} ∪ {α.u | α ∈ {1, 2}, u ∈ Ntα

} (ǫ denotes the empty word and .
the concatenation). For any tree t, and any node u ∈ Nt, we define the subtree
at node u, denoted by t|u, inductively by: t|ǫ = t, f(t1, t2)|α.u = tα|u, α ∈ {1, 2}.
Note that we have Nt|u = {v | u.v ∈ Nt}. We also denote by Ot(u) ∈ Σ the label
of node u in t. Finally, we denote by ⊳ the strict descendant relation between
nodes. Hence, for all u, v ∈ Nt, u ⊳ v if u is a prefix of v (therefore the root is
minimal for ⊳).

Tree Automata We define tree automata on binary trees, but the reader may refer
to [7] for more details. A tree automaton is a 4-tuple A = (Σ,Q, F,∆) where Q
is a finite set of states, F ⊆ Q is a set of final states, and ∆ is a set of rules of the
form a→ q and f(q1, q2)→ q, where f is a binary function symbol, a a constant,
and q1, q2, q are states from Q. A run of A on a tree t is a tree r over Q such
that: (i) Nr = Nt, (ii) for all leaves u ∈ Nr, we have Ot(u) → Or(u) ∈ ∆, and
(iii) for all inner-nodes u ∈ Nr, we have Ot(u)(Or(u.1), Or(u.2))→ Or(u) ∈ ∆.

A run r is successful if Or(ǫ) ∈ F . The language recognized (or defined) by A,
denoted L(A), is the set of trees t for which there exists a successful run of A.

We consider binary and constant symbols only, but the two definitions above
can be easily extended to symbols of other arity (in particular, we use unary
symbols in several proofs and examples).

Example 1. Let Σb be the alphabet consisting of the two binary symbols ∧,∨,
the unary symbol ¬, and the two constant symbols 0, 1. Trees from TΣb

represents
Boolean formulas. We define an automaton on Σb which accepts only Boolean
formulas logically equivalent to 1. Its set of states (resp. final states) is defined by
Qb = {q0, q1} (resp. Fb = {q1}), and its set of rules∆b by, for all b, b1, b2 ∈ {0, 1},
and all ⊕ ∈ {∧,∨}:

b→ qb ¬(qb)→ q¬b ⊕(qb1 , qb2)→ qb1⊕b2 .

Definition 1 (TAGED). A TAGED is a 6-tuple A = (Σ,Q, F,∆,=A, 6=A)
such that:

• (Σ,Q, F,∆) is a tree automaton;

• =A is a reflexive and symmetric binary relation on a subset of Q;

• 6=A is an irreflexive and symmetric binary relation on Q.

A TAGED A is said to be positive (resp. negative) if 6=A (resp. =A) is empty.

The notion of successful run differs from tree automata as we add equality and
disequality constraints. A run r of the tree automaton (Σ,Q, F,∆) on a tree t
satisfies the equality constraints if ∀u, v ∈ Nt, Or(u) =A Or(v) ⇒ t|u = t|v.
Similarly, it satisfies the disequality constraints if ∀u, v ∈ Nt,Or(u) 6=A Or(v) ⇒
t|u 6= t|v.

A run is successful (or accepting) if it is successful for the tree automaton
(Σ,Q, F,∆) and if it satisfies the constraints. The language accepted by A,
denoted L(A), is the set of trees t having a successful run for A. We denote by
dom(=A) the domain of =A, i.e. {q | ∃q′ ∈ Q, q =A q′}. The set dom(6=A) is
defined similarly. Finally, two TAGEDs are equivalent if they accept the same
language.

In [10], we introduced the class of bounded TAGED, where in successful runs, the
number of occurrences of states from dom(=A) ∪ dom(6=A) is bounded by some
fixed k ∈ N. We proved emptiness to be decidable for that class. The classes
we consider in this paper are either incomparable or strictly more expressive.
All the results from Section 3 also hold for bounded TAGED. Note also that
TAGED are strictly more expressive than tree automata, as illustrated by the
next example.

Example 2. Let Q = {q, q=, qf}, F = {qf}, and let ∆ be defined as the set of
following rules: a→ q, a → q=, f(q, q)→ q, f(q, q)→ q=, f(q=, q=)→ qf , for
all a, f ∈ Σ. Let the positive TAGED A1 = (Σ,Q, F,∆, {q= =A1

q=}). Then
L(A1) is the set {f(t, t) | f ∈ Σ, t ∈ TΣ}, which is known to be non regular [7].

Example 3. Let X be a finite set of variables. We now define a TAGED Asat

which accepts tree representations of satisfiable Boolean formulas with free vari-
ables X . We let Ab = (Σb, Qb, Fb, ∆b) be the automaton defined in Example 1.
Every variable is viewed as a binary symbol, and we let ΣX = Σb ∪ X . Every
Boolean formula is naturally viewed as a tree, except for variables x ∈ X which
are encoded as trees x(0, 1) over ΣX . For instance, the formula (x ∧ y) ∨ ¬x is
encoded as the tree ∨(t1, t2), where t1 = ∧(x(0, 1), y(0, 1)) and t2 = ¬(x(0, 1)).
Now, we let Q = Qb ∪ {qx | x ∈ X} ∪ {p0, p1}, for two fresh states p0, p1, and
F = Fb. The idea is to choose non-deterministically to evaluate the leaf 0 or
1 below x to qx, but not both, for all x ∈ X . This means that we affect 0 or
1 to a particular occurrence of x. Then, by imposing that every leaf evaluated
to qx are equal,we can ensure that we have chosen to same Boolean value for
all occurrences of x, for all x ∈ X . This can be done with the set of rules ∆b

extended with the following rules, for all b ∈ {0, 1} and all x ∈ X :

b→ pb b→ qx x(p0, qx)→ q1 x(qx, p1)→ q0.

Finally, for all x ∈ X , we let qx =Asat
qx.

The (uniform) membership problem is “given a TAGED A, given a tree t, does
t belong to L(A)?”. We can prove the following:

Proposition 1. Membership is NP-complete for TAGED.

Proof. Example 3 gives a polynomial reduction of SAT to membership of TAGEDs.
To show it is in NP, it suffices to guess a labeling of the nodes of the tree by
states, and then to verify that it is a run, and that equality and disequality
constraints are satisfied. This can be done in linear time both in the size of the
automaton and of the tree. �

3 Closure Properties of TAGEDs and Decision Problems

In this section, we prove closure properties of TAGED-definable languages.

Proposition 2 (Closure by union and intersection). TAGED-definable
languages are closed by union and intersection.

Proof. Let A = (Λ,Q, F,∆,=A, 6=A) and A′ = (Λ,Q′, F ′, ∆′,=A′ , 6=A′) be two
TAGEDs. Wlog, we suppose that Q∩Q′ = ∅. A TAGED accepting L(A)∪L(A′)
is defined by A ∪A′ = (Λ,Q ∪Q′, F ∪ F ′, ∆ ∪∆′,=A ∪ =A′ , 6=A ∪ 6=A′).
For the closure by intersection, we use the usual product construction A × A′

[7], whose set of final states if F × F ′. State equality =A×A′ is defined by
{((q, q′), (p, p′)) | q =A p or q =A′ p}, while 6=A×A′ is defined by {((q, q′), (p, p′)) | q 6=A

p or q 6=A′ p}. �

Prop 2 also holds for the class of languages defined by positive or negative
TAGEDs. A TAGED is deterministic if all rules have different left-hand sides

(hence there is at most one run per tree). For a deterministic TAGED A, we can
prove that one can compute a non-deterministic TAGED accepting the comple-
ment of L(A): we have to check if the tree evaluates in a non-accepting state or
in an accepting state but in this case we non-deterministically guess a position
where a constraint is not satisfied. However:

Proposition 3. TAGEDs are not determinizable.

Proof. Let Σ = {f, a} an alphabet where f is binary and a constant. Consider
the language L0 = {f(t, t) | t ∈ TΣ} of Example 2. It is obvious that L0 is
definable by a non-deterministic (bounded) TAGED. Suppose that there is a
deterministic TAGED A = (Σ,Q, F,∆,=A, 6=A) such that L(A) = L0. Let t be
a tree whose height is strictly greater than |Q|. Since f(t, t) ∈ L0, there are a
successful run qf (r, r) of A on f(t, t) for some final state qf , two nodes u, v and
a state q ∈ Q such that t|v is a strict subtree of t|u, and Or(u) = Or(v) = q.
Since f(t|u, t|u) ∈ L0, and A is deterministic, there is a final state q′f ∈ F and
a rule f(q, q) → q′f ∈ ∆. Hence q′f (r|u, r|v) is a run of A on f(t|u, t|v). Since
qf (r, r) satisfies the constraints, q′f (r|u, r|v) also satisfies the constraints. Hence
f(t|u, t|v) ∈ L(A), which contradicts t|u 6= t|v. �

Proposition 3 is not surprising, since:

Proposition 4. The class of TAGED-definable languages is not closed by com-
plement.

Proof. (Sketch) We exhibit a tree language whose complement is easily definable
by a TAGED, but which is not TAGED-definable. This language is the union
of sets Tn, for all n ∈ N, where Tn = {f(g(t, t), t′) | t ∈ TΣ, t

′ ∈ Tn−1}, and
T0 = {a}. To check whether a tree is in Tn, a TAGED would have to perform
n equality tests, for each subtree rooted by g. This would require n states. This
is only an intuition. The proof is a bit more complicated as the TAGED could
also perform inequality tests. �

We end up this section with an undecidability result:

Proposition 5. Testing universality of TAGEDs is undecidable.

Proof. (Sketch) We adapt the proof of [18] for undecidability of emptiness of
classical tree automata with equality constraints. We start from an instance of
the Post Correspondence Problem (PCP). We encode the set of solutions of PCP
as a tree language whose complement is easily definable by a TAGED. Hence,
the complement is universal iff PCP has no solution. �

Even if TAGEDs are not determinizable, we can assume that testing an equality
between subtrees can be done using the same state, as stated by the following
lemma:

Lemma 1. Every TAGED A is equivalent to a TAGED A′ (whose size might be
exponential in the size of A) such that =A′⊆ idQA′ , where idQA′ is the identity
relation on QA′ . Moreover, A′ can be built in exponential time (and may have
exponential size).

Proof. (Sketch) Intuitively, we can view an accepting run r of A on a tree t
as a DAG structure. Let U ⊆ Nt such that all subtrees t|u, u ∈ U , have been
successfully tested equal by A in the run r (i.e. ∀u, v ∈ U , Or(u) =A Or(v)).
Let t0 = t|u, for some u ∈ U . We replace all nodes of U by a single node u0

which enroots t0. The parent of any node of U points to u0. We maximally
iterate this construction to get the DAG. Note that this DAG is not maximal
sharing1, since only subtrees which have been successfully tested to be equal are
shared. We construct A′ such that it simulates a run on this DAG, obtained by
overlapping the runs on every equal subtrees for which a test has been done. �

4 Emptiness of Positive and Negative TAGEDs

In this section we prove decidability of emptiness of positive and negative TAGEDs
respectively. For positive TAGEDs, it uses Lemma 1, and the classical reacha-
bility method for tree automata. For negative TAGEDs, we reduce the problem
to testing satisfiability of set constraints.

Theorem 1. Testing emptiness of positive TAGEDs is EXPTIME-complete.

Proof. upper bound Let A be a positive TAGED such that its equality relation
is a subset of the identity relation (otherwise we transform A modulo an expo-
nential blow-up, thanks to Lemma 1). Let A− be its associated tree automaton
(i.e. A without the constraints). We have L(A) ⊆ L(A−).
Then it suffices to apply a slightly modified version of the classical reachability
method used to test emptiness of a tree automaton [7]. In particular, we can
make this procedure associate with any state q a unique tree tq. When a new
state is reached, it can possibly activate many rules f(q1, q2) → q whose rhs
are the same state q. The algorithm has to make a choice between this rules in
order to associate a unique tree tq = f(tq1

, tq2
) to q. This choice can be done for

instance by giving an identifier to each rule and choosing the rule with the least
identifier.
If L(A−) is empty, then L(A) is also empty. If L(A−) is non-empty, we get a tree
t and a run r which obviously satisfies the equality constraints, since a state q
such that q =A q is mapped to unique tree tq (if q is reachable).
lower bound We reduce the problem of testing emptiness of the intersection of
n tree automata A1, . . . , An (see [7]), which is known to be EXPTIME-complete.
We assume that their sets of states are pairwise disjoint (Qi ∩Qj = ∅ whenever
i 6= j), and for all i = 1, . . . , n, Ai has exactly one final state qfi

, and qfi
does not

occur in lhs of rules of Ai (otherwise we slightly modify Ai, modulo a factor 2 in
the size of Ai). We let L = {f(t1, . . . , tn) | f ∈ Σ, ∀i, ti ∈ L(Ai), ∀i, j, ti = tj}.
It is clear that L is empty iff L(A1) ∩ . . . L(An) is empty. It is not difficult to
construct a TAGED A (with |A| = O(

∑

i |Ai|)), such that L = L(A): it suffices
to take the union of A1, . . . , An and to add the rule f(qf1

, . . . , qfn
)→ qf , where

qf is a fresh final state of A. Then we add the following equality constraints:
∀i, j, qfi

=A qfj
. �

1 there might be two isomorphic subgraphs occurring at different positions.

If =A⊆ idQ, in a successful run we can assume that the subruns rooted at states
q such that q =A q are the same. Hence, we can introduce a pumping technique
for positive TAGEDs satisfying this property. The idea is to pump similarly in
parallel below all states q such that q =A q, while keeping the equality constraints
satisfied. The pumping technique is described in the full version of the paper [24].
Thanks to this, if there is a loop in a successful run, we can construct infinitely
many accepted trees. In particular:

Theorem 2. Let A be a positive TAGED. It is decidable whether L(A) is infinite
or not, in O(|A||Q|2) if =A⊆ idQ, and in EXPTIME otherwise.

We now prove decidability of emptiness of negative TAGEDs (=A= ∅), by reduc-
tion to positive and negative set constraints (PNSC for short). Set expressions
are built from set variables, function symbols, and Boolean operations. Set con-
straints are either positive, e1 ⊆ e2, or negative, e1 6⊆ e2, where e1, e2 are set
expressions. Set expressions are interpreted in the Herbrand structure while set
constraints are interpreted by Booleans 0,1. Testing the existence of a solution
of a system of set constraints has been proved to be decidable in several papers
[5, 1, 22, 12]. In particular, it is known to be NEXPTIME-complete. We do not
formally define set constraints and refer the reader to [5, 1, 22, 12].
Consider for instance the constraint f(X,X) ⊆ X . It has a unique solution which
is the empty set. Consider now X ⊆ f(X,X)∪ a, where a is a constant symbol.
Every set of terms over {f, a} closed by the subterm relation is a solution. More
generally, we can encode the emptiness problem of tree automata as a system
of set constraints. Let A = (Σ,Q, F,∆) be a tree automaton. Wlog, we assume
all state q ∈ Q to occur in the rhs of a rule. We associate with A the system SA

defined by:

(SA)

{
Xq ⊆

⋃

f(q1,q2)→q∈∆ f(Xq1
, Xq2

) ∪
⋃

a→q∈∆ a for all q ∈ Q
⋃

q∈F Xq 6⊆ ∅

We can prove that L(A) is non-empty iff SA has a solution. Let (A, 6=A) be a
negative TAGED, and consider the system S′

A consisting in SA extended with
the constraints Xq ∩ Xp = ∅, for all q, p ∈ Q such that q 6=A p. We can prove
that L(A, 6=A) 6= ∅ iff S′

A has a solution. Since deciding existence of a solution
of a system of PNSC is in NEXPTIME, we get:

Theorem 3. Emptiness of negative TAGEDs is decidable in NEXPTIME.

5 Emptiness when Mixing Equality and Disequality

Constraints

In this section, we mix equality and disequality constraints. This has already
been done in [10] for bounded TAGEDs. Emptiness was proved by decomposition
of runs, but here we use a pumping technique that allows to decide emptiness
for a class of TAGEDs that significantly extends the class considered in [10].
In particular, we allow an unbounded number of positive tests, but boundedly

many negative tests along root-to-leaves paths, i.e. branches. While this class
subsumes positive TAGEDs, the upper-bound for testing emptiness is bigger
than the bound obtained in Section 4.
Formally, a vertically bounded TAGED (vbTAGED for short) is a pair (A, k)
where A is a TAGED, and k ∈ N. A run r of (A, k) on a tree t ∈ TΣ is a run
of A on t. It is successful if r is successful for A and the number of states from
dom(6=A) occurring along a root-to-leaves path is bounded by k: in other words,
for all root-to-leaves path u1 ⊳ . . .⊳ un of t (where each ui is a node), one has
|{ui | Or(ui) ∈ dom(6=A)}| ≤ k.
We now come to the main result of the paper:

Theorem 4. Emptiness of vbTAGEDs (A, k) is decidable in 2NEXPTIME.

Proof. Sketch We first transform A so that it satisfies =A⊆ idQ, thanks to
Lemma 1 (modulo an exponential blow-up). Let t ∈ TΣ , and r a run of A on
it which satisfies the equality constraints (but not necesssarily the disequality
constraints), and such that its root is labeled by a final state. We introduce suf-
ficient conditions on t and r (which can be verified in polynomial-time, in |t|, |r|
and |A|) to be able to repair the unsatisfied inequality constraints in t in finitely
many rewriting steps. These rewritings can be done while keeping the equality
constraints satisfied. In particular, since =A⊆ idQ, we can assume that for all
u, v ∈ Nt such that u ∼t,r v, r|u = r|v. Hence, we can use a “parallel” pumping
technique similar to the pumping technique for positive TAGEDs. The pumping
is a bit different however: indeed, if t and r satisfies the sufficient conditions,
we increase the size of some contexts of t and r, called elementary contexts, in
order to repair all the unsatisfied inequality constraints. The repairing process
is inductive. In particular, we introduce a notion of frontier below which all
inequality constraints have been repaired. The process stops when the frontier
reach the top of the tree (and in this case the repaired tree is in the language).
From a tree and a run that satisfy the sufficient conditions, and a frontier F , one
can create a new tree and a new run satisfying the conditions, and a new frontier
which is strictly contained in F . Conversely, if L(A, k) 6= ∅, then there is a tree
t and a run r satisfying the conditions such that the height of t is smaller than
2(k+ |Q|)|Q| (and by (k + 2|Q|)2|Q|+1 if =A 6⊆ idQ). Hence, it suffices to guess a
tree and a run satisfying the conditions to decide emptiness of A.

Since the class of vbTAGEDs subsumes the class of positive TAGEDs, we also
get an EXPTIME lower bound for emptiness of vbTAGEDs, by Theorem 1.
Moreover, if =A⊆ idQ and k ≤ |Q| (or k is unary encoded), emptiness of A is in
NEXPTIME. �

6 Applications

6.1 MSO with Tree Isomorphism Tests

We study an extension of MSO with isomorphism tests between trees. Trees over
an alphabet Σ are viewed as structures over the signature consisting of unary

predicates Oa, for all a ∈ Σ, to test the labels, and the two successor relations S1

and S2 which relates the parent to its first child and its second child respectively.
The domain of the structure is the set of nodes.
We consider node variables x, y and set variables X,Y . MSO consists of the
closure of atomic formulas Oa(x) (for a ∈ Σ), S1(x, y), S2(x, y), x ∈ X , by
conjunction ∧, negation ¬, and existential quantifications ∃x, ∃X . We refer the
reader to [17] for the semantics of MSO. It is well-known that MSO sentences
and tree automata define the same tree languages [23]. We use similar back and
forth translations to prove that an extension of MSO with tree isomorphism
tests effectively defines the same language as vertically bounded TAGED. This
significantly improves the result of [10].
We consider a predicate eq(X), which holds in a tree t under assignment ρ :
X 7→ U (denoted by t, ρ |= eq(X)), for some U ⊆ Nt, if for all u, v ∈ U , the trees
t|u and t|v are isomorphic. For all k ∈ N, we consider the predicate diffk(X,Y),
which holds in t under assignment ρ if (i) the maximal length of a descendant
chain in ρ(X) and ρ(Y) is bounded by k, (ii) for all u ∈ ρ(X), v ∈ ρ(Y), the trees
t|u and t|v are not isomorphic. We consider MSO∃

= the extension of MSO whose
formulas are of the form ∃X1 . . . ∃Xnφ, where φ is an MSO formula extended
with atoms eq(Xi) and diffk(Xi, Xj) (1 ≤ i, j ≤ n)2. MSO∃

= is strictly more
expressive than MSO as tree isomorphism is not expressible in MSO [7], but as
a corollary of Theorem 4, we obtain:

Theorem 5. MSO∃
= and vbTAGEDs effectively define the same tree languages,

and satisfiability of MSO∃
= formulas is decidable.

If we allow universal quantification of set variablesX1, . . . , Xn, the logic becomes
undecidable (even if the Xis denote singletons) [10].

6.2 Unification with Membership Constraints

We show that TAGEDs are particularly suitable to represent sets of ground
instances of terms. Then we investigate a particular unification problem with
tree and context variables where context variables can occur only in a restricted
manner. In particular, we consider first-order logic (FO) over term equations t ≈
t′, where t, t′ are terms with tree and context variables, such that in a formula,
every context variable can occur at most once. Tree and context variables might
be constrained to range over regular languages (membership constraints). We
prove this logic to be undecidable and exhibit a decidable existential fragment.
This is particularly relevant for XML queries, as we can express tree patterns
with negations. For instance, let Ldtd be a regular tree language representing the
DTD of a bibliography, d a ground term representing a bibliography,Lpath the set
of unary contexts denoted by the XPath expression bib/books (i.e. contexts whose
hole is reachable by the path bib/books), and X a unary context variable. The
formula φ(y, z) = ∃X, d ≈ X(book(author(y), title(z))) ∧ d ∈ Ldtd ∧X ∈ Lpath

checks that d conforms to the DTD and extracts from d all (author,title) pairs
reachable from the root by a path bib/books/book. The formula ∃z∃z′, φ(y, z)∧

2 We assume that X1, . . . , Xn are not quantified in φ

φ(y, z′) ∧ ¬(z ≈ z′) extracts from d all authors y who published at least two
books.
The restriction on context variables allows to test (dis)equalities arbitrarily
deeply but can not be used to test context (dis)equalities. Even with this re-
striction, FO is undecidable, while it is known that without context variables,
FO on atoms t ≈ t′ with membership constraints is decidable [8].
Let Σ be a ranked alphabet (assumed to be of binary and constant symbols for
the sake of clarity). Let Xt be a countable set of tree variables x, y, and Xc a
countable set of multi-ary context variables X,Y (we assume the existence of a
mapping ar : Xc → N giving the arity of any context variable). The set of terms
over Σ, Xt and Xc is denoted by T (Σ,Xt,Xc). For instance X(f(x,X(y), x))
is a term where X ∈ Xc (arity 1), f ∈ Σ (arity 3) and x, y ∈ Xt. A term is
ground if it does not contain variables. The set of ground terms over Σ is simply
denoted TΣ . We also denote by CΣ the set of contexts over Σ, and by Cn

Σ the set
of n-ary contexts over Σ, for all n ∈ N. For all C ∈ Cn

Σ , and terms t1, . . . , tn ∈
T (Σ,Xt,Xc), we denote by C[t1, . . . , tn] the term obtained by substituting the
holes in C by t1, . . . , tn respectively (see [7] for a formal definition of contexts).
A ground substitution σ is a function from Xt ∪ Xc into TΣ ∪ CΣ such that for
all x ∈ Xt, σ(x) ∈ TΣ , and for all X ∈ Xc, σ(X) ∈ CΣ and ar(X) = ar(C). The
ground term obtained by applying σ on a term t is denoted tσ. A ground term
t′ is a ground instance of a term t if there is σ such that t′ = tσ. Finally, a term
t is context-linear if every context variables occurs at most once in t.

Proposition 6. Let t ∈ T (Σ,Xt,Xc) be context-linear. The set of ground in-
stances of t is definable by a positive TAGED.

Proof. (Sketch) It suffices to introduce states for each subterm of t, and a special
state q∀ in which every ground term evaluates. Then we add state equalities
qx =A qx for all variable x occurring in t. �

We now introduce unification problems. An equation e is a pair of terms denoted
by t ≈ t′, where t, t′ ∈ T (Σ,Xt,Xc). A ground substitution σ is a solution of e if
tσ and t′σ are ground terms, and tσ = t′σ. Let n ∈ N. A regular n-ary context
language L is a regular language over Σ∪{◦1, . . . , ◦n}, where ◦1, . . . , ◦n are fresh
symbols denoting the holes, and such that every symbol ◦i occurs exactly once
in terms (this can be ensured by a regular control). A membership constraint is
an atom of the form x ∈ Lx, or X ∈ LX , where x ∈ Xt, X ∈ Xc, Lx is a regular
tree language, and LX is a regular ar(X)-ary context language.
We consider FO over equations and membership constraint atoms, with the
following restriction: for all formulas φ, and all context variables X ∈ Xc, there
is at most one equation e, and one term t in e such that X occurs in t. We
denote by FO[≈,∈] this logic. FO[≈,∈]-formulas are interpreted over ground
substitutions σ. We define the semantics σ |= φ inductively: σ |= e if σ is a
solution of e, σ |= x ∈ Lx if σ(x) ∈ Lx (and similarly for X ∈ LX), σ |= ∃xφ
if there is a ground term t such that σ[x 7→ t] |= φ (and similarly for ∃Xφ).
Disjunction and negation are interpreted as usual.
We can show the following by reducing PCP:

Proposition 7. Satisfiability of FO[≈,∈] is undecidable.

However, it is known that satisfiability of FO[≈,∈] in which no context variable
occurs is decidable [8]. We consider the existential fragment FO∃[≈,∈] of FO[≈
,∈] formulas where existential quantifiers ∃x or ∃X cannot occur below an odd
number of negations.

Theorem 6. Satisfiability of FO∃[≈,∈] is decidable.

Proof. (Sketch) Wlog, we consider only closed formulas. We define a normal
form which intuitively can be viewed as a set of pairs (E,M), where E is a set of
equations e (or negated equations ¬e), and M is a set of membership constraints.
For each pair (E,M), we construct a vbTAGED (AE,M , |E|) which defines the
ground instances of the term t0 depicted in Fig. 1 satisfying: (i) # is a fresh
symbol, (ii) for all terms t, t′, there exists i ∈ {1, . . . , n} s.t. t = ti and t′ = t′i iff
either (t ≈ t′) ∈ E or ¬(t ≈ t′) ∈ E, (iii) if t0σ is a ground instance of t0, then
the membership constraints are satisfied, and σ is a solution of every equation
of E (this can be done for instance by adding state inequalities qt 6=A qt′ , if
¬(t ≈ t′) ∈ E). The formula is satisfiable iff there is a pair (E,M) such that
L(AE,M , |E|) 6= ∅. �

Fig. 1. term t0

Anti-pattern matching [15] considers terms with
negations (called anti-patterns). For instance, the
anti-pattern f(x,¬x) denotes all the ground terms
f(t1, t2) such that t1 6= t2. More generally, nega-
tions can occur at any position in the term:
¬(g(¬a)) denotes all ground terms which are not
rooted by g or g(a), and ¬f(x, x) denotes ground
terms which are not of the form f(t, t). A ground
term matches an anti-pattern if it belongs to its
denotation. [15] proves it to be decidable. We can
easily define a vbTAGED Ap which accepts the
denotation of an anti-pattern p where negations
occur at variables only. Thus the anti-pattern
matching problem reduces to test membership to L(Ap). When negations occur
arbitrarily, the translation is not so clear since the semantics of anti-patterns is
universal (a ground term t matches ¬f(x, x) if ∀x, t 6= f(x, x)). We let as future
work this translation (for instance by pushing down the negations).

7 Future Work

In [10], TAGEDs are based on hedge automata [19], so that they accept un-
ranked trees. We can encode unranked trees over Σ as terms over the signature
Σ ∪ {cons}, where cons is a binary symbol denoting concatenation of an un-
ranked tree to an hedge. For instance, f(a, b, c) maps to f(cons(a, cons(b, c))).
Hedge automata can be translated into tree automata over those encodings.

Moreover, the encoding is unique, and any subtree t becomes a subtree rooted
by a symbol of Σ in the encoding. Hence testing constraints between subtrees
in unranked trees is equivalent to test constraints between subtrees rooted by Σ
in binary encodings. Therefore, TAGEDs over unranked trees can be translated
into TAGEDs over encodings, and we can prove that all the results presented in
this paper carry over to unranked trees. Moreover, in [10], we consider the TQL
logic over unranked trees, and prove a fragment of it to be decidable, by reduc-
tion to emptiness of bounded TAGEDs (over unranked trees). This work could
be used to decide larger fragments of TQL, via a binary encoding. Concerning
the unification problem considered here, we would like to use TAGEDs to test
whether there are finitely many solutions, and to represent the set of solutions.
A question remains: deciding emptiness of full TAGEDs. It is not easy, even for
languages of trees of the form f(t1, t2), where t1 and t2 are unary. Finally, it
could be interesting to consider more general tests, like recognizable relations on
trees (since tree (dis)equality is a particular recognizable binary relation).

References

1. Alexander Aiken, Dexter Kozen, and Edward L. Wimmers. Decidability of sys-
tems of set constraints with negative constraints. Information and Computation,
122(1):30–44, 1995.

2. Siva Anantharaman, Paliath Narendran, and Michael Rusinowitch. Closure prop-
erties and decision problems of dag automata. Inf. Process. Lett., 94(5):231–240,
2005.

3. B. Bogaert and S. Tison. Equality and disequality constraints on direct subterms
in tree automata. In STACS’92, volume 577 of LNCS, pages 161–171.

4. Witold Charatonik. Automata on dag representations of finite trees. Technical
report, 1999.

5. Witold Charatonik and Leszek Pacholski. Set constraints with projections are in
NEXPTIME. In IEEE Symposium on Foundations of Computer Science, 1994.

6. H. Comon and V. Cortier. Tree automata with one memory, set constraints and
cryptographic protocols. TCS, 331(1):143–214, 2005.

7. H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Ti-
son, and M. Tommasi. Tree automata techniques and applications. Available at
http://www.grappa.univ-lille3.fr/tata, 2007.

8. Hubert Comon and Catherine Delor. Equational formulae with membership con-
straints. Information and Computation, 112(2):167–216, 1994.

9. M. Dauchet, A.-C. Caron, and J.-L. Coquidé. Reduction properties and automata
with constraints. JSC, 20:215–233, 1995.

10. E. Filiot, J-M. Talbot, and S. Tison. Satisfiability of a spatial logic with tree
variables. In CSL’07, pages 130–145.

11. E. Filiot. Logics for n-ary queries in trees. PhD thesis, Lille University, 2008.

12. Rémi Gilleron, Sophie Tison, and Marc Tommasi. Some new decidability results
on positive and negative set constraints. In Proceedings of the International Con-

ference on Constraints in Computational Logics, pages 336–351, 1994.

13. F. Jacquemard, M. Rusinowitch, and L. Vigneron. Tree automata with equality
constraints modulo equational theories. Research Report, LSV, ENS Cachan, 2006.

14. W. Karianto and C. Löding. Unranked tree automata with sibling equalities and
disequalities. Research Report, RWTH Aachen,2006.

15. Claude Kirchner, Radu Kopetz, and Pierre-Etienne Moreau. Anti-pattern match-
ing. In ESOP’07, 2007.

16. Temur Kutsia and Mircea Marin. Solving regular constraints for hedges and con-
texts. In UNIF’06, pages 89–107.

17. L. Libkin. Logics over unranked trees: an overview. LMCS’06, 3(2):1–31, 2006.
18. J. Mongy. Transformation de noyaux reconnaissables d’arbres. Forêts RATEG.

PhD thesis, Université de Lille, 1981.
19. M. Murata. Hedge automata: A formal model for xml schemata. Technical report,

Fuji Xerox Information Systems, 1999.
20. Frank Neven. Automata, logic, and xml. In CSL’02, pages 2–26.
21. T. Schwentick. Automata for xml – a survey. J. Comput. Syst. Sci. 73, 3 (2007),

289–315.
22. Kjartan Stefansson. Systems of set constraints with negative constraints are

nexptime-complete. In LICS, 1994.
23. J. W. Thatcher and J. B. Wright. Generalized finite automata with an application

to a decision problem of second-order logic. Mathematical System Theory, 2:57–82,
1968.

24. Full paper version. Available at http://hal.inria.fr/inria-00292027.

A Closure Properties of TAGEDS and Decision Problems

A.1 Proof of Proposition 2

It remains to prove closure by intersection.

Proof. Let A = (Σ,Q, F,∆,=A, 6=A) and A′ = (Σ,Q′, F ′, ∆′,=A′ , 6=A′) be two
TAGED. Let ta(A) = (Σ,Q, F,∆) and ta(A′) = (Σ,Q′, F ′, ∆′) be their respec-
tive tree automaton parts.
We let ta(A)× ta(A′) be the product automaton of ta(A) and ta(A′), whose set
of final states is F × F ′ (see [7] for more details about product construction).
We let A×A′ be defined by (ta(A) × ta(A′),=A×A′ , 6=A×A′) where:

– =A×A′= {((q, q′), (p, p′) | q =A p or q =A′ p}
– 6=A×A′= {((q, q′), (p, p′) | q 6=A p or q 6=A′ p}

Now we prove that L(A×A′) = L(A) ∩ L(A′).
Let t ∈ L(A × A′), then there exists a successful run r′′ of A × A′ on t. By
construction, this run can be decomposed into a successful run r of ta(A) on t
and a successful run r′ of ta(A′) on t. It remains to show that r and r′ satisfies the
constraints of A and A′ respectively. Let u, v ∈ Nt such that Or(u) =A Or(v). It
means that there exists four states q, p ∈ Q, q′, p′ ∈ Q′ such that Or′′(u) = (q, q′),
Or′′(v) = (p, p′) and q =A p. Hence (q, q′) =A×A′ (p, p′) and we get t|u = t|v.
This is similar for r′ and when considering inequalities.
Conversely, suppose that t ∈ L(A)∩L(A′). Hence there exists two successful runs
r and r′ of A and A′ on t respectively. By construction of A×A′, these two runs
can be combined into a run r′′ of A×A′ on t. It remains to show that r′′ satisfies
the constraints of A×A′. Let u, v ∈ Nt such that Or′′(u) =A×A′ Or′′(v). It means
that there exists four states q, p ∈ Q and q′, p′ ∈ Q′ such that Or′′(u) = (q, q′),
Or′′(v) = (p, p′), and either q =A p or q′ =A′ p′. If q =A p, we easily get t|u = t|v
(since r respects the constraints of A), and similarly if q′ =A′ p′. It similar when
dealing with inequalities. �

A.2 Proof of Proposition 4

We let Σ = {f, g, a} where f, g are binary and a is a constant, and h 6∈ Σ
be a binary symbol. We let T0 = {a}, and for n > 0, Tn = {f(g(t, t), t′) | t ∈
T{h,a}, t

′ ∈ Tn−1}. We let L =
⋃

n∈N
Tn. The complement of L is easily definable

by a TAGED. Suppose that L is definable by a TAGED A = (Σ,Q, F,∆,=A

, 6=A). Let n ≥ |Q|+ 1, and let α1, . . . , αn ∈ T{h,a} such that ∀i < j, |αi| < |αj |.
Now, let t0 = a, and for i > 0, ti = f(g(αi, αi), ti−1) (see Fig 2). It is clear that
tn ∈ Tn. Hence there is a successful run r of A on tn. Since n ≥ |Q|+ 1, there
are b, b′ ∈ {1, 2}, i0, j0 ∈ {0, . . . , n − 1}, i0 < j0, two nodes u, u′ ∈ Ntn

, and a
state q ∈ Q such that: (i) u = 2i01b and u′ = 2j01b′, (ii) Or(u) = Or(u

′) = q.
We let t′n = tn[tn|u]u′ , i.e. the tree tn where the subtree at node u′ has been
substituted by the subtree at node u. We do the same corresponding substitution
in r, which result in a run denoted r′. Note that t′n 6∈ L since |αi| 6= |αj |, for

f

f

g

g

f

αn αn

αn−1 αn−1

α1 α1

g
a

Fig. 2. Tree tn

i 6= j, by definition of tn, for any i 6= j. We now prove that r′ is successful (i.e.
satisfies the constraints), which would contradict tn|u 6= tn|u′ . Let N = {2k | k =
0, . . . , j0} ∪ {2j01}. Let v, w ∈ Nt′n

, v 6= w. We consider three cases (the other
are symmetric):

– if v, w 6∈ N , then necessarily the constraints are still satisfied.
– suppose that v ∈ N is of the form 2k, for k ≤ n−1. We prove that necessarily,
t′n|v 6= t′n|w. Indeed, the root of t′n|v is necessarily labeled f . If the root of
t′n|w is labeled f , then either t′n|v is a strict subtree of t′n|w or conversely.
Otherwise the root of t′n|w is labeled by g, h or a, so we obviously have
t′n|v 6= t′n|w.
Hence, if Or′(v) 6=A Or′(w), the constraints is satisfied. We can easily prove
that Or′(v) =A Or′(w) is impossible.

– suppose that v ∈ N is of the form 2j01. The root of t′n|v is necessarily labeled
g. There are two cases:
• if Or′(v) =A Or′(w), we can prove a contradiction.

Indeed, if w is of the form 2j01b′w′, for some w′ ∈ Nαj0
, we have

Or(v) =A Or(2
i01b′w′), and tn|2i01b′w′ = tn|v, which is impossible since

the root of tn|2i01bw′ is labeled h or a, and the root of tn|v is labeled g.
If w is of the form 2k, for some k ∈ {0, . . . , n}, then we have tn|w = tn|v,
which is also impossible for similar reasons.
If w = 2k1, for some k ∈ {0, . . . , n − 1}, then k 6= j0, and necessarily,
we would have tn|w = tn|v, which is impossible since in this case we

would have tn|w = g(αk, αk) and tn|v = g(αj0 , αj0), which contradicts
|αk| 6= |αj0 |.
Finally, if w is of the form 2j1cw′, for some j 6= j0, c ∈ {1, 2}, and
w′ ∈ Nαj

. Hence we have Or(v) =A Or(w), and tn|v = tn|w, which
contradicts that their respective roots are labeled with different labels.
• if Or(v) 6=A Or(w), then the constraint is satisfied, i.e. t′n|v 6= t′n|w. Sup-

pose that t′n|v = t′n|w, since the root of t′n|v is labeled g, w is necessarily
of the form 2k1, with k 6= j0. Hence tn|w is of the form g(αi0 , αj0) = t′n|v,
which contradicts tn ∈ L, since |αi0 | 6= |αj0 |.

Hence r′ is a successful run of A on t′n, which contradicts t′n 6∈ L. �

A.3 Proof of Proposition 5

We reduce the Post Correspondence Problem (PCP)3.
We adapt the proof of emptiness undecidability of automata with equality con-
straints of [18]. In this proof, it is shown that one can construct an automata
with equality constraints which can recognize the solution of an instance of the
Post Correspondence Problem (PCP).
Let Σ be an alphabet, and I = {u1, . . . , um, v1, . . . , vm} be an instance of PCP,
∀i ∈ {1, . . . ,m}, ui, vi ∈ Σ∗. We denote by Σ ∪ {f, c} the ranked alphabet
obtained by extending Σ with a fresh ternary function symbol f and a constant
0. Symbols from Σ are viewed as unary function symbols4

Let (ui1 , vi1), . . . , (uin
, vin

) be solution of I. This solution can be represented as
a term over Σ ∪ {f, c}, as in Figure 3. For all 1 ≤ j ≤ m, the notation uj(x)
stands for the context uj,1(uj,2(. . . uj,k(x)) . . .), where uj,1, . . . , uj,k are symbols
from Σ and uj = uj,1 . . . uj,k.
We let S be set of encodings of candidate solutions of the instance of PCP, i.e.
S is the set of trees defined by the following grammar:

t ::= f(tu, t, tv) | c tu ::= ui(tu) | c tv ::= vj(tv) | c j = 1, . . . ,m

The set S can easily be defined by a tree automaton. We can define a (bounded)
TAGED A which checks whether an encoding of a candidate solution is non-
valid (i.e. is not a solution of I). In other words, L(A)∩S is the set of encodings
of non-valid solutions. A needs to check if the input tree matches the pattern
f(X, ,¬X), where X is a pattern variable which intuitively is matched against
a whole subtree, matches everything, and ¬X is intended to match the third
subtree if it is different from the tree matched by X . In addition, A checks that
one of the following patterns is matched against a subtree of the input tree:

f(ui(), , vj()), ∀i 6= j f(ui(X), f(¬X, ,),) ∀i ∈ {1, . . . ,m}
f(, f(, ,¬X), vj(X)) ∀j ∈ {1, . . . ,m}

3 Remind that an instance of PCP is given by a finite alphabet Σ and 2m words
u1, . . . , um, v1, . . . , vm over Σ. A solution to this problem is a finite sequence of
indices i1, . . . , in such that ui1 . . . uin = vi1 . . . vin .

4 to simplify, we do not consider binary symbols, but the proof can easily be adapted
to a binary signature

f

ui1

ui2

uin

c

f

ui2

uin

c

f

uin

c

c vin

c

vi2

vin

c

vi1

vi2

vin

c

Fig. 3. representation of a solution of PCP

Hence, we have L(A) ∩ S 6= ∅ iff I has a (valid) solution, iff TΣ 6⊆ L(A) ∪ S.
Hence, PCP reduces to (non) universality of (bounded) TAGED, since L(A)∪S
can be defined by a (bounded) TAGED, thanks to Proposition 2. �

A.4 Proof of Lemma 1

Let A = (Λ,Q, F,∆,=A, 6=A). We start by defining useful notions, and then
prove Lemma 1.

Path Isomorphism Let t ∈ TΣ, and u, v ∈ Nt such that u E v. We denote by
patht(u, v) the finite sequence of nodes u1, . . . , un such that u1 = u, un = v, and
for all i ∈ {1, . . . , n−1}, ui+1 is a child of ui. In particular, patht(u, u) = u. Given
two other nodes u′, v′ such that u′ E v′, we say that patht(u, v) is isomorphic
to patht(u

′, v′), if v and v′ are reachable from u and v respectively by the same
sequence of first-child or second-child edges. More formally, if patht(u, v) =
u1 . . . un and patht(u

′, v′) = u′1 . . . u
′
n for some u1, . . . , un,u′1, . . . , u

′
n, then for all

i ∈ {1, . . . , n− 1}, for all α ∈ {1, 2}, ui+1 = uiα iff u′i+1 = u′iα.

Node Equivalence Given a tree t ∈ L(A) and a run r of A on t which satisfies
the equality constraints, we define an equivalence relation ∼t,r on Nt as follows5.
The relation ∼t,r is the transitive and reflexive closure of the relation ↔t,r

defined as follows: for all u, v ∈ Nt, u ↔t,r v if there exist two nodes u′, v′

above u, v resp. such that the downward path from u′ to u is isomorphic to the
downward path from v′ to v and Or(u

′) =A Or(v
′).

5 when it is clear from the context, we omit the subscript t, r and write ∼

f

f q f q

a a a a

∼

∼ ∼

Fig. 4. Equivalence Relation where q =A q

For instance, Fig 4 shows a tree where the two subtrees have been evaluated
to some state q such that q =A q, and the corresponding equivalence relation
(reflexivity is not depicted but all nodes are equivalent to themselves).
The following facts are implicitely used in the rest of the proof:

Proposition 8. For all u, v ∈ Nt, if u ∼t,r v, then t|u = t|v.

Proof. If u↔t,r v, there are u′, v′ such that u′Ev′ and patht(u
′, v′) is isomorphic

to patht(u, v), and Or(u
′) =A Or(v

′). Hence t|u′ = t|v′ and therefore t|u = t|v.
By transitivity, we also get t|u = t|v whenever u ∼t,r v. �

Proposition 9. For all u, v, u′, v′ ∈ Nt such that u ⊳ u′ and v ⊳ v′, if u ∼t,r v
and the downward path from u to u′ is isomorphic to the downward path from v
to v′, then u′ ∼t,r v

′.

Proof. This is true for u↔t,r v, and by transitivity, it also holds for u ∼t,r v.�

Proof of Lemma 1 We first describe the construction of the automaton and
then prove its correctness.
Automaton Construction We define Q′ = 2Q× C where C is a set of choices.
Intuitively, when a choice has been made, it enforces the subtrees successfully
tested to be equal to run in the same state.

For every q ∈ dom(=A), we denote by [q] its equivalence class by =A. A choice
is a function c : dom(=A)→ 2Q such that for all q, q′ ∈ dom(c), q =A q′ implies
c(q) = c(q′). Note that dom(c) may be strictly included into dom(=A).
Let c ∈ C. We let Qc = {P ⊆ Q | ∃q ∈ P ∩dom(=A) =⇒ P = c(q)} (it imposes
that P must respect the choice c). We let ∆c be the set of rules defined as follows:
(i) for all states P, P ′, P ′′ ∈ Qc , f(P, P ′)→ P ′′ ∈ ∆c iff for all p′′ ∈ P ′′, there are
p ∈ P and p′ ∈ P ′ such that f(p, p′)→ p′′ ∈ ∆; (ii) for all P ∈ Qc , a→ P ∈ ∆c

iff for all p ∈ P , we have a → p ∈ ∆. The set of final states Fc is defined by
Fc = {P ∈ Qc | P ∩ F 6= ∅}. Finally, we let =c , 6=c be defined by:

P =c P
′ if ∃p ∈ P, ∃p′ ∈ P ′, p =A p′(hence P = P ′)

P 6=c P
′ if ∃p ∈ P∃p′ ∈ P ′, p 6=A p′

We letAc = (Σ,Qc , Fc , ∆c ,=c , 6=c), and letA′ be the TAGED defining
⋃

c∈C L(Ac)
(we can construct it thanks to Proposition 2, and its size is exponential in the
size of A). We now prove that L(A′) = L(A).
Correctness Let q ∈ Q. We let L(q, A) be the set of trees t such that there exists
a q-run6 of A on t which satisfies the constraints. L(q, A′) is defined similarly.

L(A′) ⊆ L(A) Let c ∈ C, P ∈ Qc , and t ∈ TΣ. such that t ∈ L(P,Ac). By

definition of ∆c , we can easily prove by induction on t that if there is a P -run
rc of Ac on t, then for all p ∈ P , there exists a p-run r of A on t. Moreover, if rc

satisfies the constraints, then r satisfies the constraints too. Indeed, let u, v ∈ Nt

such that Or(u) =A Or(v). By construction of r, we have Or(u) ∈ Orc
(u) and

Or(v) ∈ Orc
(v). By definition of =c , we get t|u = t|v. This is done similarly for

inequalities.

L(A) ⊆ L(A′) Let t ∈ L(A) and r a successful run ofA on t. We let states(u) =

{q | ∃v ∼ u, q = Or(v)}. We let c be defined as follows: for all p ∈ dom(=A),
u ∈ Nt, c(p) = states(u) if p ∈ states(u). Hence, for every pair of equivalent
nodes u ∼ v, we have c(Or(u)) = c(Or(v)).
We show that there exists a run rc of Ac on t. We define it by: ∀u ∈ Nt, Or′(u) =
states(u). Let us now show that rc is a run of Ac , and that is satisfies the
constraints.

– for all u ∈ Nt, states(u) ∈ Qc .
By definition of states(u) and Qc ;

– rc is a run of Ac on t.
Let u, u1, u2 ∈ Nt such that u1 and u2 are the sons of u. We show that
the transition f(states(u1), states(u2)) → states(u) is in ∆c . Let p ∈
states(u). There is some node v ∈ Nt such that u ∼ v and Or(v) = p.
Let v1, v2 be the two sons of v respectively (they exist since t|u = t|v). Let
p1 = Or(v1) and p2 = Or(v2). Hence there is a rule of the form f(p1, p2)→ p
in∆. By definition of∼, we have u1 ∼ v1 and u2 ∼ v2, hence p1 ∈ states(u1)
and p2 ∈ states(u2), which concludes the proof (this goes similarly for leaf
nodes).

6 a q-run is a run whose root is labeled by q

– rc satisfies the equality constraints.
Let u1, u2 ∈ Nt and let P1, P2 ∈ Qc such thatOrc

(u1) = P1 andOrc
(u2) = P2.

Suppose that P1 =c P2. It means that there are two states p1 ∈ P1 and
p2 ∈ P2 such that p1 =A p2. Hence, c(p1) = c(p2) = P1 = P2 = states(u1) =
states(u2).
Hence, there are u′1, u

′
2 ∈ Nt (not necessarily different from u1 and u2) such

that u′1 ∼ u1 and u′2 ∼ u2, and Or(u
′
1) = p1, Or(u

′
2) = p2. By definition of

∼, we also get u′1 ∼ u′2, since p1 =A p2. Finally, as ∼ is transitive, we get
u1 ∼ u2, and t|u1

= t|u2
.

– rc satisfies the disequality constraints
It is similar to the previous case. Let u1, u2 ∈ Nt. If Orc

(u1) 6=c Oc(u2), it
means that there are two nodes u′1 ∼ u1 and u′2 ∼ u2 such that Or(u

′
1) 6=A

Or(u
′
2). Since t|u1

= t|u′
1

and t|u2
= t|u′

2
, and t|u′

1
6= t|u′

2
, we get t|u1

6= t|u2
.

�

B Negative TAGED

We sketch correctness of the system SA. Suppose that SA has a solution given
by set of trees Tq, for all q ∈ Q. Let q ∈ Q such that there is t ∈ Tq, t ∈ L(A).
We construct a run on t inductively.

– if t = a ∈ Σ, then we take the successful run reduced to the leaf q;
– if t = f(t1, t2), for some f ∈ Σ, t1, t2 ∈ TΣ. By definition of SA, there is a

rule f(q1, q2)→ q such that t1 ∈ Tq1
and t2 ∈ Tq2

. By induction hypothesis,
there are runs r1 and r2 on t1 and t2 respectively, such that Or1

(ǫ) = q1 and
Or2

(ǫ) = q2. Hence q(r1, r2) is a run of A on t.

Since there is q ∈ F such that Tq 6= ∅, for all t ∈ Tq, we can construct a
successful run r of A on t, so that t ∈ L(A).
Conversely, if L(A) 6= ∅, there is a tree t ∈ L(A) and a successful run r of A on
t. For all q ∈ Q, we let Tq = {t|u | u ∈ Nt, Or(u) = q}. The set {Tq | q ∈ Q} is a
solution of SA. �

C Pumping for TAGED: Proof of Theorems 2 and 4

In this section, we view trees t as particular graphs (and not terms), given by
a pair (Nt, E

1
t , E

2
t), of vertices Nt, first-child edges E1

t and second-child edges
E2

t . In particular, Nt is an arbitrary set and not necessarily a prefix-closed set of
words over {1, 2}. The notion of subtree carries over to the graph point of view
of trees. Moreover, we confuse tree equality and tree isomorphism (hence, two
equal trees have not necessarily the same set of nodes, but are isomorphic, i.e.
their edge relations and label relations are preserved). We still denote by ⊳ the
strict descendant relation and by E its reflexive closure. Let V ⊆ Nt. We denote
by ↑tV the set {w | ∃v ∈ V,w E v}. When it is clear from the context, we omit
the subscript t.
We also confuse the nodes of t and the nodes of the runs of A on t, for some
TAGED A. In other words, we always assume that Nr = Nt, for any run r on t.

-

-

∼ ∼ . . . ∼

v1, q v2, q vn, q

u1, q u2, q un, q

7 7 7
∼ ∼ . . . ∼

Fig. 5. Parallel pumping of state q

C.1 Parallel Pumping for Positive TAGED, and proof of Theorem 2

We first introduce a pumping technique for positive TAGEDs A which satisfy
=A⊆ idQ. The idea is to pump in parallel below states q such that q =A q. Let
t ∈ TΣ and r a successful run of A on t. Since =A⊆ idQ, we can assume that
we have the same subruns below states q such that q =A q. Formally, for all
u, v ∈ Nt such that Or(u) =A Or(v), we assume that r|u = r|v (otherwise we
substitute r|u by r|v, and the constraints are still satisfied). Suppose that there
are two nodes u, v ∈ Nt such that u ⊳ v and there is a state q ∈ Q such that
Or(u) = Or(v) = q. In general, we cannot pump the loop u, v because after
pumping an equality constraint might be unsatisfied (in particular, if u is below
a state from dom(=A) which occurs twice in the run). Remind that ↔t,r and
∼t,r are defined in Appendix A.4. Instead of pumping only below u, we pump
in parallel below all nodes equivalent to u by ∼t,r. This can be done since for all
node u′ such that u ∼t,r u

′, we have7 r|u = r|u′ . Now, let v′ be the node below
u′ such that the downward path from u to v is isomorphic to the downward
path from u′ to v′ (it exists since t|u = t|u′ , by Prop 8). Since r|u = r|u′ , we
have Or(v

′) = Or(u
′) = q, so that we can also pump the loop u′, v′. Hence, we

can pump in parallel below all nodes equivalent to u while keeping the equality
constraints satisfied.

Formally, the pumping technique is described by the following lemma:

7 By definition of ↔t,r, for all nodes u1, u2 such that u1 ↔t,r u2, there are v1, v2

above u1, u2 respectively such that patht(v1, u1) is isomorphic to patht(v2, u2), and
Or(v1) =A Or(v2). Since =A⊆ idQ, we get Or(v1) = Or(v2), and since we put the
same run below states q such that q =A q, we also get r|v1

= r|v2
, from which we

deduce r|u1
= r|u2

. By transitivity, we also have r|u1
= r|u2

for all nodes u1, u2 such
that u1 ∼t,r u2.

Lemma 2 (Pumping Lemma for Positive TAGED). Let t ∈ L(A), and r a
successful run of A on t such that ∀u, v ∈ Nt, if Or(u) =A Or(v), then r|u = r|v.
Let {u1, . . . , un} ⊆ Nt be an ∼t,r-equivalence class. Suppose that there is some
state q ∈ Q and some node v1 such that u1 ⊳ v1 and Or(u1) = Or(v1) = q.
Let v2, . . . , vn such that for all i ∈ {2, . . . , n}, patht(ui, vi) is isomorphic to
patht(u1, v1). Let Ct (resp. Cr) be the n-ary context over Σ (resp. Q) such that
t = Ct[t|u1

, . . . , t|un
] (resp. r = Cr[r|u1

, . . . , r|un
]).

Then Cr [r|v1
, . . . , r|vn

] is a successful run of A on Ct[t|v1
, . . . , t|vn

].

Proof. Fig. 5 illustrates this pumping. Let r′ = Cr[r|v1
, . . . , r|vn

] and t′ =
Ct[t|v1

, . . . , t|vn
]. It is clear that r′ is a run on t′ whose root is labeled by a final

state. It remains to show that it satisfies the equality constraints. Let u, v ∈ Nt′

such that Or′(u) =A Or′(v). If neither v nor u is above one of the vi, we have
t|u = t′|u and t|v = t′v, and Or(u) =A Or(v). Since r satisfies the equality
constraints, we also have t′|u = t′|v.

Suppose now that uE vi, for some i ∈ {1, . . . , n}. By definition of ∼t,r, we have
u ∼t,r v. We cannot have u = vi, otherwise it would mean that q is an equality
state, which is not possible since it would imply t|u1

= t|v1
, but t|v1

is a strict
subtree of t|u1

. Hence u ⊳ vi. It means that in t, we have u ⊳ ui (since we have
pumped the loop ui, vi, and u is still present in t′). By hypothesis, we have
r|u = r|v. Let {i1, . . . , ik} ⊆ {1, . . . , n} (resp. {j1, . . . , jk′} ⊆ {1, . . . , n}) be the
maximal set of indices such that there is a k-ary context Cu (resp. k′-ary context
Cv) such that t|u = Cu[t|ui1

, . . . , t|uik
] (resp. t|v = Cv[t|uj1

, . . . , t|uj
k′

]). By defi-

nition of ∼t,r, since u ∼t,r v, we have k = k′, Cu = Cv, and t|uil
= t|ujl

, for all
l ∈ {1, . . . , k}. By definition of the pumping, we have t′|u = Cu[t|vi1

, . . . , t|vik
]

and t′|v = Cv[t|vj1
, . . . , t|vjk

]. Hence we get t′u = t′v, which ends up the proof. �

As a consequence, we have:

Corollary 1. If L(A) 6= ∅, there is a tree t ∈ L(A) whose height is bounded by
|Q|.

We can also use this technique to prove:

Lemma 3. If there is a tree t ∈ L(A) whose height is strictly greater than |Q|,
then L(A) is infinite.

Proof. If there is a loop in a run involving a node u and a node v such that
u⊳ v, we can iterate this loop in parallel below all nodes equivalent to v. Hence
we keep the constraints satisfied. �

As a consequence of this lemma, we get this theorem (called Theorem 2 in the
paper):

Theorem 7. Let A be a positive TAGED. It is decidable whether L(A) is infinite
or not, in O(|A||Q|2) if =A⊆ idQ, and in EXPTIME otherwise.

Proof. If =A⊆ idQ, we only have to test if there is a tree in L(A) whose height
is strictly greater than |Q|. This can be done by adding a counter to A, bounded
by |Q|+ 1. Intuitively, if a tree t evaluates to (q, c), it means that the height of
t is smaller than c. Let A′ be the automaton we obtain. We let (q, c) =A′ (q, c′)
iff q =A q and c = c′, so that we have =A′⊆ idQ′ . Emptiness is tested in linear
time, as in the proof of Theorem 1.
If A does not satisfies =A⊆ idQ, we first have to transform it, modulo an expo-
nential blow-up, thanks to Lemma 1. �

C.2 Pumping Lemma for vbTAGED

Let (A, k) be a vbTAGED where A = (Σ,Q, F,∆,=A, 6=A), such that =A⊆ idQ.
If =A 6⊆ idQ, we first transform A into a TAGED A′ such that =A′⊆ idQ′ (thanks
to Lemma 1), and we can prove that L(A, k) = L(A′, k).
Given two trees t, t′ ∈ TΣ , and a node u ∈ Nt, we denote by t[u← t′] the tree t
where the subtree at position u has been substituted by t′.
Let t be a tree and r a run of A on t which satisfies the equality constraints (but
not necessarily all the disequality constraints). In the proof of Theorem 4, we
use a pumping technique in order to repair the unsatisfied inequality constraints.
Intuitively, t and r are repairable if one can substitute some subtrees (or subruns)
of t and r in order to create a new tree t′ together with a successful run of (A, k)
on t′. More formally:

Definition 2. Let t be a tree and r a run of A on t which satisfies the equality
constraints, and such that Or(u0) is a final state, where u0 is the root node of t.
We say that (t, r) is repairable if there are a set of nodes {u1, . . . , un} ⊆ Nt, n
trees t1, . . . , tn ∈ TΣ, n runs r1, . . . , rn of A on t1, . . . , tn respectively, such that:

1. for all 1 ≤ i, j ≤ n, if i 6= j, then ui and uj are incomparable by E;
2. r[u1 ← r1] . . . [un ← rn] is a successful run of (A, k) on t[u1 ← t1] . . . [un ←

tn].

We say that (t′, r′) is a repair of (t, r).

In particular, in t, any constraint between two nodes u, v ∈ Nt , such that neither
u nor v is comparable to some ui, is satisfied.
Note that if there is a repairable pair (t, r), then L(A, k) is non-empty. We give
sufficient conditions for (t, r) to be repairable, and we can check in polynomial
time whether those conditions hold. We prove that a pair (t, r) satisfying those
conditions is repairable. We also prove that if L(A, k) is non-empty, then there
exists a pair (t, r) satisfying those conditions such that the height of t is bounded
by 2(k + |dom(=A)|)|Q|.
Actually, we prove a stronger result that imposes cardinality constraints on (t, r),
so that if (t, r) is repairable, we can bound the size of a repair of (t, r).
In order to repair (t, r), we increase the size of some contexts of t and r. We
introduce a notion of frontier below which all inequality constraints are satisfied.
The repairing process goes inductively, by decreasing the frontier, for some order
on frontiers. The proof is organized as follows:

1. we introduce technical background
2. we define sufficient conditions for a tree and a run to be repairable, through

a predicate P ;
3. we prove that a pair (t, r) satisfying those conditions is repairable (Theorem

8). The proof goes by induction on the frontiers. We state a base lemma
(Lemma 4), and an induction lemma (Lemma 5);

4. we prove a lemma which states that if there is a tree in L(A, k), then there
is a tree and run of bounded size, depending on A and k only, that satisfy
the sufficient conditions (Lemma 6);

5. we prove Theorem 4 and proves a corollary (Corollary 2) which states that
we can bound the size of an accepted tree.

Contexts Given two multi-ary contexts C1, C2, we say that C1 is included
in C2 if C1 occurs in C2, i.e. if there are a unary context C′

0 and contexts
C′

1, . . . , C
′
n such that n is the arity of C1, and C2 = C′

0[C1[C
′
1, . . . , C

′
n]] (see [7]

for a definition of contexts). Let t ∈ L(A) and r a successful run of A on t. A
context C of r is elementary if it is a maximal context (w.r.t. context inclusion)
included in r, and such that (i) all its nodes (except the root) are labeled in
Q− (dom(=A)∪dom(6=A)), (ii) the root is labeled in dom(=A)∪dom(6=A), (iii)
there is a loop in C, i.e. two descendant nodes of C are labeled by the same state
in r. We denote by C(r) the set of nodes which enroot an elementary context. For
all nodes u ∈ C(r), we denote by cxtr(u) the elementary context over Q rooted
at u in r, and by cxtt(u) the context of t over Σ rooted at u and isomorphic to
cxtr(u) (we do not require the isomorphism to preserve the label relations).

Partial Orders Remind that ∼t,r was the equivalence relation introduced in
Appendix A.4. Let t ∈ L(A) and r a run of A on t which respects the equality
constraints. For all nodes u ∈ Nt, we denote by [u] its ∼t,r-equivalence class.
We define a strict partial order ≺∼t,r

on equivalence classes by, for all nodes
u, v ∈ Nt:

[u] ≺∼t,r
[v] iff ∃u′ ∈ [u], ∃v′ ∈ [v], u′ ⊳ v′

≺∼t,r
is a strict partial order (see Lemma 7 at the end of the section). In par-

ticular, {u0} is the least class for ≺∼t,r
, where u0 is the root of t. We denote by

�∼t,r
its reflexive closure.

Now, we define a strict partial order ≺a
∼t,r

on anti-chains of equivalence classes
(i.e. sets of incomparable equivalence classes by ≺∼t,r

). The superscript a stands
for “anti-chain”. Let A,B be two anti-chains of equivalence classes. We let
A ≺a

∼t,r
B if A (B or the following hold: (i) for all α ∈ A, there is β ∈ B

such that α �∼t,r
β, (ii) there is α ∈ A and β ∈ B such that α ≺∼t,r

β.
Lemma 9 proves that ≺a

∼t,r
is a strict partial order. Finally, for all anti-chain A

of equivalence classes, we denote by
⋃
A the set

⋃

α∈A α. Note that
⋃
A ⊆ Nt.

Predicate Let t ∈ TΣ, r ∈ TQ, F ⊆ 2Nt , d,m ∈ N. We let P (t, r, F, d,m) holds
if all the following conditions are satisfied:

1. r is a run of A on t which satisfies the equality constraints, whose root is
labeled by a final state, and such that in any ⊳-ordered chain, there are at
most k nodes whose labels in r belong to dom(6=A);

2. for all u, v ∈ Nr, if u ∼ v then r|u = r|v;
3. F ⊆ Nt/∼t,r

is an anti-chain of ∼t,r-equivalence classes8 (F is called the
frontier);

4.
⋃
F ⊆ C(r);

5. if there are u, v ∈ Nt such that t|u = t|v and Or(u) 6=A Or(v), then there is
w ∈

⋃
F such that either uE w or v E w.

6. for all v1, v2 ∈ Nt, there is u ∈ C(r) such that Rep(t, r, F, v1, v2, u) holds,
meaning that if a disequality constraint between v1 and v2 is unsatisfied, we
can repair it by increasing the size of the elementary context rooted at u.
More formally, Rep(t, r, F, v1, v2, u) is true if the following holds: if t|v1

= t|v2

and Or(v1) 6=A Or(v2), then (i) either v1 Eu or v2 Eu, (ii) there is w ∈
⋃
F

such that u E w, (iii) if v1 E u, then for all u′ ∈ Nt such that v2 E u′, if
patht(v1, u) is isomorphic to patht(v2, u

′), then u 6∼t,r u
′, (iv) if v2 E u, we

define the condition symmetrically as (iii).
7. the length of any path from the root to any node of

⋃
F is bounded by B,

where B = 2(k + |dom(=A)|)|Q|;
8. The number of different subtrees of t which evaluates to inequality states in
r is bounded by d: |{t′ | ∃q ∈ dom(6=A)∧∃u ∈ Nt, t

′ = t|u∧Or(u) = q}| ≤ d;
9. For all u ∈ C(r), if there is v ∈

⋃
F such that u E v, then the height of

cxtt(u) is bounded by 2|Q|;
10. the height of t is bounded by m.

Intuitions The frontier can be viewed as a set of incomparable nodes below which
all inequality constraints are satisfied (condition 5). It is defined as classes of
nodes which enroot elementary contexts, because we will use only elementary
contexts to repair all the unsatisfied constraints which involve a node above
the frontier. In particular, we will use loops contained in elementary contexts
to increase their sizes. This can be done while keeping the equality constraints
satisfied, because we change the contexts in parallel for all equivalent nodes. Con-
dition 6 gives a sufficient condition to be able to repair an unsatisfied inequality
constraint. The last four conditions imposes counting properties, in order to
constrain the repairing process to go in a bounded way.
The next two lemmata are devoted to the proof of the following:

Theorem 8. Let t ∈ TΣ and r a run of A on t which satisfies the equality
constraints. If there are F, d,m such that P (t, r, F, d,m) holds, then (t, r) is
repairable, and there is a repair (t′, r′) of (t, r) such that the height of t′ is bounded
by m+ |Q|2m+3(22B+2 + d+ 2m+B+3 + 2), where B = 2(k + |dom(=A)|)|Q|.

We start by a base lemma:

Lemma 4 (Base Lemma). If P (t, r,∅, n,m) holds, then t ∈ L(A, k).

8 Nt/∼t,r is the quotient space of Nt by ∼t,r

Proof. This is due to conditions 1 and 5. �

We then prove an induction lemma, based on parallel pumping of elementary
contexts:

Lemma 5 (Induction Lemma). Let t, r, F, d,m such that F 6= ∅ and P (t, r, F, d,m)
holds, there are t′, r′, F ′ such that P (t′, r′, F ′, d+2B+1,m+2|Q|(22B+2 +d+1))
holds, Nt ⊆ Nt′ and F ′ ≺a

∼t,r
F , where B = 2(k + |dom(=A)|)|Q|.

Proof. Construction of t′, r′, F ′.
Intuition. In order to obtain t′ and r′, we choose an equivalence class contained
in the frontier F (it exists since F 6= ∅). Let [u1] = {u1, . . . , un} be this class.
We let D = {v ∈ Nt | ∃i, v E ui}. There might be an unsatisfied inequality
constraint between a node of t′ and a node of D. By increasing the size of the
elementary contexts rooted at [u1], we construct a tree t′ together with a run
r′ such that there is no unsatisfied constraint between a node of t′ and a node
of D (except in one particular case that we explain further, but in this case,
the constraints will be repaired further in the induction, thanks to condition 6).
This can be done by using a loop contain in the elementary context rooted a u1,
and we do it in parallel for every ui, so that we keep the equality constraints
satisfied.
Parallel Growth of The Elementary Contexts. We first define formally
how to increase the size of the contexts, while keeping the equality constraints
satisfied. The idea is similar to the parallel pumping explain in Appendix C.1.
By definition of elementary contexts, there are two descendant nodes α1 ⊳ β1

contained in cxtt(u1), and a state q ∈ Q − (dom(=A) ∪ dom(6=A)) such that
Or(α1) = Or(β1) = q. For all i ∈ {2, . . . , n}, we define αi as the node below ui

such that patht(ui, αi) is isomorphic to patht(u1, α1) (it exists since u1 ∼t,r ui

and t|u1
= t|ui

by Prop. 8). Note that by Prop. 9, α1 ∼t,r αi. We define the
nodes βi similarly, and also get β1 ∼t,r βi. By condition 2, for all i ∈ {1, . . . , n},
Or(αi) = Or(βi) = q. Hence there is a unary context C over Σ such that for all
i ∈ {1, . . . , n}, t|αi

= C[t|βi
]. We let t1 = t, t2 = t{αi ← C[C[t|βi

]], i = 1, . . . , n}
the tree t where the subtree at node αi has been substituted by C[C[t|βi

]],
for all i ∈ {1, . . . , n}. Similarly, for all j ∈ N, we define tj by iterating this
substitution j times. We define rj similarly. First note that rj is a run of A on
tj . Moreover, since we make the substitution in parallel at isomorphic positions
in the elementary contexts rooted at [u1], and by definition of ∼r,t, the equality
constraints are still satisfied by rj on tj , for all j ∈ N. This pumping is illustrated
in Fig. 6.
Existence of a Repairing Run We first define the set of pairs of nodes
(u, v) ∈ Nt × Nt which can possibly give an unsatisfied inequality constraint
when pumping, but for which there is a way to pump such that the constraint
is satisfied. These pairs are called candidates. We denote by Cand([u1]) this set.
For all u, v ∈ Nt, (u, v) ∈ Cand([u1]) if (i) u ∈ ↑[u1]

9, (ii) Or(u) 6=A Or(v), (iii)
if for all j ∈ {1, . . . , n}, Rep(t, r, F, u, v, uj) does not hold, then t|u 6= t|v.

9 ↑[u1] = {w | ∃w′ ∈ [u1], w E w′}

-�

-�

αi αj

βi βj

t t

C C

∼t,r

∼t,r

-�

-�

αi αj

βi βj

C C

∼t,r

∼t,r

-

CC
t t

t1 t2

Fig. 6. parallel growth in elementary contexts

Note that by definition of the pumping, for all i > 0, for all nodes u ∈ Nt such
that Or(u) ∈ dom(=A) ∪ dom(6=A), u is still a node of ti. For all i > 0, and all
pairs (u, v) ∈ Cand([u1]), we say that i is incompatible with (u, v) if ti|u = ti|v.
Claim 1. For all pairs (u, v) ∈ Cand([u1]), there is at most one i > 0 such that
i is incompatible with (u, v)

Proof. Suppose that there are two indices i < j incompatible with (u, v). We
consider the following two cases:

– v 6∈ ↑[u1]. We have Ori(v) 6=A Ori(u), ti|v = ti|u, Orj (v) 6=A Orj (u) and
tj |v = tj |u. Since Or(v) ∈∈ dom(6=A), and v 6∈ ↑[u1], v is below, or incom-
parable, to any node which belongs to an elementary context rooted at a
node of [u1]. Hence the subtree at node v remains unchanged during the
pumping. Therefore t|v = ti|v = tj |v. Since by hypothesis, ti|v = ti|u and
tj |v = tj |u, we also get tj |u = ti|u. Since i < j, and u ∈ ↑[u1], by definition
of the pumping, we have |tj |u| > |ti|u|, which contradicts tj |u = ti|u;

– v ∈ ↑[u1]. We consider two cases:

• if there is ℓ ∈ {1, . . . , n} such that Rep(t, r, F, u, v, uℓ) holds. By defini-
tion of Rep, we have t|u = t|v. Suppose that u E uℓ and let vℓ be the
node below v such that patht(u, uℓ) is isomorphic to patht(v, vℓ) (it ex-
ists since t|u = t|v). By definition of the predicate Rep, uℓ 6∼t,r vℓ. Since
patht(u, uℓ) and patht(v, vℓ) are isomorphic, and t|u = t|v, we also get
t|uℓ

= t|vℓ
. This implies that there is no node of [u1] comparable to vℓ

(by E): suppose that there is some node ui ∼t,r u1 comparable to vℓ

such that ui 6= vℓ. By Prop. 8, we have t|ui
= t|u1

, which contradicts
t|u1

= t|vℓ
.

Hence the subtree at position vℓ does not change during the pumping.
In particular, ti|vℓ

= tj |vℓ
. Since uℓ ∈ [u1], we pump below uℓ. Hence

we have ti|uℓ
6= tj |uℓ

. Therefore, either ti|uℓ
6= ti|vℓ

or tj |uℓ
6= tj |vℓ

.

Since patht(u, uℓ) and patht(v, vℓ) are isomorphic, and there is no node
of [u1] comparable to vℓ, by definition of the pumping, we also have
that pathti(u, uℓ) and pathti(v, vℓ) are isomorphic, and pathtj (u, uℓ) and
pathtj (v, vℓ) are isomorphic. Therefore, either ti|v 6= ti|u or tj |v 6= tj |u;
• If for all ℓ ∈ {1, . . . , n}, Rep(t, r, F, u, v, uℓ) does not hold. By defini-

tion of Cand([u1]), it implies that t|u 6= t|v. By hypothesis, ti|u =
ti|v. We first prove that there is necessarily ℓ ∈ {1, . . . , n} such that
Rep(ti, ri, F, u, v, uℓ). Suppose the contrary. It means for all ℓ ∈ {1, . . . , n}
such that u E uℓ, and for all v′ such that pathti(u, uℓ) is isomorphic to
pathti(v, v′), we have v′ ∼t,r uℓ. And symmetrically, for all ℓ ∈ {1, . . . , n}
such that v E uℓ, and for all u′ such that pathti(u, u′) is isomorphic to
pathti(v, uℓ), we have u′ ∼t,r vℓ. Since t|u 6= t|v, and thanks to Lemma
10, this inequality is preserved during pumping. Hence ti|u 6= ti|v, which
contradicts ti|u = ti|v.
Hence, there is ℓ ∈ {1, . . . , n} such that Rep(ti, ri, F, u, v, uℓ). Suppose
that u E uℓ (the case v E uℓ is symmetric). Let v′ such that v E v′

and pathti(v, v′) is isomorphic to pathti(u, uℓ). By definition of Rep, we
have uℓ 6∼ti,ri v′. Since ti|u = ti|v, we also get ti|uℓ

= ti|v′ . For the
same reasons than the previous case, there is no node w ∈ [u1] which is
comparable to v′. Hence, since we pump only in the elementary contexts
rooted at nodes of [u1], the subtree rooted at v′ does not change during
pumping. Since the subtree rooted at uℓ changes during pumping and
pathti(u, uℓ) is isomorphic to pathti(v, v′), we necessarily have tj |u 6=
tj |v, which contradicts the hypothesis.

End of Proof of Claim 1 �.

Hence, we can define a function Ψ : Cand([u1])→ N−{0} such that Ψ(u, v) is the
unique index (if it exists) i incompatible with (u, v), for all (u, v) ∈ Cand([u1]).
Now, we prove that we can bound the size of the range of Ψ . Let ↑[u1] be the set
of nodes u such that u 6∈ ↑[u1]. For all u ∈ ↑[u1], and all v, v′ ∈ ↑[u1] such that
(u, v) ∈ Cand([u1]), (u, v′) ∈ Cand([u1]), if t|v = t|v′ , then Ψ(u, v) = Ψ(u, v′) (if
defined). By condition 8, we have |{t|v | v ∈ ↑[u1]}| ≤ d, hence there are at most
d elements of N−{0} whose pre-image are in ↑[u1]. In other hand, by condition
7, we have |↑[u1]× ↑[u1]| ≤ 22B+2. Hence, the size of the range of Ψ is bounded
by d + 22B+2. Hence, there is i0 ∈ {1, . . . , d + 22B+2 + 1} such that i0 has no
pre-image by Ψ . We define t′ by ti0 and r′ by ri0 . Note that by definition of the
pumping, condition 2 still holds for ∼t′,r′ , since we make the elementary contexts
grow in parallel below all equivalent nodes of [u1], both in r and t. Moreover,
the equality constraints are still satisfied (thanks to parallel pumping), the root
of r′ is labeled by a final state, and the pumping do not increase the number of
nodes ordered by ⊳, and labeled in dom(6=A). Hence condition 1 holds for r′.
Remark 1 By definition of the pumping, all inequality constraints between pairs
of nodes (u, v) ∈ Cand([u1]) are satisfied in ri0 .
We now define F ′. Let V be the set of greatest class (for ≺∼t,r

) strictly lesser
than [u1], and such that for all α ∈ V , there is no node β ∈ F − [u1] such that

α ≺∼t,r
β, and for all u ∈ α, u ∈ C(r). We let F ′ = (F − [u1]) ∪ V . Note that

F ′ ≺a
∼t,r

F and F ′ satisfies condition 4. Thanks to condition 2, for all u, v such
that u ∼t′,r′ v, if u ∈ C(r′), then v ∈ C(r′). It implies that F ′ satisfies condition
3, i.e. F ′ ⊆ Nt′/∼t′,r′

.

Before proving that P (t′, r′, F ′, d+2B+1,m+2|Q|(22B+2+d+1)) holds, we first
prove a useful claim, which states that all inequality constraints below

⋃
F ′ are

satisfied:
Claim 2. For all u, v ∈ Nt′ , such that u, v 6∈ ↑(

⋃
F ′), and Or′(u) 6=A Or′(v),

we have t′|u 6= t′|v

Proof. We start by the following fact (*): by definition of ≺∼t,r
, all nodes of

⋃
F ′ are above the nodes of

⋃
F in t. We now consider two cases:

– u, v 6∈ ↑[u1]. Since Or(u), Or(v) ∈ dom(6=A), neither u nor v belongs to the
elementary contexts rooted at nodes of [u1]. Hence the subtrees at positions
u and v have not changed during the pumping. Hence, thanks to condition
5, and to the fact (*), we have t|u 6= t|v and still have t′|u 6= t′|v;

– if u ∈ ↑[u1]. Thanks to remark 1, we have to prove that (u, v) ∈ Cand([u1]).
We only prove point (iii) of the definition of Cand. Suppose that for all
i ∈ {1, . . . , n}, Rep(t, r, F, u, v, ui) does not hold, and t|u = t|v. Let i ∈
{1, . . . , n}, and suppose that uEui. Since Rep(t, r, F, u, v, ui) does not hold,
for all v′ such that patht(u, ui) is isomorphic to patht(v, v

′), we necessarily
have ui ∼t,r v

′. From this we can deduce that v ∈ ↑[u1]. By condition 6,
there is w ∈ C(r), such that Rep(t, r, F, u, v, w) holds. Hence w is above

⋃
F ,

by definition of Rep. Moreover, w 6∈ [u1] (by hypothesis). Hence, either v or
u is above a node of

⋃
F ′, by definition of F ′, which is a contradiction.

End of Proof of Claim 2 �.

Correctness We now prove that P (t′, r′, F ′, d+2B+1,m+2|Q|(22B+2 + d+1))
holds, i.e. every condition is satisfied:

– Condition 1, 2, 3, and 4 have already been proved;
– Condition 5. This is proved in Claim 2.
– Condition 6. Let v1, v2 ∈ Nt′ such that t′|v1

= t′|v2
and Or′(v1) 6=A Or′(v2).

We consider several cases:
• v1 6∈ ↑[u1] and v2 6∈ ↑[u1]. Since Or(v1), Or(v2) ∈ dom(6=A), neither v1

nor v2 are in the elementary contexts rooted at the nodes of [u1]. Hence
the subtrees at positions v1 and v2 have not changed during pump-
ing. Since P (t, r, F, d,m) holds, there is a node u ∈ C(r) such that u
is above

⋃
F and Rep(t, r, F, v1, v2, u) holds. The node u is necessarily

above
⋃
F ′. Otherwise it would mean that u ∈ [u1], which would con-

tradict v1 6∈ ↑[u1] or would contradict v2 6∈ ↑[u1]. Hence we also get that
Rep(t′, r′, F ′, v1, v2, u) holds;
• v1 ∈ ↑[u1]. In this case, (v1, v2) 6∈ Cand([u1]), otherwise t′|v1

6= t′|v2
. By

definition ofCand([u1]), t|v1
= t|v2

and for all i ∈ {1, . . . , n},Rep(t, r, v1, v2, ui)
does not hold. By condition 6 of P (t, r, F, d,m), there is a node u ∈ C(r)

such that u is above
⋃
F and Rep(t, r, F, v1, v2, u) holds. Hence u 6∈

[u1]. Since u is above
⋃
F , we get that u is also above

⋃
F ′. Hence

Rep(t′, r′, F ′, v1, v2, u) holds.
• the last case is symmetric to the latter.

– Condition 7. The new frontier F ′ is smaller than F and thus, nodes from
⋃
F ′ are closer to the root than those of

⋃
F

– Condition 8. We create at most as many different subtrees as there are nodes
above

⋃
F . By condition 7, there are at most 2B+1 nodes above

⋃
F .

– Condition 9. Since we have not changed the elementary contexts above
⋃
F ,

and thanks to Lemma 8, this condition still holds.
– Condition 10. First not that the height of cxtt(ui) is bounded by 2|Q| for

all i ∈ {1, . . . , n} (thanks to condition 9). Since i0 ≤ d + 22B+2 + 1, the
height of ti0 = t′ is bounded by the height of t plus 2|Q|(22B+2 + d+ 1), i.e.
m+ 2|Q|(22B+2 + d+ 1).

End of proof of Lemma 5 �

Proof (Proof of Theorem 8). Suppose that there is F, d,m such that P (t, r, F, d,m)
holds. Hence there are at most 2m+1 nodes u of r such that Or(u) ∈ dom(=A

)∪dom(6=A). Let F0 ≺a
∼t,r

F1 ≺a
∼t,r

. . . ≺a
∼t,r

Fp be a maximal chain of frontiers
(in particular, for all i ∈ {0, . . . , p}, Fi ⊆ Nt/∼t,r

), where F0 = ∅ and Fp = F .
For every node u ∈ Nt such that Or(u) ∈ dom(=A)∪dom(6=A), there is at most
one i ∈ {1, . . . , p} such that [u] is removed from Fi−1 to get Fi, and at most one
i ∈ {1, . . . , p} such that [u] is added to Fi (and was not in Fi−1). Since there are
at most 2m+1 such classes, it implies that p ≤ 2m+2.
Hence, from Lemma 5, there are t′, r′, d′,m′ such that P (t′, r′,∅, d′,m′). More-
over, we have d′ ≤ d+ 2m+22B+1, and m′ ≤ m+ 2|Q|2m+2(22B+2 + d′ + 1), i.e.
m′ ≤ m+ |Q|2m+3(22B+2 + d+ 2m+B+3 + 1).
By Lemma 4, r′ is a successful run of (A, k) on r′. Since the parallel pumping
does nothing else than substituting subtrees rooted at nodes labeled by dom(=A

) ∪ dom(6=A) in r, and (t′, r′) is a repair of (t, r). �

Lemma 6. We let B = 2(k + |dom(=A)|)|Q|, and B′ = (k + 2|Q|)2|Q|+1.
If L(A, k) 6= ∅, there is a tree t, a run r of A on t, some natural d and some
frontier F such that P (t, r, F, d,B) holds and the height of t is bounded by B
(and by B′ if =A 6⊆ idQ).

Proof. We say that F is the maximal frontier of t, r if it is a maximal anti-chain
(for ≺a

∼t,r
which satisfies conditions 3 and 4. We can prove it is unique, and

equal to the set of ∼t,r-classes [u] such that u is a maximal node for ⊳ such that
u ∈ C(r).
We let P ′(t, r, F) the relaxed predicate P where we only consider conditions 1,
2, 3, 4, 5, and 6. Given an elementary context C in r, we say that C contains a
3-loop if there are three descendant nodes of C which are labeled by the same
state.
Claim 1. For all t, r, F , if P ′(t, r, F) holds, F is the maximal frontier of t, r
and there is an elementary context of r which contains a 3-loop, then there are

t′, r′, F ′ such that P (t′, r′, F ′), F ′ is the maximal frontier of t′, r′, and the size
of t′ is strictly lesser than the size of t.

Proof. We use a similar technique as the pumping technique presented in the
proof of Lemma 2. But, instead of pumping maximally, we pump the 3-loops
in parallel in elementary contexts which contain a 3-loop. In each elementary
context, we pump the two greatest nodes of the 3-loop. This ensures that there
is still a loop in the elementary context after pumping.
First note that by hypothesis, C(r) is non-empty, and there is u ∈ C(r) such
that cxtr(u) contains a 3-loop. We let [u] be its equivalence class by ∼t,r. By
hypothesis, we have r|v = r|u, for all v ∈ [u]. Hence v ∈ C(r) for all v ∈ [u].
Again by definition of ∼t,r, all the nodes of [u] are incomparable. Let n = |[u]|
and {u1, . . . , un} = [u]. We can define C the n-ary context over Q such that
r = C[r|u1

, . . . , r|un
]. For all i ∈ {1, . . . , n}, there are three nodes αi, βi, γi ∈

Ncxtr(ui) and a state q 6∈ dom(=A) ∪ dom(6=A) such that αi ⊳ βi ⊳ γi, and
Or(αi) = Or(βi) = Or(γi) = q. Moreover, we take αi, βi, γi such that for all
i, j ∈ {1, . . . , n}, we have patht(ui, αi) isomorphic to patht(uj , αj), patht(αi, βi)
isomorphic to patht(αj , βj), and patht(βi, γi) isomorphic to patht(βj , γj). We
let r′ = C[r1, . . . , rn], where for all i ∈ {1, . . . , n}, ri is the tree r|ui

in which
the subtree rooted at βi has been substituted by r|γi

. We do the corresponding
substitution in t and obtain a tree t′. This pumping is described in Fig. 7 (the
subtrees t|γi

are represented in dashed style). It is technical but not difficult to
prove that r′ is a run of A on t′ such that its root is labeled by a final state and
it respects the equality constraints. We let F ′ be the maximal frontier of t′, r′.
Fact 1. Nt′ ⊆ Nt and for all v1, v2 ∈ Nt′ , v1 ∼t′,r′ v2 iff v1 ∼t,r v2. Its proof is
given at the end of Subsection C.3.
We prove that conditions 1, 2, 3, 4, 5, and 6 hold for t′,r′, and F ′.

– conditions 1, 2. The equality constraints are still satisfied since we pump in
parallel below equivalent nodes. The other conditions obviously hold;

– condition 3 and 4. This is by definition of F ′.
– condition 5. Since we only remove nodes of t to get t′, we have Nt′ (Nt.

Hence Nr′ (Nr. By definition of the pumping, we also have C(r′) ⊆ C(r).
Let v 6∈ ↑r′(

⋃
F ′) such that Or′(v) ∈ dom(=A) ∪ dom(6=A). We prove that

v 6∈ ↑r(
⋃
F). Suppose that there is w ∈

⋃
F such that v E w in r. Suppose

that w ∈ Nt′ . We then have vEw in r′, and w ∈ C(r′). Hence w 6∈ ↑r′(
⋃
F ′)

and it contradicts maximality of F ′. Hence w 6∈ Nt′ . Hence w has been
removed from t due to some pumping in an elementary context rooted at
some node v′ ∈ C(r). By definition of the pumping, we have v′C(r′). If vEv′,
since v 6∈ ↑r′(

⋃
F ′), it contradicts maximality of F ′. Hence v′ ⊳ v. Since

Or′(v) ∈ dom(=A) ∪ dom(6=A), we have v 6∈ Ncxtr′ (v
′). Moreover, v E w.

Since w has been removed by the pumping of cxtr′(v′), and v′ ⊳ v Ew, and
v 6∈ Ncxtr′ (v

′), v has necessarily been removed from t by the pumping. This
contradicts v ∈ Nr′ . This conclude the proof that v 6∈ ↑r(

⋃
F).

Let now v1, v2 ∈ Nt′ such that v1, v2 6∈ ↑r′(
⋃
F ′), and Or′(v1) 6=A Or′(v2).

Hence v1, v2 6∈ ↑r(
⋃
F). Hence the subtrees rooted at nodes v1 and v2 respec-

tively have not changed during pumping, i.e. t|v1
= t′|v1

, and t|v2
= t′|v2

.

Since condition 5 is satisfied by t, r, F , we get t′v1
6= t′v2

, which conclude the
proof.

– condition 6. Let v1, v2 ∈ Nt′ such that Or′(v1) 6=A Or′(v2) and t′|v1
= t′|v2

.
Since condition 5 is satisfied, either v1 or v2 is above a node of

⋃
F ′. We

consider two cases:
• if t|v1

6= t|v2
, then it means that the pumping has “broken” the inequality

constraint at positions v1 and v2. Let [u] = {u1, . . . , un} be the nodes
defined in the definition of the pumping, i.e. the nodes which enroot
elementary contexts in which we have pumped. Let {ui1 , . . . , uin1

} ⊆ [u]
(resp. {uj1 , . . . , ujn2

⊆ [u]) the nodes of [u] which are below v1 (resp.
v2). Note that by definition of the pumping, we still have [u] ⊆ Nt′ , and
the context of t which have nodes of [u] as holes has not changed during
pumping. Moreover, the ∼t,r-equivalence class of u is equal to the ∼t′,r′-
equivalence class of u. Hence, for all ℓ ∈ {1, . . . , n1}, we can define the
node u′iℓ

of Nt′ such that patht′(v1, uiℓ
) is isomorphic to patht′(v2, u

′
iℓ

).
Similarly, for all ℓ ∈ {1, . . . , n2}, we can define u′jℓ

the node below v1
such that patht′(v2, ujℓ

) is isomorphic to patht′(v1, u
′
jℓ

). Suppose that for
all ℓ ∈ {1, . . . , n1}, we have uiℓ

∼t′,r′ u′iℓ
, and for all ℓ ∈ {1, . . . , n2}, we

have ujℓ
∼t′,r′ u′jℓ

. By Lemma 10, since t|v1
6= t|v2

, we necessarily have
t′|v1

6= t′v2
, which contradicts t′|v1

= t′v2
. Hence there is ℓ1 ∈ {1, . . . , n1}

or ℓ2 ∈ {1, . . . , n2} such that uiℓ1
6∼t′,r′ u′iℓ1

or ujℓ2
6∼t′,r′ u′jℓ2

. Suppose

it is uiℓ1
: uiℓ1

is above F ′, so that Rep(t′, r′, F ′, v1, v2, uiℓ1
) holds;

• if t|v1
= t|v2

. Since condition 6 holds for t, r, F , there is v ∈ C(r) such
that Rep(t, r, F, v1, v2, v) holds. Suppose that v1 E v in t, the other case
being symmetric. Let v′ be the node of below v2 such that patht(v1, v) is
isomorphic to patht(v2, v

′). By definition of the predicate Rep, v 6∼t,r v
′.

Let [u] be the class as defined in the definition of the pumping. We now
consider three cases:
∗ Suppose there is a node w ∈ [u] such that v1 ≤ w ≤ v, and let
w′ below v2 such that patht(v1, w) is isomorphic to patht(v2, w

′). If
w ∼t,r w

′, then by definition of ∼t,r, we also have v ∼t,r v
′, which is

impossible. Hence w 6∼t,r w
′, and since we pump only below nodes of

[u], w ∈ Nt′ . Since w ∈ C(r′) and F ′ is maximal, w is above a node
of

⋃
F ′. Hence Rep(t′, r′, F ′, v1, v2, w) holds;

∗ Suppose there is a node w ∈ [u] such that v2 ≤ w ≤ v′. With exactly
the same arguments we can prove that Rep(t′, r′, F ′, v1, v2, w) holds;
∗ Suppose that there is no node w ∈ [u] such that v1 E w E v or
v2 EwE v′. Since we pump below nodes of [u], and v1, v2 are still in
Nt′ , patht′(v1, v) is isomorphic to patht′(v2, v

′). Moreover, v ∈ C(r′),
so that v ∈↑r′ (

⋃
F ′). Finally, thanks to Fact 1, since v 6∼t,r v

′, we
also get v 6∼t′,r′ v′. Hence Rep(t′, r′, F ′, v1, v2, v) holds.

Finally, it is clear that the size of t′ is strictly lesser than the size of t.

End of Proof of Claim 1 �

Let B = 2(k+|dom(=A)|)|Q|. If L(A, k) 6= ∅, there is t ∈ L(A) and r a successful
run of A on t. Let C be the maximal context of r (for context inclusion) such

ui

αi

βi

γi

*

uj

αj

βj

γj

∼t,r

∼t,r

∼t,r

∼t,r

i

Fig. 7. parallel pumping in elementary contexts

that the root of r is the root of C, and no nodes of C (except possibly the root)
are labeled in dom(=A) ∪ dom(6=A). We call this context the top context. If the
root of C is not labeled by a state of dom(=A) ∪ dom(6=A), we first pump in C,
while there is a loop. We do the corresponding pumping in t. Note that all this
pumping preserves the satisfiability of the constraints, since we pump above the
nodes where a test occurs. We obtain a successful run r′ of (A, k) on a tree t′

the such that the height of the top context of r′ is at most |Q| if the root of C
is not labeled in dom(=A) ∪ dom(6=A). We call this property P1. We let F ′ be
the maximal frontier of r′. It is not difficult to prove that P ′(t′, r′, F ′) holds.
Now, suppose that the height of t′ is strictly greater than B. In any ⊳-ordered
chain, they are at most k nodes labeled by a state of dom(6=A) in r′, and |dom(=A

)| nodes labeled by a state of dom(=A) (otherwise there would be two different
descendant nodes enrooting equal subtrees in t′, which is impossible). Thanks to
property P1, it implies that there is an elementary context containing a 3-loop.
Hence all the conditions to apply the rewriting of Claim 1 are satisfied, and we
do it while there is an elementary context containing a 3-loop. At the end, we
get a tree t′′, a run r′′ and a frontier F ′′ such that the height of t′′ is bounded
by B, and P ′(t′′, r′′, F ′′) holds. Hence, t′′ have at most 2B+1 nodes, and every
elementary context of r′′ have its height bounded by 2|Q| (otherwise there would
be a 3-loop). Hence P (t′′, r′′, F ′′, 2B+1, B) holds.
If the height of t is lesser than B, since we already have P ′(t, r, F), and the
number of nodes of t is lesser than 2B+1, P (t, r, F, 2B+1, B) holds.

If A does not satisfy =A⊆ idQ, we first have to transform it (modulo an expo-
nential blow-up). �

We now have the following corollary:

Corollary 2. If L(A, k) 6= ∅, then there is a tree t ∈ L(A, k) whose height

is bounded by B + |Q|23B+8 (and by |Q|22|Q|+3(k+2|Q|+1) if =A 6⊆ idQ), where
B = 2(k + |dom(=A)|)|Q|.

Proof. The proof of Lemma 6 proves that there is t′, r′, F, d such that P (t′, r′, F, d,B)
holds. Moreover, we necessarily have d ≤ 2B+1. Hence P (t′, r′, F, 2B+1, B) holds.
By Theorem 8, there is t ∈ L(A, k) whose height is bounded byB+|Q|2B+3(22B+2+
d + 22B+3 + 1). We can prove that the height of t is therefore bounded by
|Q|210k|Q|+6.
If A does not satisfy =A⊆ idQ, we first have to transform it (modulo an expo-
nential blow-up), and in this case we can bound the height of an accepted tree

by |Q|22|Q|+3(k+2|Q|+1). �

Proof of Theorem 4 Suppose that =A⊆ idQ. By Lemma 6 and Theorem 8,
it suffices to guess a pair (t, r) such that the height of t (and r) is bounded
by B = 2(k + |Q|)|Q|, and such that there are F, d,m such that P (t, r, F, d,m)
holds. Moreover, by inspecting the proof of Lemma 6, we can fix F to be the
maximal frontier of (t, r), and we can take d = 2B+1, and m = B. Moreover, we
can check in PTIME (in |t|, |r|, |F | – which is lesser than |t| –, log2(d), and m)
that P (t, r, F, d,m) holds.
The size of the tree is at most 22(k+|Q|)|Q|+1, which is doubly exponential in the
size of the binary encoding of k.
If =A 6⊆ A, the height of the tree (and the run) we have to guess is at most

2(k+2|Q|)2|Q|+1+1, which is doubly exponential both in the size of |Q|, and in the
size of the binary encoding of k. �

C.3 Minor Lemmata

Lemma 7. For all tree t ∈ L(A) and all run r of A on t which respects the
equality constraints, ≺∼ is a strict partial order on ∼-equivalence classes.

Proof. Remind that for all u, v ∈ Nt, if u ∼ v, then t|u = t|v.

– it is irreflexive. Suppose that there is u ∈ Nt such that [u] ≺∼ [u]. Hence,
there is v ∈ [u], and w ∈ [u] such that v ⊳ w, which contradicts t|v = t|w;

– it is transitive. Let u, v, w ∈ Nt such that [u] ≺∼ [v] and [v] ≺∼ [w]. Hence,
there are u′ ∈ [u] and v′ ∈ [v] such that u′ ⊳ v′, and there are v′′ ∈ [v] and
w′′ ∈ [w] such that v′′ ⊳w′′. Let w′ ∈ Nt such that v′ ⊳w′ and patht(v

′, w′)
is isomorphic to patht(v

′′, w′′) (it exists since t|v′ = t|v′′)). Since u′ ⊳w′′, we
get [u] ≺∼ [w].

– it is asymmetric, because it is irreflexive and transitive.

�

Lemma 8. Let t ∈ L(A) and r a run of A on t satisfying the equality con-
straints. Let u, v ∈ Nt such that [u] ≺∼ [v] (where [u] and [v] are the ∼ equiva-
lence classes of u and v respectively). Then for all u′ ∈ [u], there is v′ ∈ [v] such
that u′ ⊳ v′.

Proof. Let u′ ∈ [u]. By definition of ≺∼, there are u0 ∈ [u] and v0 ∈ [v] such
that u0 ⊳ v0. Since u′ ∼ u0, we have t|u′ = t|u0

. We let v′ ∈ Nt such that u′ ⊳ v′

and patht(u
′, v′) is isomorphic to patht(u0, v0). By Prop. 9 of ∼, we have v′ ∼ v,

which conclude the proof. �

Lemma 9. Let t ∈ L(A) and r a run of A on t satisfying the equality con-
straints. ≺a

∼t,r
is a strict partial order on anti-chains of ∼t,r-equivalence classes.

Proof. – it is irreflexive. Suppose it is reflexive, and there is some A such that
A ≺a

∼t,r
A. By definition there is a ∈ A and b ∈ A such that a ≺∼t,r

b, which
contradicts the fact that A is an anti-chain;

– it is transitive. Let A,B,C such that A ≺a
∼t,r

B and B ≺a
∼t,r

C. We have to
consider several cases:
• if A (B and B (C, then A (C;
• if A (B and B 6(C. For all a ∈ A, we have a ∈ B, and there is c ∈ C

such that a �∼t,r
c. If there is a ∈ A and c ∈ C such that a ≺∼t,r

c, then
we get A ≺a

∼t,r
C. Otherwise, it means that for all a ∈ A and all c ∈ C,

either a and c are incomparable, or c �∼t,r
a. Moreover, for all a ∈ A,

there is c in C such that a �∼t,r
c. Hence A ⊆ C. We know that there is

b ∈ B and c ∈ C such that b ≺∼t,r
c. If c ∈ A, then c ∈ B, which would

contradict that B is an anti-chain. Hence c 6∈ A and we get A (C;
• if A 6(B and B (C, then for all a ∈ A, there is b ∈ B – hence b ∈ C –

such that a �∼t,r
b. Moreover, there is a ∈ A and b ∈ B – hence b ∈ C

– , such that a ≺∼t,r
b. Hence we get A ≺a

∼t,r
C;

• if A 6(B and B 6(C It is clear that condition (i) of the definition holds,
for A and C. For condition (ii), we know that there is a ∈ A and b ∈ B
such that a ≺∼t,r

b. Moreover, there is c ∈ C such that b �∼t,r
c. Hence

a ≺∼t,r
c.

– it is asymmetric. It is because it is irreflexive and transitive.
�

Lemma 10. Let Σ and alphabet, t, t′ ∈ TΣ, u1, . . . , un ∈ Nt and v1, . . . , vn ∈
Nt′ such that: ui and uj are incomparable by E, for i 6= j, and for all i ∈
{1, . . . , n}, patht(u0, ui) is isomorphic to patht(v0, vi), where u0 (resp. v0) is the
root of t (resp. t′).
Then for all t1, . . . , tn ∈ TΣ, if t = t′, then t[u1 ← t1] . . . [un ← tn] = t′[v1 ←
t1] . . . [vn ← tn], where t[u1 ← t1] . . . [un ← tn] is the tree t where the subtree
at position ui has been substituted by ti, for all i ∈ {1, . . . , n}, and similarly for
t′[v1 ← t1] . . . [vn ← tn].

Proof. This is because if t = t′, then t|ui
= t′|vi

, for all i ∈ {1, . . . , n}. �

Proof (Proof of Fact 1 of the proof of Lemma 6). Suppose that v1 ∼t,r v2 and
v1 6= v2 (the case v1 = v2 is obvious). We can prove10 that there are w1, w2 ∈ Nt

such that w1 E v1, w2 E v2 and Or(w1) =A Or(w2) (hence since =A⊆ idQ,
Or(w1) = Or(w2)).
Moreover, w1, w2 ∈ Nt′ , otherwise v1 and v2 would have been removed from t.
We consider two cases:

– If there is no node u′ ∈ [u] such that w1Eu′Ev1 or w2Eu′Ev2, then we have
patht′(w1, v1) isomorphic to patht′(w2, v2). Since Or′(w1) = Or(w1) and
Or′(w2) = Or(w2), we get Or′(w1) =A Or′(w2) and therefore w1 ∼t′,r′ w2,
from which we get v1 ∼t′,r′ v2.

– If there is u′ ∈ [u] such that w1 Eu′ Ev1. Let u′′ ∈ Nt such that w2 Eu′′ Ev2
and patht(w1, u) is isomorphic to patht(w2, u

′). Since w1 ∼t,r w2, we also
have u′′ ∼t,r u

′. Hence u′′ ∈ [u]. Since we pump in parallel in both u′ and u′′,
we still have patht′(w1, v1) isomorphic to patht′(w2, v2), so that v1 ∼t′,r′ v2.

Conversely, suppose that v1 ∼t′,r′ v2 and v1 6= v2 (the case v1 = v2 is obvious).
For the same reason as before, there are w1, w2 ∈ Nt′ such that w1 E v1, w2 E v2
andOr′(w1) =A Or′(w2). SinceNt′ ⊆ Nt, we necessarily havew1, w2, v1, v2 ∈ Nt.
By definition of the pumping, we also have w1 E v1 and w2 E v2 in t. Suppose
that patht(w1, v1) is not isomorphic to patht(w2, v2). We show a contradiction
(hence this will prove v1 ∼t,r v2). Since patht(w1, v1) and patht(w2, v2) are not
isomorphic, and after pumping patht′(w1, v1) and patht′(w2, v2) are isomorphic,
necessarily a pumping has occurred in an elementary context rooted at some node
u′ ∈ [u] such that w1Eu′Ev1 or w2Eu′Ev2. Suppose that w1Eu′, and let u′′ such
that patht(w1, u

′) is isomorphic to patht(w2, u
′′) (it exists since w1 ∼t,r w2 and

t|w1
= t|w2

). If u′′ does not belong to the path from w2 to v2, then after pumping,
we would still have patht′(w1, v1) non-isomorphic to patht′(w2, v2), since we
pump below u′ and u′′. Hence u′′ belongs to patht(w2, v2). It is not difficult to
show that since we pump in parallel at equivalent positions, then we still have
patht′(w1, v1) non-isomorphic to patht′(w2, v2), which is a contradiction.
End of Proof of Fact 1. �

D Applications

D.1 Proof of Theorem 5

The following proposition proves Theorem 5:

10 It can be shown by induction: it is obvious if v1 = v2 or v1 ↔t,r v2, by definition of
↔t,r. If there is v3 such that v1 ∼t,r v3 and v3 ↔t,r v2, and nodes w1, w3 above v3

such that Or(w3) =A Or(w1). By definition of ↔t,r, there are w′

3 and w′

2 such that
patht(w

′

3, v3) is isomorphic to patht(w
′

2, v2), and Or(w
′

3) =A Or(w
′

2). Since =A⊆ idQ

and we put the same run below states q such that q =A q, we have r|w′
3

= r|w′
2
, and

r|w1
= r|w3

. Suppose that w3 E w′

3, and let w′

1 above v1 such that patht(w1, w
′

1)
is isomorphic to patht(w3, w

′

3): it exists since r|w1
= r|w3

, moreover, Or(w
′

1) =A

Or(w
′

3). Since Or(w
′

3) =A Or(w
′

2) and =A⊆ idQ, we also have Or(w
′

1) =A Or(w
′

2).
The case w′

3 ⊳ w3 is proved similarly.

Proposition 10. For any closed formula φ in MSO∃
=, one can compute a vb-

TAGED, whose size is non-elementary in the size of φ, accepting the models of φ.
Conversely, for any vbTAGED (A, k), one can compute a closed MSO∃

= formula
φ whose models are the trees accepted by A (modulo an exponential blow-up).

Proof. Forth direction
First, since we can express in MSO that a set is a singleton, we allow to use
first-order variables in predicates eq and diffk, k ∈ N.
Now, note that ¬eq(X) is equivalent to ∃x ∈ X∃y ∈ X, diff1(x, y). The formula
¬diffk(X,Y) holds in a tree t under assignment ρ if either there is a descendant
chain of length strictly greater than k in ρ(X) or ρ(Y) (this is expressible in
MSO), or there are two nodes u ∈ ρ(X) and v ∈ ρ(Y) such that t|u = t|v (which
can be expressed by ∃x ∈ X∃y ∈ Y, eq({x, y})).
Hence, every MSO∃

= formula φ is equivalent to a disjunction of formulas of the
form:

Φ = ∃X,ψ(X) ∧ ψtest(X)

where X is a tuple of set variables, the formula ψ is an MSO-formula, and ψtest

is a conjunction of atoms eq(Xi) or diffk(Xi, Xj), where Xi, Xj ∈ X . We can
easily adapt the proof of the closure by union of TAGED to vbTAGED, so that
we only need to prove the proposition for formulas Φ.
We let X being equal to X1, . . . , Xn. We use the classical Thatcher and Wright’s
construction to transform ψ(X) into a tree automatonA = (Σ×{0, 1}n, Q, F,∆),
such that the i-th component of the tuple of any label corresponds to the i-th
variable in X, namely Xi. Then, projecting A on its first component results in a
tree automaton recognizing the models of ∃X, ψ(X). But, instead of projecting
the automata as usual, we project the Booleans from the labels into the states
like in [22]. We denote by proj(A) = (Σ,Qproj(A), Fproj(A), ∆proj(A)) the resulting
automaton. It is defined by: Qproj(A) ⊆ Q × {0, 1}n, Fproj(A) = F × {0, 1}n and

∆proj(A) is the set of rules a((q1, b1), (q2, b2))→ (q, b), such that b1, b2 are Boolean

tuples, and (a, b)(q1, q2)→ q.
Finally, we define the relations =proj(A) and 6=proj(A) on states of proj(A). For

all b ∈ {0, 1}n, we denote by b(i) its i-th projection. Now, ∀(q1, b1), (q2, b2) ∈
Qproj(A), we let:

- (q1, b1) =proj(A) (q2, b2) if ∃i ∈ {1, . . . , n} st b1(i) = b2(i) = 1 and eq(Xi) is an
atom of ψtest;

- (q1, b1) 6=proj(A) (q2, b2) if (q1, b1) 6= (q2, b2) and ∃i, j ∈ {1, . . . , n} st b1(i) = 1

and b2(j) = 1 and diffk(Xi, Xj) is an atom of ψtest, for some k;

Finally, the vbTAGED equivalent to Φ is defined by proj(A) equipped with
=proj(A) and 6=proj(A), with the boundmax{k | ∃X∃Y, diffk(X,Y) is an atom of ψtest}.
It is a bit tedious, but not difficult, to prove that ∀t ∈ TΣ , t ∈ L(A) iff t |= Φ.

Complexity The classical Thatcher and Wright’s construction which transform
an MSO-formula into an equivalent tree automata is known to be non-elementary

in time complexity (in the size of the formula). The size of the tree automata
might also be non-elementary in the size of the input formula. Since our TAGED
construction relies on this construction, the output TAGED has also a non-
elementary size in the size of the input MSO∃

=-formula.

Back direction Conversely, let A = (Σ,Q, F,∆,=A, 6=A) be a TAGED, and
k ∈ N. We now consider the vbTAGED (A, k). It is already known (see [7]) that
the tree automaton (Σ,Q, F,∆) is equivalent to an MSO-formula of the form:

φ = ∃Xq1
. . . ∃Xqn

φ∆(Xq1
, . . . , Xqn

)

where {q1, . . . , qn} = Q. Set variables Xqi
’s are intended to capture the set

of nodes labeled by state qi in a successful run of A (hence the set denoted
by {Xq1

, . . . , Xqn
} forms a partition of the set of nodes (with possibly empty

blocks). Formula φ∆(Xq1
, . . . , Xqn

) describes the behavior of the tree automaton,
in terms of runs. We do not make this formula explicit and refer the reader to
[7] for more details.
The constraints are added by taking φ in conjunction with

∧

q 6=Ap diffk(Xq, Xp) ∧∧

q=Ap eq(Xq ∪Xp) (set union is easily expressible in MSO).
Finally, we must ensure that there is not more than k inequality states along
paths, with the following formula:

¬∃x1 . . . ∃xk+1

k∧

i=1

xi ⊳ xi+1 ∧
k+1∧

i=1

∨

q∈dom(6=A)

xi ∈ Xq

where ⊳ denotes the descendant relation, and is definable in MSO.

Finally, we define a formula φA by:

φA =

∃Xq1
. . . ∃Xqn

φ∆(Xq1
, . . . , Xqn

) ∧
∧

q 6=Ap diffk(Xq, Xp) ∧
∧

q=Ap eq(Xq ∪Xp)∧

¬∃x1 . . . ∃xk+1

∧k
i=1 xi ⊳ xi+1 ∧

∧k+1
i=1

∨

q∈dom(6=A) xi ∈ Xq

By construction, the models of φA are the trees of L(A, k), and conversely.
While formula φ∆ is polynomial in the size of A, the formula φA is exponential
in log2(k). �

D.2 Unification

Sketch of Proof of Proposition 6 We introduce states for each subterm of
t, and a special state q∀ in which every ground term evaluates: i.e. we add the
rules a → q∀, and f(q∀, q∀) → q∀, for all a, f ∈ Σ. If x ∈ Xt occurs in t, we
add the ǫ-transition q∀ → qx. If t′ = f(t1, t2) is a subterm of t, we add the
rule f(qt1 , qt2) → qt, and if t′ = X(t1, . . . , tn) is a subterm of t, we add the
ǫ-transitions qti

→ q∀, i = 1, . . . , n, and q∀ → qt′ . In addition, we add a regular
control to check that all states qti

occurs in the runs, and occurs below qt′ .
Finally, we add the equality constraints qx =A qx, for all x occurring in t. �

Proof of Proposition 7 The proof goes similarly as the proof of Proposition 5.
We reduce PCP and encode solutions of PCP as in Figure 3. See the beginning
of proof of Proposition 5 for details about the notations.
We now construct an equational formula φ(x) in one free variable x, such that
φ(x) is unsatisfiable iff I has no solution.
Informally, we first have to check if the tree denoted by x has the shape of Figure
3. This can easily be done by a regular constraint φshape = x ∈ Lx. If some tree
t satisfies φshape, then all its leaves have to be labeled c, the ternary nodes have
to be labeled f , and the unary node have to be labeled in Σ.
Then, for each pattern of the form f(x1, f(x2, x3, x4), x5) occurring in the tree,
we have to verify that x1 is of the form ui(x2) and x5 is of the form vi(x4) for some
i. It is easy to write an equational formula φpattern(x1, x2, x3, x4, x5, x) which
checks whether the nodes bounded to x1, . . . , x5 form a pattern f(x1, f(x2, x3, x4), x5)
in the tree denoted by x. Indeed, we take:

φpattern(x1, x2, x3, x4, x5, x) = ∃X X(f(x1, f(x2, x3, x4), x5)) = x

For every i ∈ {1, . . . ,m}, we define a formula φui
(y, y′) which checks whether

the tree y′ is below y and the sequence of labels along the path from the root of
y down to the root of y′ is ui. We define φvi

(x, y) similarly.

φui
(y, y′) = ∃Xui

, y = Xui
(y′) ∧Xui

∈ Lui

where Lui
is the (regular) set of consisting of one unary context C (over unary

symbols) such that the path from its root down to the hole is labeled ui.
Finally, we define φinit(x) = ∃x1∃x2, f(x1, x2, x1) = x as the formula which
checks whether the tree rooted at the first child of x is isomorphic to the tree
rooted at the third child of x.
Now, there is a substitution σ : x 7→ t satisfying the following formula iff t is a
tree representation of a solution of I:

φshape(x) ∧ φinit(x) ∧
∀x1 . . . ∀x5, φpattern(x1, . . . , x5, x) =⇒
∃y∃y′ (y = x2 ∧ y′ = x4 ∧

∨m
i=1 φui

(x1, y) ∧ φvi
(x5, y

′))

�

Proof of Theorem 6 We reduce the problem to deciding if the language of a
vbTAGED is empty, which is known to be decidable.
Since formulas are existential, and regular languages are closed by union and
intersection, we can assume that φ is of the form

∨

i φi where each φi has the
following form:

φi = ∃x1 . . . ∃xn∃X1 . . . ∃Xm

n′
∧

j=1

Xj ∈ LXj

︸ ︷︷ ︸

ci

∧
n0∧

k=1

t10,k = t20,k ∧
n1∧

ℓ=1

t11,ℓ 6= t21,ℓ

︸ ︷︷ ︸

ei

#

#

#

#

#

t10,1 t20,1

t10,2 t20.2

t11,n1
t21,n1

Fig. 8. Term T

where for all context variable X , there is at most one i such that X occurs in
t10,i, t

2
0,i, t

1
1,i or t21,i. Note that there is no membership constraints for term vari-

ables, since they can easily translated to constraints of nullary context variables.
Testing satisfiability of φ is reduced to testing satisfiability of φi, for all i.

Let # 6∈ Σ be a fresh symbol. We let T be the following (binary) term (see also
Fig 8:

T = #(#(t10,1, t
2
0,1

︸ ︷︷ ︸

=

),#(, . . . ,#(#(t10,n0
, t20,n0

︸ ︷︷ ︸

=

),#(#(t11,1, t
2
1,1

︸ ︷︷ ︸

6=

),#(. . . ,#(t11,n1
, t21,n1

︸ ︷︷ ︸

6=

)), . . .)

We can extend the proof of Proposition 6 to manage membership constraints, in
order to define a vbTAGED Ai such that:

L(Ai) = {Tσ | σ is a ground substitution st

σ(Xj) ∈ LXj
, j = 1, . . . , n′

t10,kσ = t20,kσ, k = 1, . . . , n0

t11,ℓσ 6= t21,ℓσ, ℓ = 1, . . . , n1

}

By definition of Ai, φi is satisfiable iff L(Ai) 6= ∅, which is decidable by Theorem
4. �

E Addional References

References

[22] Joachim Niehren, Laurent Planque, Jean-Marc Talbot and Sophie Tison. N-ary
Queries by Tree Automata 10th International Symposium on Database Programming

Languages, Springer, 2005

