Simultaneous representations of semilattices by lattices with permutable congruences
Jiri Tuma, Friedrich Wehrung

To cite this version:

HAL Id: hal-00004042
https://hal.archives-ouvertes.fr/hal-00004042
Submitted on 24 Jan 2005

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
SIMULTANEOUS REPRESENTATIONS OF SEMILATTICES BY LATTICES WITH PERMUTABLE CONGRUENCES

JIŘÍ TŮMA AND FRIEDRICH WEHRUNG

Abstract. The Congruence Lattice Problem (CLP), stated by R. P. Dilworth in the forties, asks whether every distributive \(\{ \lor, 0 \} \)-semilattice \(S \) is isomorphic to the semilattice \(\text{Con}_c L \) of compact congruences of a lattice \(L \).

While this problem is still open, many partial solutions have been obtained, positive and negative as well. The solution to CLP is known to be positive for all \(S \) such that \(|S| \leq \aleph_1 \). Furthermore, one can then take \(L \) with permutable congruences. This contrasts with the case where \(|S| \geq \aleph_2 \), where there are counterexamples \(S \) for which \(L \) cannot be, for example, sectionally complemented. We prove in this paper that the lattices of these counterexamples cannot have permutable congruences as well.

We also isolate finite, combinatorial analogues of these results. All the “finite” statements that we obtain are amalgamation properties of the \(\text{Con}_c \) functor. The strongest known positive results, which originate in earlier work by the first author, imply that many diagrams of semilattices indexed by the square \(2^2 \) can be lifted with respect to the \(\text{Con}_c \) functor.

We prove that the latter results cannot be extended to the cube, \(2^3 \). In particular, we give an example of a cube diagram of finite Boolean semilattices and semilattice embeddings that cannot be lifted, with respect to the \(\text{Con}_c \) functor, by lattices with permutable congruences.

We also extend many of our results to lattices with almost permutable congruences, that is, \(\alpha \lor \beta = \alpha \beta \cup \beta \alpha \), for all congruences \(\alpha \) and \(\beta \).

We conclude the paper with a very short proof that no functor from finite Boolean semilattices to lattices can lift the \(\text{Con}_c \) functor on finite Boolean semilattices.

Introduction

The classical Congruence Lattice Problem, posed by R. P. Dilworth in the early forties, formulated in the language of semilattices, asks whether any distributive \(\{ \lor, 0 \} \)-semilattice \(S \) is isomorphic to the semilattice of compact congruences \(\text{Con}_c L \) of a lattice \(L \). This is probably the most well-known open problem in lattice theory, see [5] for a survey.

The answer to CLP is known to be positive if \(|S| \leq \aleph_1 \). In fact, in that case, one can take \(L \) relatively complemented, locally finite, with zero, see [4]; this result can also be derived from the results of [13]. Still in case \(|S| \leq \aleph_1 \), one can take \(L \) sectionally complemented, modular (see [16]). It is an important observation that in both cases, any two congruences of \(L \) permute, see [1].

Date: January 24, 2005.

1991 Mathematics Subject Classification. 06A12, 06B10.

Key words and phrases. Lattice, semilattice, distributive, congruence, permutable, Uniform Refinement Property, congruence-splitting, diagram of lattices, congruence representation.

The first author was partially supported by GA ČR 201/97/1162.
Partial negative answers to this problem are obtained by applying a universal construction, described in the second author’s paper [14], that yields, for every infinite cardinal number \(\kappa \), a “complicated” distributive \(\{ \lor, 0 \} \)-semilattice \(S_\kappa \) of cardinality \(\kappa \). A variant of \(S_\kappa \), with similar properties, is constructed in [8]. Although its precise construction is relatively complicated, this variant could be described as a distributive \(\{ \lor, 0 \} \)-semilattice “freely generated” by elements \(a_\xi, b_\xi \), for \(\xi < \kappa \), subject to the relation \(a_\xi \lor b_\xi = \text{constant} \), for all \(\xi \). If \(\kappa \geq \aleph_2 \), then \(S_\kappa \) is not isomorphic to \(\text{Con}_c L \) if \(L \) is, say, sectionally complemented, or, more generally, congruence-splitting, as defined in [15].

The key observation is that if \(L \) is congruence-splitting, then \(\text{Con}_c L \) satisfies a certain infinite axiom of the language of semilattices, called the Uniform Refinement Property, URP. The main results can be summarized in the following theorem, see [9, 14, 15].

Theorem 1.

1. The class of congruence-splitting lattices contains the class of sectionally complemented lattices and the class of atomistic lattices. Furthermore, it is closed under direct limit.
2. Let \(L \) be a congruence-splitting lattice. Then \(\text{Con}_c L \) satisfies URP.
3. Every weakly distributive image (in E. T. Schmidt’s sense, see [11]) of a distributive lattice with zero satisfies URP.
4. \(S_\kappa \) does not satisfy URP, for all \(\kappa \geq \aleph_2 \).
5. Let \(F \) be a free lattice with at least \(\aleph_2 \) generators in any non-distributive variety of lattices. Then \(\text{Con}_c F \) does not satisfy URP.

Observe that every lattice \(L \) which is either atomistic or sectionally complemented has permutable congruences. It is easy to see that the class of lattices with permutable congruences is self-dual, and closed under direct limit.

Our following result provides the natural generalization of Theorem 1, contained in Theorems 1.2, 1.5, 2.4, and Corollary 2.3:

Theorem 2. Let \(L \) be a lattice.

1. If \(L \) is congruence-splitting, then \(L \) has permutable congruences.
2. Suppose that \(L \) has permutable congruences. Then \(\text{Con}_c L \) satisfies a certain strengthening of URP, denoted here URP\(_1\).
3. Suppose that \(L \) has almost permutable congruences, that is, the equality \(\alpha \lor \beta = \alpha \beta \cup \beta \alpha \) holds, for all congruences \(\alpha \) and \(\beta \) of \(L \). Then \(\text{Con}_c L \) satisfies a certain weakening of URP\(_1\), denoted here URP\(_-1\).
4. Let \(F \) be a free bounded lattice with at least \(\aleph_2 \) generators in any non-distributive variety of lattices. Then \(\text{Con}_c F \) does not satisfy URP\(_-1\).

On the other hand, the proof of the negative property of the semilattices \(S_\kappa \) (or of congruence lattices of free lattices) given in Theorem 1(iv,v) relies on a very simple, but powerful, infinite combinatorial result due to C. Kuratowski [7], that characterizes cardinal numbers of the form \(\aleph_n \) (and we just need it for \(\aleph_2 \)) via finite-valued set maps. A look at the proofs suggests that the finite, combinatorial core of the problem lies in amalgamation properties of the \(\text{Con}_c \) functor.

Positive amalgamation results have been obtained by the first author, who proves, in [13], that for any diagram \(\mathcal{D} \) of distributive \(\{ \lor, 0 \} \)-semilattices indexed by the square \(2^2 = 2 \times 2 \) (with \(2 = \{ 0, 1 \} \)), any lifting, with respect to the \(\text{Con}_c \)
functor, of S minus the top semilattice, by finite atomistic lattices can be extended to a lifting of the full diagram S, with a finite atomistic lattice at the top. This somehow cumbersome formulation is relevant for constructing direct systems of size \aleph_1, see [4], where the results of [13] are also generalized to arbitrary lattices with finite congruence lattices.

Because of Theorem 1, it is not hard to see that a n-dimensional version of this result, for n arbitrary, cannot hold. Because of the result, stated in [6], that every finite lattice admits a congruence-preserving extension into a finite sectionally complemented lattice, this negative result can be extended to all finite lattices (not only atomistic).

However, this proof is not constructive, and it remained to find an effective example of the non-existence of an amalgamation. This means that one tries to extract a combinatorial information from the existence of counterexamples of size \aleph_2.

A stronger negative result, also simpler to state, would be the existence of a diagram of finite distributive semilattices, indexed, say, by 2^3, without a lifting, with respect to Con_c, by finite atomistic lattices. A finite diagram without a lifting by finite atomistic lattices has been constructed by the first author in [12], but it is not indexed by any n-dimensional cube. A cube, without amalgamation, of related objects, called V-measures, is constructed in the paper by H. Dobbertin [2, pp. 32–34].

In this paper, we provide a counterexample to the cube amalgamation problem above:

Theorem 3.

(i) There exists a cube of finite Boolean semilattices and semilattice embeddings, that cannot be lifted, with respect to the Con_c functor, by lattices with almost permutable congruences.

(ii) There exists a cube of finite Boolean semilattices and semilattice embeddings that can be lifted, with respect to the Con_c functor, by finite lattices, but that cannot be lifted, with respect to the Con_c functor, by lattices with permutable congruences.

In fact, we provide somewhat stronger statements, see Theorems 4.1, 6.3, and 7.1.

Finally, in Section 8, we show a very simple example of a diagram of finite Boolean semilattices, that cannot be lifted, in an isomorphism-preserving fashion, with respect to the Con_c functor, by arbitrary lattices. This section can be read independently of the others. This shows that a positive solution of the Congruence Lattice Problem cannot be achieved by any functor from distributive $\{\lor, 0\}$-semilattices and $\{\lor, 0\}$-homomorphisms, to lattices and lattice homomorphisms.

1. **Lattices with permutable congruences**

We shall first recall some basic notation and terminology. If α and β are two binary relations on a set A, then we put

$$\alpha \beta = \{(x, y) \in A \times A \mid (\exists z \in A)((x, z) \in \alpha \land (z, y) \in \beta)\}.$$

If α is a binary relation on A and $x, y \in A$, we shall often write $x \equiv_\alpha y$ instead of $(x, y) \in \alpha$. Suppose now that A is given a structure of algebra (over a given similarity type). For any two elements x and y of A, we denote by $\Theta_A(x, y)$ (or simply $\Theta(x, y)$) the least congruence of A that identifies x and y. Furthermore, we
shall say that A has permutable congruences, if for any congruences α and β of A, the equality $\alpha \beta = \beta \alpha$ holds. As usual, the similarity type of the class of all lattices consists of the two binary operations \wedge and \vee.

We shall first give a convenient characterization of lattices with permutable congruences. The origin of the argument can be traced back to R. P. Dilworth’s paper [1]. The authors are grateful to Ralph Freese for having pointed this out, along with the following proof, which simplifies tremendously the original one.

Proposition 1.1. Let L be a lattice. Then the following are equivalent:

(i) L has permutable congruences.

(ii) For any elements a, b, and c of L such that $a \leq c \leq b$, there exists $x \in L$ such that $a \equiv_{\Theta(c, b)} x$ and $x \equiv_{\Theta(a, c)} b$.

Note that if there exists an element x of L as in (ii) above, then $y = (x \vee a) \wedge b$ satisfies that $a \equiv_{\Theta(c, b)} y$, $y \equiv_{\Theta(a, c)} b$, and $a \leq y \leq b$. So, the element x of (ii) can be assumed to lie in the interval $[a, b]$.

Proof. (i)\Rightarrow(ii) Assume that (i) holds. Put $\alpha = \Theta(a, c)$ and $\beta = \Theta(c, b)$. Since $a \equiv_{\alpha} c$ and $c \equiv_{\beta} b$, we have $(a, b) \in \alpha \beta$. By assumption, we also have $(a, b) \in \beta \alpha$, which turns out to be the desired conclusion.

(ii)\Rightarrow(i) Assume that (ii) holds. Let α and β be congruences of L, we prove that $\alpha \beta$ is contained into $\beta \alpha$. Thus let a, b, $c \in L$ such that $a \equiv_{\alpha} b$ and $b \equiv_{\beta} c$. Then $a \equiv_{\alpha} a \vee b$ and $a \vee b \equiv_{\beta} a \vee b \vee c$, thus, by the assumption, there exists x such that $a \equiv_{\Theta(a, b, a \vee b \vee c)} x$ and $x \equiv_{\Theta(a, c)} a \vee b \vee c$. Thus $a \equiv_{\beta} x$ and $x \equiv_{\alpha} a \vee b \vee c$. Similarly, by reversing the roles of a and c as well as α and β, there exists y such that $c \equiv_{\alpha} y$ and $y \equiv_{\beta} a \vee b \vee c$. Put $z = x \wedge y$. Then $a \equiv_{\beta} z$ and $z \equiv_{\alpha} c$; whence $a \equiv_{\beta \alpha} c$.

We recall now the following definition of [15], also used in [9]. A lattice L is congruence-splitting, if for all $u \leq v$ in L and all α, $\beta \in \text{Con } L$ such that $\Theta(u, v) = \alpha \vee \beta$, there exist x and y in the interval $[u, v]$ such that $x \vee y = v$, $u \equiv_{\alpha} x$, and $u \equiv_{\beta} y$.

As an immediate corollary of Proposition 1.1, we obtain the following:

Theorem 1.2. Every congruence-splitting lattice has permutable congruences.

Proof. Let L be a congruence-splitting lattice. We shall prove that the assumption (ii) of Proposition 1.1 holds. Thus let $a \leq c \leq b$ in L. Put $\alpha = \Theta(a, c)$ and $\beta = \Theta(c, b)$. Since $\alpha \vee \beta = \Theta(a, b)$, there exist, by assumption, elements x and y of $[a, b]$ such that $x \vee y = b$, and $a \equiv_{\alpha} x$ and $a \equiv_{\beta} y$. Joining with y the first relation, we obtain that $y \equiv_{\alpha} b$. So, $a \equiv_{\beta} y$ and $y \equiv_{\alpha} b$, which is the desired conclusion.

Congruence-splitting lattices have been introduced in [15] because their compact congruence semilattices satisfy a certain infinite axiom, called the Uniform Refinement Property, denoted URP. We introduce here an apparently stronger property, denoted URP$_1$, and we prove that the compact congruence semilattice of every lattice with permutable congruences satisfies this property.

Definition 1.3. Let S be a $\{\vee, 0\}$-semilattice, and let ε be an element of S. We say that S satisfies URP$_1$ at ε, if for every family $\{\langle \alpha_i, \beta_i \rangle \mid i \in I \}$ of elements of S such that $\alpha_i \vee \beta_i = \varepsilon$ for all i, there exist a family $\{\langle \alpha_i^*, \beta_i^* \rangle \mid i \in I \}$ of elements of S and a family $\{\gamma_{ij} \mid \langle i, j \rangle \in I \times I \}$ of elements of S such that for all i, j, $k \in I$, the following conditions hold:
(i) $\alpha^*_i \leq \alpha_i$ and $\beta^*_i \leq \beta_i$, and $\alpha^*_i \lor \beta^*_i = \varepsilon$.
(ii) $\gamma_{i,j} \leq \alpha^*_i$ and $\gamma_{i,j} \leq \beta^*_j$.
(iii) $\alpha^*_i \lor \gamma_{i,j} \leq \beta^*_j$ and $\beta^*_j \lor \gamma_{i,j} = \gamma_{i,j}$.
(iv) $\gamma_{i,j} \leq \gamma_{i,j}$.

Furthermore, say that S satisfies URP$_1$, if S satisfies URP$_1$ at every element of S.

It may appear strange at first sight to refer to the system of the α^*_i, β^*_i, $\gamma_{i,j}$ as a refinement of the α_i, β_i. Section 2 of [15] gives some motivation for this terminology.

The proof of the following result is essentially the same as the proof of Proposition 2.2 of [15], so we shall omit it:

Proposition 1.4. Let S be a distributive semilattice. Then the set of all elements of S at which URP holds is closed under the join operation.

Theorem 1.5. Let L be a lattice with permutable congruences. Then $\text{Con}_c L$ satisfies URP$_1$.

Proof. Since $\text{Con}_c L$ is a distributive semilattice, it suffices, by Proposition 1.4, to prove that $\text{Con}_c L$ satisfies URP$_1$ at every element of the form $\varepsilon = \Theta(u,v)$, where $u \leq v$ in L. Thus consider a family $\langle \langle \alpha_i, \beta_i \rangle \mid i \in I \rangle$ of elements of $\text{Con}_c L$ such that $\alpha_i \lor \beta_i = \varepsilon$, for all $i \in I$. Since L has permutable congruences, we have also $\langle u, v \rangle \in \alpha_i \beta_i$, for all $i \in I$, thus there exists $x_i \in [u,v]$ such that $u \equiv \alpha_i$, $x_i \equiv \beta_i$, v. By replacing x_i by $(u \lor x_i) \land v$, one can suppose, without loss of generality, that $u \leq x_i \leq v$. Put $\alpha^*_i = \Theta(\langle u, x_i \rangle)$, $\beta^*_i = \Theta(\langle x_i, v \rangle)$ and $\gamma_{i,j} = \Theta(\langle x_i, x_j \rangle)$, for all $i, j \in I$. It is easy to verify that the elements α^*_i, β^*_i, $\gamma_{i,j}$ verify the relations (i) to (iv) of the definition of URP$_1$ (Definition 1.3). \hfill \Box

It is proved in Corollary 4.1 of [9] that if \mathbb{V} is any non-distributive variety of lattices and if F is a free lattice in \mathbb{V} on at least \aleph_2 generators, then $\text{Con}_c F$ does not satisfy a certain weakening of URP$_1$, denoted there WURP. As a corollary, we note, in particular, the following:

Corollary 1.6. Let \mathbb{V} be any non-distributive variety of lattices, and let F be any free lattice in \mathbb{V} on at least \aleph_2 generators. Then there is no lattice K with permutable congruences such that $\text{Con}_c K \cong \text{Con}_c F$.

2. **Lattices with almost permutable congruences**

Two congruences α and β of an algebra A are said to be almost permutable, if the following equality holds:

$$\alpha \lor \beta = \alpha \beta \cup \beta \alpha.$$

We say that A has almost permutable congruences, if any two congruences of A are almost permutable. The three-element chain is an easy example of a lattice with almost permutable congruences but not with permutable congruences.

We shall formulate an analogue of Definition 1.3 for lattices with almost permutable congruences:

Definition 2.1. Let S be a $\{\lor, 0\}$-semilattice, let $\varepsilon \in S$, and let

$$\sigma = \langle \langle \alpha_i, \beta_i \rangle \mid i \in I \rangle$$
be a family of elements of \(S \times S \) such that
\[
\alpha_i \vee \beta_i = \varepsilon, \quad \text{for all } i \in I.
\]
We say that \(S \) satisfies \(URP_1^- \) at \(\sigma \), if there exist a subset \(X \) of \(I \), a family \(\langle \alpha_i^*, \beta_i^* \rangle \) for all \(i \in I \) of elements of \(S \times S \) and a family \(\langle \gamma_{i,j} \mid \langle i,j \rangle \in I \times I \rangle \) of elements of \(S \) such that for all \(i, j, k \in I \), the following conditions hold:

(i) \(\alpha_i^* \leq \alpha_i, \beta_i^* \leq \beta_i, \) and \(\alpha_i^* \vee \beta_i^* = \varepsilon. \)

(ii) \(\gamma_{i,j} \leq \alpha_i^* \) and \(\gamma_{i,j} \leq \beta_i^* \).

(iii) \(\alpha_i^* \leq \alpha_j^* \vee \gamma_{i,j} \) and \(\beta_i^* \leq \beta_j^* \vee \gamma_{i,j}. \)

(iv) \(\gamma_{i,j} \leq \gamma_{i,j} \vee \gamma_{j,k} \), for all \(i, j, k \in I \) such that
\[
\{ i, k \} \subseteq X \Rightarrow j \in X \quad \text{and} \quad \{ i, k \} \subseteq I \setminus X \Rightarrow j \in I \setminus X.
\]

We say that \(S \) satisfies \(URP_1^- \) at an element \(\varepsilon \) of \(S \), if \(S \) satisfies \(URP_1^- \) at every family \(\sigma \) satisfying (2.1). Finally, we say that \(S \) satisfies \(URP_1^- \), if it satisfies \(URP_1^- \) at \(\varepsilon \), for all \(\varepsilon \in S \).

We recall that if \(S \) and \(T \) are join-semilattices and if \(\varepsilon \in S \), a join-homomorphism \(\mu: S \rightarrow T \) is weakly distributive at \(\varepsilon \), if for all \(\alpha, \beta \in S \) such that \(\alpha \vee \beta = \mu(\varepsilon) \), there are \(\alpha', \beta' \in S \) such that the following relations hold:

\[
\varepsilon = \alpha' \vee \beta', \quad \mu(\alpha') \leq \alpha, \quad \mu(\beta') \leq \beta.
\]

We now formulate an analogue of Proposition 2.3 of [15]. The proof is straightforward, thus we omit it.

Lemma 2.2. Let \(S \) and \(T \) be join-semilattices, let \(\varepsilon \in S \). Let \(\mu: S \rightarrow T \) be a weakly distributive join-homomorphism. If \(S \) satisfies \(URP_1^- \) at \(\varepsilon \), then \(T \) satisfies \(URP_1^- \) at \(\mu(\varepsilon) \).

We can now use the results of [9] to get the following negative result:

Corollary 2.3. Let \(\mathcal{V} \) be any non-distributive variety of lattices, and let \(F \) be any free bounded lattice in \(\mathcal{V} \) on at least \(\aleph_2 \) generators. Then \(\text{Con}_c F \) does not satisfy \(URP_1^- \) at the largest congruence, \(\Theta(0,1) \), of \(F \).

Proof. As in [9], we shall denote by \(\mathbf{B}_V(I) \) the free product (=coproduct) of \(I \) copies of the two-element chain in \(\mathcal{V} \), say, \(s_i < t_i \), for \(i \in I \), with bounds 0, 1 added. Now assume that \(|I| = \aleph_2 \). As in Corollary 4.1 in [9], \(\mathbf{B}_V(I) \) is a quotient of \(F \), thus, by Proposition 1.2 of [15], the induced map \(f \) from \(\text{Con}_c F \) onto \(\text{Con}_c \mathbf{B}_V(I) \) is weakly distributive. Since \(f(\Theta(0,1)) \) equals \(\Theta_{\mathbf{B}_V(I)}(0,1) \), it suffices, by Lemma 2.2, to prove that \(\text{Con}_c \mathbf{B}_V(I) \) does not satisfy \(URP_1^- \) at \(\Theta_{\mathbf{B}_V(I)}(0,1) \).

We follow for this the pattern of the proof that begins in Section 2 of [9]. Suppose that \(\text{Con}_c \mathbf{B}_V(I) \) satisfies \(URP_1^- \) at \(\Theta_{\mathbf{B}_V(I)}(0,1) \). We put, again,
\[
\alpha_i = \Theta(0,s_i) \vee \Theta(t_i,1), \quad \beta_i = \Theta(s_i,t_i), \quad \text{for all } i \in I,
\]
\[
\varepsilon = \Theta(0,1).
\]
Observe that \(\alpha_i \vee \beta_i = \varepsilon \), for all \(i \in I \). By using \(URP_1^- \), we obtain a subset \(X \) of \(I \) and elements \(\gamma_{i,j} \) of \(\text{Con}_c \mathbf{B}_V(I) \), for \(i, j \in I \), satisfying the following conditions:
\[
\gamma_{i,j} \subseteq \alpha_i, \beta_j, \quad \text{for all } i, j \in I;
\]
\[
\gamma_{i,j} \vee \alpha_j \vee \beta_i = \varepsilon, \quad \text{for all } i, j \in I;
\]
\[
\gamma_{i,k} \subseteq \gamma_{i,j} \vee \gamma_{j,k}, \quad \text{for all } i, j, k \in I \text{ such that}
\]
\[
\{ i, k \} \subseteq X \Rightarrow j \in X \quad \text{and} \quad \{ i, k \} \subseteq I \setminus X \Rightarrow j \in I \setminus X.
\]
Theorem 2.4.

\[\gamma (\alpha, \beta) \exists X \text{ exists a subset } \alpha \]

Proof. For all \((2.8) \)

Con \(\text{ follows:} \)

Thus, for all \(\gamma_i, j \) of Con, \(\mathbf{B}_V(X) \), for \(i, j \in X \). In the formulas above, we slightly abuse the notation by still denoting \(\alpha_i, \beta_i \), and \(\varepsilon \) the compact congruences of \(\mathbf{B}_V(X) \) (not \(\mathbf{B}_V(I) \)) defined within \(\mathbf{B}_V(X) \) by the formulas (2.2) and (2.3). However, since \(|X| = \aleph_2 \), this cannot exist by the proof of Theorem 3.3 of [9]. \(\square \)

On the positive side, the following result relates \(\text{URP}_1^- \) with lattices with almost permutable congruences:

Theorem 2.4. Let \(L \) be a lattice. If \(L \) has almost permutable congruences, then \(\text{Con}_L \) satisfies \(\text{URP}_1^- \) at every principal congruence of \(L \).

Proof. Let \(u \leq v \) in \(L \), we prove that \(\text{Con}_L \) satisfies \(\text{URP}_1^- \) at \(\varepsilon = \Theta_L(u, v) \). So, let \(\langle \langle \alpha_i, \beta_i \rangle \mid i \in I \rangle \) be a family of ordered pairs of compact congruences of \(L \) such that \(\alpha_i \vee \beta_i = \varepsilon \), for all \(i \in I \). Since \(L \) has almost permutable congruences, there exists a subset \(X \) of \(I \) such that

\[u \equiv_{\alpha_i \beta_i} v, \quad \text{for all } i \in X, \]
\[u \equiv_{\beta_i \alpha_i} v, \quad \text{for all } i \in I \setminus X. \]

Thus, for all \(i \in I \), we obtain an element \(x_i \) of the interval \([u, v] \) such that

\[u \equiv_{\alpha_i} x_i \text{ and } x_i \equiv_\beta v, \quad \text{for all } i \in X, \]
\[u \equiv_{\beta_i} x_i \text{ and } x_i \equiv_\alpha v, \quad \text{for all } i \in I \setminus X. \]

We define compact congruences \(\alpha_i^* \) and \(\beta_i^* \) of \(L \), for all \(i \in I \), as follows:

\[\alpha_i^* = \Theta(u, x_i) \text{ and } \beta_i^* = \Theta(x_i, v), \quad \text{for all } i \in X, \]
\[\alpha_i^* = \Theta(x_i, v) \text{ and } \beta_i^* = \Theta(u, x_i), \quad \text{for all } i \in I \setminus X. \]

Note the following properties of \(\alpha_i^* \) and \(\beta_i^* \):

\begin{align*}
\alpha_i^* & \subseteq \alpha_i; \quad \beta_i^* \subseteq \beta_i; \\
\alpha_i^* \vee \beta_i^* & = \varepsilon,
\end{align*}

for all \(i \in I \). We further define compact congruences \(\gamma_{i, j} \) of \(L \), for \(i, j \in I \), as follows:

\[\gamma_{i, j} = \begin{cases}
\Theta^+(x_i, x_j), & \text{if } i \in X \text{ and } j \in X; \\
\Theta(u, x_i, x_j), & \text{if } i \in X \text{ and } j \notin X; \\
\Theta(x_i, x_j), & \text{if } i \notin X \text{ and } j \in X; \\
\Theta^+(x_i, x_j, v), & \text{if } i \notin X \text{ and } j \notin X.
\end{cases} \]
We use here the convenient notation
\[\Theta^+(a, b) = \Theta(a \wedge b, a), \] for all \(a, b \in L \).

Next, we verify that the congruences \(\alpha^*_i \), \(\beta^*_i \), and \(\gamma_{i,j} \) satisfy the relations listed in Definition 2.1. We start with the following
\[(2.9) \quad \gamma_{i,j} \subseteq \alpha^*_i \beta^*_j, \quad \text{for all } i, j \in I. \]

There are four cases to consider. If \(i, j \in X \), then the verification of (2.9) amounts to the verification of the containment
\[\Theta^+(x_i, x_j) \subseteq \Theta(u, x_i), \Theta(x_j, v), \]
which is immediate. Similarly, the remaining cases \(i \in X \) and \(j \notin X \), \(i \notin X \) and \(j \in X \), and \(i, j \notin X \), respectively, correspond to the containments
\[
\begin{align*}
\Theta(u, x_i) \subseteq \Theta(u, x_j) \lor \Theta^+(x_i, x_j), \\
\Theta(u, x_i) \subseteq \Theta(x_j, v) \lor \Theta(u, x_i \wedge x_j), \\
\Theta(x_i, v) \subseteq \Theta(u, x_j) \lor \Theta(x_i \lor x_j, v), \\
\Theta(x_i, v) \subseteq \Theta(x_j, v) \lor \Theta^+(x_j, x_i),
\end{align*}
\]
all of which are obvious. This completes the verification of (2.9).

We proceed with the verification of
\[(2.10) \quad \alpha^*_i \subseteq \alpha^*_j \lor \gamma_{i,j}, \quad \text{for all } i, j \in I. \]

Again, there are the same four cases as before to consider, that correspond respectively to the following containments:
\[
\begin{align*}
\Theta(u, x_i) & \subseteq \Theta(u, x_j) \lor \Theta^+(x_i, x_j), \\
\Theta(u, x_i) & \subseteq \Theta(x_j, v) \lor \Theta(u, x_i \wedge x_j), \\
\Theta(x_i, v) & \subseteq \Theta(u, x_j) \lor \Theta(x_i \lor x_j, v), \\
\Theta(x_i, v) & \subseteq \Theta(x_j, v) \lor \Theta^+(x_j, x_i),
\end{align*}
\]
all of which are obvious, thus completing the verification of (2.10).

The following system of containments can be verified in a similar fashion:
\[(2.11) \quad \beta^*_j \subseteq \beta^*_i \lor \gamma_{i,j}, \quad \text{for all } i, j \in I. \]

Finally, let \(i, j, k \in I \), and suppose that \(\{i, k\} \subseteq X \) implies \(j \in X \), and \(\{i, k\} \subseteq I \setminus X \) implies \(j \in I \setminus X \). We prove that \(\gamma_{i,k} \subseteq \gamma_{i,j} \lor \gamma_{j,k} \). There are six cases to consider, which are, respectively,
\[
\begin{align*}
i & \in X; \quad j \in X; \quad k \in X, \\
i & \in X; \quad j \in X; \quad k \notin X, \\
i & \in X; \quad j \notin X; \quad k \notin X, \\
i & \notin X; \quad j \in X; \quad k \in X, \\
i & \notin X; \quad j \notin X; \quad k \in X, \\
i & \notin X; \quad j \notin X; \quad k \notin X.
\end{align*}
\]
The corresponding containments to be verified are
\[
\Theta^+(x_i, x_k) \subseteq \Theta^+(x_i, x_j) \lor \Theta^+(x_j, x_k), \\
\Theta(u, x_j \land x_k) \subseteq \Theta^+(x_i, x_j) \lor \Theta(u, x_j \land x_k), \\
\Theta(u, x_i \land x_k) \subseteq \Theta(u, x_i \land x_j) \lor \Theta^+(x_k, x_j), \\
\Theta(x_i \lor x_k, v) \subseteq \Theta(x_i \lor x_j, v) \lor \Theta^+(x_j, x_k), \\
\Theta(x_i \lor x_k, v) \subseteq \Theta^+(x_j, x_i) \lor \Theta(x_j \lor x_k, v), \\
\Theta^+(x_k, x_i) \subseteq \Theta^+(x_j, x_i) \lor \Theta^+(x_k, x_j),
\]
all of which are obvious, thus completing the proof. \qed

By putting together the results of Theorem 2.4 and Corollary 2.3, we thus obtain the following result:

Corollary 2.5. Let \(V \) be a non-distributive variety of lattices, and let \(F \) be any free bounded lattice in \(V \) on at least \(82 \) generators. Then there exists no lattice \(L \) with almost permutable congruences such that \(\operatorname{Con}_c L \cong \operatorname{Con}_c F \).

Remark. We could have simplified the statement of URP\(_1^c\) in Definition 2.1, and thus the proof of Theorem 2.4, to obtain exactly exactly the same statement of Corollary 2.5. For example, the statements (i)–(iv) of Definition 2.1 could have been simplified the same way as in [9], namely, into
\[
\text{(ii')} \quad \gamma_{i,j} \subseteq \alpha_i, \beta_j, \text{ for all } i, j \in I, \\
\text{(iii')} \quad \gamma_{i,j} \lor \alpha_j \lor \beta_i = e, \text{ for all } i, j \in I, \\
\text{(iv')} \quad \gamma_{i,k} \subseteq \gamma_{i,j} \lor \gamma_{j,k}, \text{ for all } i, j, k \in I \text{ such that }
\]
either \(\{i, j, k\} \subseteq X \) or \(\{i, j, k\} \subseteq I \setminus X \).

However, this would have made us miss an important point: namely, that part (iv') of the original definition of URP\(_1^c\) “almost” holds for all \(i, j, k \in X \). The offending cases are, respectively,
\[
i \in X; j \notin X; k \in X, \\
i \notin X; j \in X; k \notin X,
\]
and the corresponding containments are, respectively,
\[
\Theta^+(x_i, x_k) \subseteq \Theta(0, x_i \land x_j) \lor \Theta(x_j \lor x_k, 1), \\
\Theta^+(x_k, x_i) \subseteq \Theta(x_i \lor x_j, 1) \lor \Theta(x_j \lor x_k, 1),
\]
which are easily seen to fail in very simple finite lattices, for example, the five-element modular non-distributive lattice \(M_3 \), by assigning to \(x_i, x_j, \) and \(x_k \) the three atoms of \(M_3 \). This suggests that URP\(_1\) may, in fact, not hold in general for the semilattices \(\operatorname{Con}_c L \), where \(L \) has almost permutable congruences. This suggests, in the longer term, that no “uniform refinement property” of any sort holds for the semilattices \(\operatorname{Con}_c L \), where \(L \) is an arbitrary lattice.

3. The basic semilattice diagram, \(\mathcal{D}_c \)

We shall construct in this section a finite diagram, \(\mathcal{D}_c \), of finite distributive \(\{\lor, 0\} \)-semilattices. The ultimate purpose of this construction will be completed in Section 4, where it will be proved that \(\mathcal{D}_c \) has no lifting, with respect to the \(\operatorname{Con}_c \) functor, by lattices with permutable congruences. The semilattices of \(\mathcal{D}_c \) are free
semilattices. If S is a $\{\lor, 0\}$-semilattice and if $n \in \omega$, a free n-tuple of elements of S is an element $(s_i \mid i < n)$ of S^n such that the map from the powerset semilattice $\langle \mathcal{P}(n), \lor, \emptyset \rangle$ to S defined by the rule

$$X \mapsto \bigvee\{s_i \mid i \in X\}$$

is an embedding of $\{\lor, 0\}$-semilattices.

For any poset $\langle P, \leq \rangle$, we view P as a category in the usual fashion, that is, the objects are the elements of P, and, for $p, q \in P$, there exists exactly one morphism from p to q if $p \leq q$, and none otherwise. Let A be a category. A P-diagram of A is a functor from P (or, more precisely, the category associated with P) to A.

Now let A and B be two categories, let F be a functor from A to B, and let P be a poset. A P-diagram f on A is a lifting of a P-diagram g on B, if both diagrams $F \circ f$ and g are isomorphic, in notation, $F \circ f \cong g$.

The case in which we shall be interested is here the following. The category A is the category of all lattices and lattice homomorphisms, the category B is the category of all distributive $\{\lor, 0\}$-semilattices and $\{\lor, 0\}$-homomorphisms, and F is the Con$_\omega$ functor from A to B.

We shall now define $\{\lor, 0\}$-semilattices $S_0, S_1, S_2, T_0, T_1, T_2$, and U, the building stones of \mathcal{D}_ω.

(i) U is the powerset semilattice of the five-element set $5 = \{0, 1, 2, 3, 4\}$, $U = \mathcal{P}(5)$.

We define elements ξ_i, η_i, ζ_i ($i < 4$) of U as follows:

$$\begin{align*}
\xi_0 &= \{0, 4\}, & \xi_1 &= \{3\}, & \xi_2 &= \{2\}, & \xi_3 &= \{1, 4\}; \\
\eta_0 &= \{0, 4\}, & \eta_1 &= \{1, 4\}, & \eta_2 &= \{2\}, & \eta_3 &= \{3, 4\}; \\
\zeta_0 &= \{0, 4\}, & \zeta_1 &= \{1\}, & \zeta_2 &= \{3\}, & \zeta_3 &= \{2, 4\}.
\end{align*}$$

Furthermore, we shall denote by 0 (resp., 1) the smallest (resp., largest) element of U. Note that the following equalities hold:

$$1 = \bigvee\{\xi_i \mid i < 4\} = \bigvee\{\eta_i \mid i < 4\} = \bigvee\{\zeta_i \mid i < 4\}.$$

We shall now define certain subsemilattices of U.

(ii) We define T_0 to be the $\{\lor, 0\}$-subsemilattice of U generated by $\{\xi_j \mid j < 4\}$. Similarly, define T_1 to be the $\{\lor, 0\}$-subsemilattice of U generated by $\{\eta_j \mid j < 4\}$, and T_2 to be the $\{\lor, 0\}$-subsemilattice of U generated by $\{\zeta_j \mid j < 4\}$.

(iii) Finally, for all $i < 3$, let S_i be the $\{\lor, 0\}$-subsemilattice of U generated by $\{\alpha_i, \beta_i\}$, where we put

$$\begin{align*}
\alpha_0 &= \{0, 1, 4\}, & \beta_0 &= \{2, 3, 4\}; \\
\alpha_1 &= \{0, 3, 4\}, & \beta_1 &= \{1, 2, 4\}; \\
\alpha_2 &= \{0, 2, 4\}, & \beta_2 &= \{1, 3, 4\}.
\end{align*}$$

Note, in particular, that 1 is the largest element of S_i and of T_i, for all $i < 3$. Furthermore, note that the definitions of the α_i and β_i stated in (iii) imply immediately that the following arrays
are refinement matrices, that is, in each of the three arrays, the first element of each row is the join of the other two, and similarly for the columns. For example,
\[\alpha_0 = \zeta_0 \lor \zeta_1 = \eta_0 \lor \eta_1, \beta_1 = \xi_2 \lor \xi_3 = \zeta_1 \lor \zeta_3, \text{etc.} \]

At the bottom of the construction, we put the two element \(\{\lor, 0\} \)-semilattice,
\[2 = \langle \{0, 1\}, \lor, 0 \rangle. \]
We can see right away that if \(i \neq j \) are elements of \(3 = \{0, 1, 2\} \), then \(2 \subseteq S_i \subseteq T_j \subseteq U \). Thus the semilattices \(2, S_i, T_i (i < 3) \), and \(U \) can be arranged in a commutative diagram, as shows Figure 1, where the arrows represent the inclusion maps. Note that all the maps in Figure 1 are embeddings of \(\{\lor, 0\} \)-semilattices.

Figure 1. Semilattice diagram

The proof of the following lemma is trivial.

Lemma 3.1. The quadruples \(\langle \xi_0, \xi_1, \xi_2, \xi_3 \rangle \) (resp., \(\langle \eta_0, \eta_1, \eta_2, \eta_3 \rangle, \langle \zeta_0, \zeta_1, \zeta_2, \zeta_3 \rangle \)) are free. Therefore, the following isomorphisms hold:

(i) \(T_0 \cong T_1 \cong T_2 \cong 2^4 \).
(ii) \(S_0 \cong S_1 \cong S_2 \cong 2^2 \).

In particular, the \(S_i \) and the \(T_i, i < 3 \), are finite Boolean semilattices.

Lemma 3.2. \(\eta_1 \nless \xi_1 \lor \zeta_1 \).

Proof. Note that \(4 \in \eta_1 \), but that \(4 \notin \xi_1 \lor \zeta_1 \). \(\Box \)

4. NON-EXISTENCE OF A LIFTING WITH PERMUTABLE CONGRUENCES

We shall prove in this section our first negative lifting result:

Theorem 4.1. There is no lifting, with respect to the \(\text{Con}_c \) functor, in the category of lattices, of the diagram \(D_c \), such that the lattices corresponding to \(S_i, i < 3 \), have permutable congruences.

Proof. Suppose otherwise. Let us consider a lifting, with respect to the \(\text{Con}_c \) functor, of \(D_c \), by a lattice diagram as in Figure 2.

Moreover, suppose that \(K_0, K_1, \) and \(K_2 \) have permutable congruences. We shall obtain a contradiction.
As on Figure 2, denote by $f_i: K \rightarrow K_i$, $g_{ij}: K_i \rightarrow L_j$ and $h_j: L_j \rightarrow P$ the lattice homomorphisms from the lattice diagram of Figure 2, for all $i, j < 3$ such that $i \neq j$. Furthermore, let $g_i: K_i \rightarrow P$ be the homomorphism defined by $g_i = h_j \circ g_{ij}$, for all $j < 3$ such that $i \neq j$. For each lattice L of Figure 2, let μ_L be the isomorphism from Con_L onto the corresponding semilattice of Figure 1, such that the isomorphisms $\mu_K: \text{Con}_K \rightarrow 2$, $\mu_{K_i}: \text{Con}_K \rightarrow S_i$ (for $i < 3$), $\mu_{L_j}: \text{Con}_L \rightarrow T_j$ (for $j < 3$), $\mu_P: \text{Con}_P \rightarrow U$ witness the isomorphism of \mathcal{D}_c and the image by the Con_L functor of the diagram of Figure 2. For each of those lattices L, put $\Phi_L(x, y) = \mu_L(\Theta_L(x, y))$ (so, an element of $\mu_L[\text{Con}_L]$), for all $x, y \in L$. For example, if $x, y \in K_0$, then $\Phi_{K_0}(x, y)$ belongs to S_0.

Since $\text{Con}_K \cong 2$, there are elements 0_K and 1_K of K such that $0_K < 1_K$ (they are not necessarily the least and the largest element of K, even if the latter exist), and then the equality $\Phi_K(0_K, 1_K) = 1$ holds. Furthermore, put $0_{K_i} = f_i(0_K)$ and $1_{K_i} = f_i(1_K)$, for all $i < 3$. Note, in particular, that the following equalities hold:

$$\Phi_{K_i}(0_{K_i}, 1_{K_i}) = \Phi_K(0_K, 1_K) = 1.$$

Further, put $0_{L_j} = g_{ij}(0_{K_i})$ and $1_{L_j} = g_{ij}(1_{K_i})$, for all $j < 3$ such that $i \neq j$; this definition is consistent, for example, the value of $0_{L_j} = g_{ij}(0_{K_i})$ does not depend of the choice of i, because of the commutativity of the diagram of Figure 2. Finally, put $0_P = h_j(0_{L_j})$ and $1_P = h_j(1_{L_j})$; again, this does not depend of j.

For all $i < 3$, the equality $\Phi_{K_i}(0_{K_i}, 1_{K_i}) = 1 = \alpha_i \lor \beta_i$ holds, and K_i has permutable congruences, thus there exists $x_i \in K_i$ such that $\Phi_{K_i}(0_{K_i}, x_i) \leq \alpha_i$ and $\Phi_{K_i}(x_i, 1_{K_i}) \leq \beta_i$. By replacing x_i by $(x_i \lor 0_{K_i}) \land 1_{K_i}$, one can suppose that $0_{K_i} \leq x_i \leq 1_{K_i}$. If $x_i = 0_{K_i}$, then $\Phi_{K_i}(0_{K_i}, 1_{K_i}) \leq \beta_i$, that is, $1 \leq \beta_i$, a contradiction. Thus, $0_{K_i} < x_i$, thus $\Phi_{K_i}(0_{K_i}, x_i) > 0$. Since $\Phi_{K_i}(0_{K_i}, x_i) \leq \alpha_i$ and since $S_i = \{0, \alpha_i, \beta_i, 1\}$, and by symmetry, we obtain the following:

$$\Phi_{K_i}(0_{K_i}, x_i) = \alpha_i \quad \text{and} \quad \Phi_{K_i}(x_i, 1_{K_i}) = \beta_i.$$

By applying to the elements 0_{K_i}, x_i, and 1_{K_i} the homomorphisms g_{ij} for $i \neq j$, we obtain sublattices of the L_j which can be described by Figure 3. We use here the following notation: for $j < 3$, j', and j'' are the two elements of $3 \setminus \{j\}$, ordered in such a way that $j' < j''$.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure2.png}
\caption{Lattice diagram}
\end{figure}
We put \(u_j = g_j(x_j) \) and \(v_j = g_j(x_{j'}) \), for all \(j < 3 \). Note, in particular, that, by (4.1), the following equalities hold:

\[
\Phi_{L_j}(0_{L_j}, u_j) = \Phi_{K_{j'}}(0_{K_{j'}}, x_{j'}) = \alpha_j,
\]
\[
\Phi_{L_j}(u_j, 1_{L_j}) = \Phi_{K_{j'}}(x_{j'}, 1_{K_{j'}}) = \beta_j.
\]

Similarly, the following equalities hold:

\[
\Phi_{L_j}(0_{L_j}, v_j) = \Phi_{K_{j'}}(0_{K_{j'}}, x_{j'}) = \alpha_j,'
\]
\[
\Phi_{L_j}(v_j, 1_{L_j}) = \Phi_{K_{j'}}(x_{j'}, 1_{K_{j'}}) = \beta_j.
\]

Therefore, by applying \(\Phi_{L_j} \) to the edges of the graph representing Figure 3, we obtain, for all \(j < 3 \), the following refinement matrix (in \(T_j \)):

\[
\begin{array}{c|c|c|c|c|c|c|c}
\alpha_j & \Phi_{L_j}(0_{L_j}, u_j \land v_j) & \Phi_{L_j}(u_j \land v_j, u_j) \\
\alpha_j' & \Phi_{L_j}(0_{L_j}, u_j \lor v_j) & \Phi_{L_j}(u_j \lor v_j, 1_{L_j}) \\
\beta_j & \Phi_{L_j}(v_j \land u_j, v_j) & \Phi_{L_j}(v_j, 1_{L_j}) \\
\beta_j' & \Phi_{L_j}(v_j \lor u_j, v_j) & \Phi_{L_j}(v_j \lor 1_{L_j}, 1_{L_j}) \\
\end{array}
\]

(4.2)

Since the entries of this matrix lie in \(T_j \), and, in the distributive lattice \(T_j \), the following equalities

\[
\alpha_j \land \beta_j = \alpha_j' \land \beta_j' = 0
\]

hold, the only possibility is the one given by the refinement matrices (3.1). In particular, we obtain the following relations:

(4.3) \(\Phi_{L_2}(u_0 \land v_0, u_0) = \xi_1, \quad \Phi_{L_1}(u_1 \land v_1, u_1) = \eta_1, \quad \text{and} \quad \Phi_{L_2}(u_2 \land v_2, u_2) = \zeta_1. \)

Finally, note that the equality

\[
\Phi_{L_j}(x, y) = \Phi_P(h_j(x), h_j(y))
\]

holds for all \(j < 3 \) and for all \(x, y \in L_j \). Furthermore, the equality \(h_j(u_j) = h_jg_j(x_j) = g_j(x_j') \) holds, and, similarly, \(h_j(v_j) = h_jg_j(x_j) = g_j(x_{j'}). \) Thus, by applying (4.4) to (4.3), we obtain the following equalities:

\[
\xi_1 = \Phi_P(g_1(x_1) \land g_2(x_2), g_1(x_1)),
\]
\[
\eta_1 = \Phi_P(g_0(x_0) \land g_2(x_2), g_0(x_0)),
\]
\[
\zeta_1 = \Phi_P(g_0(x_0) \land g_1(x_1), g_0(x_0)).
\]

In particular, \(\eta_1 \leq \xi_1 \lor \zeta_1 \). But this contradicts Lemma 3.2. \(\square \)
Remark. The proof above shows, in fact, a stronger result: namely, Theorem 4.1 can be generalized to any diagram of semilattices obtained from \mathcal{D}_c by replacing U by any larger distributive semilattice. To paraphrase this, the problem for lifting Figure 1 lies in the fact that the top lattice in Figure 2 would have a too small congruence lattice.

5. Duality of complete lattices; case of \mathcal{D}_c

We shall introduce in this section some material that will eventually lead to the existence of a lifting of \mathcal{D}_c, with respect to the Con_c functor, by a diagram of finite lattices, see Theorem 6.3.

5.1. Duality of complete lattices. The facts presented in this section are standard, although we do not know of any reference where they are recorded. All the proofs are straightforward, so we omit them.

If A and B are complete lattices, a map $f: A \to B$ is a complete join-homomorphism, if the equality

$$f \left(\bigvee X \right) = \bigvee f[X]$$

holds, for every subset X of A. Note that this implies, in particular, that $f(0_A) = 0_B$. One defines, similarly, complete meet-homomorphisms. We shall denote by \mathbf{C}_\vee (resp., \mathbf{C}_\wedge) the category of complete lattices with complete join-homomorphisms (resp., complete meet-homomorphisms).

Definition 5.1. Let A and B be complete lattices. Two maps $f: A \to B$ and $g: B \to A$ are dual, if the equivalence

$$f(a) \leq b \text{ if and only if } a \leq g(b),$$

holds, for all $(a, b) \in A \times B$.

Lemma 5.2. Let A and B be complete lattices.

(i) If $f: A \to B$ and $g: B \to A$ are dual, then f is a complete join-homomorphism and g is a complete meet-homomorphism.

(ii) Let $f: A \to B$ be a complete join-homomorphism. Then there exists a unique map $g: B \to A$ such that f and g are dual.

(iii) Let $g: B \to A$ be a complete meet-homomorphism. Then there exists a unique map $f: A \to B$ such that f and g are dual.

In case (ii), for all $b \in B$, $g(b)$ is defined as the largest $a \in A$ such that $f(a) \leq b$. We let g denote f^*. Similarly, in case (iii), $f(a)$ is defined as the least $b \in B$ such that $a \leq g(b)$, and we let f denote $g^!$.

The basic categorical properties of the duality thus described may be recorded in the following lemma.

Lemma 5.3.

(i) The correspondence $f \mapsto f^*$ defines a contravariant functor from \mathbf{C}_\vee to \mathbf{C}_\wedge.

(ii) The correspondence $g \mapsto g^!$ defines a contravariant functor from \mathbf{C}_\wedge to \mathbf{C}_\vee.

(iii) If f is a complete join-homomorphism, then $(f^*)^! = f$.

(iv) If g is a complete meet-homomorphism, then $(g^!)^* = g$.
Of particular importance is the effect of the duality on complete join-homomorphism of the form $\text{Con} f : \text{Con} K \to \text{Con} L$, where $f : K \to L$ is a lattice homomorphism. We denote by $\text{Res} f : \text{Con} L \to \text{Con} K$ the “restriction” map, defined by

$$(\text{Res} f)(\beta) = \{ \langle x, y \rangle \in K \times K \mid \langle f(x), f(y) \rangle \in \beta \},$$

for all $\beta \in \text{Con} L$. If f is the inclusion mapping from a lattice K into a lattice L, we shall just denote $(\text{Res} f)(\beta)$ by $\beta|_K$, and we shall call it the restriction of β to K.

Lemma 5.4. Let K and L be lattices, let $f : K \to L$ be a lattice homomorphism. Then $\text{Con} f$ and $\text{Res} f$ are dual.

For a lattice L, we denote by ι_L the largest congruence of L.

Lemma 5.5. Let K and L be lattices, let $f : K \to L$ be a lattice homomorphism, let $\beta \in \text{Con} L$. We define ψ as the restriction of $\text{Res} f$ to the interval $[\beta, \iota_L]$ of $\text{Con} L$, and we put $\alpha = \psi(\beta)$. Furthermore, we denote by $f' : K/\alpha \to L/\beta$ the canonical lattice homomorphism, and we put $\psi' = \text{Res} f'$. Let $\varepsilon : [\beta, \iota_L] \to \text{Con}(L/\beta)$ and $\eta : [\alpha, \iota_K] \to \text{Con}(K/\alpha)$ be the canonical isomorphisms. Then the following diagram commutes:

$$
\begin{array}{ccc}
\text{Con}(L/\beta) & \xrightarrow{\psi'} & \text{Con}(K/\alpha) \\
\varepsilon \uparrow & & \eta \uparrow \\
[\beta, \iota_L] & \xrightarrow{\psi} & [\alpha, \iota_K]
\end{array}
$$

5.2. The dual of \mathcal{D}_c.

We describe in this section the duals of the semilattice mappings of the semilattice diagram \mathcal{D}_c. Note that we consider join- or meet-homomorphisms between finite lattices, so these homomorphisms are always complete. The inclusion mappings in \mathcal{D}_c are $\{\vee, 0\}$-homomorphisms, but they are not always meet-homomorphisms. Since the duals of these inclusion mappings are meet-homomorphisms, we only need to specify their values at the meet-irreducible elements (that is, the coatoms) of the Boolean semilattices belonging to \mathcal{D}_c.

The coatoms of U are the subsets $\bar{k} = 5 \setminus \{k\}$, for all $k < 5$. Now, the Boolean subsemilattice T_0 of U is generated by the atoms $\xi_0 = \{0, 4\}$, $\xi_1 = \{3\}$, $\xi_2 = \{2\}$, $\xi_3 = \{1, 4\}$. Each coatom of T_0 is also a coatom of U. So the coatoms of T_0 are

$$
\xi_0 = \xi_1 \lor \xi_2 \lor \xi_3 = \{1, 2, 3, 4\} = \bar{0}, \quad \xi_1 = \bar{3}, \quad \xi_2 = \bar{2}, \quad \xi_3 = \bar{1}.
$$

We obtain, similarly, the coatoms of T_1, respectively T_2:

$$
\eta_0 = \bar{0}, \quad \eta_1 = \bar{1}, \quad \eta_2 = \bar{2}, \quad \eta_3 = \bar{3},
\quad \zeta_0 = \bar{0}, \quad \zeta_1 = \bar{1}, \quad \zeta_2 = 3, \quad \zeta_3 = 2.
$$

The atoms of the Boolean semilattices S_i, for $i < 3$, are also their coatoms, so we still denote them by α_i, β_i, for $i < 3$. The bottom lattice, $\bar{2}$, has a unique coatom, namely, $\bar{0}$.

Next, we describe the mappings \(\psi_{j,i} : T_j \mapsto S_i \) that are the duals of the inclusion maps \(S_i \hookrightarrow T_j \), for \(i \neq j \). Easy computations yield the following:

\[
\begin{align*}
\psi_{0,2}(1) &= \psi_{0,2}(3) = \alpha_2, & \psi_{0,2}(0) &= \psi_{0,2}(2) = \beta_2, \\
\psi_{0,1}(1) &= \psi_{0,1}(2) = \alpha_1, & \psi_{0,1}(0) &= \psi_{0,1}(3) = \beta_1, \\
\psi_{1,2}(1) &= \psi_{1,2}(3) = \alpha_2, & \psi_{1,2}(0) &= \psi_{1,2}(2) = \beta_2, \\
\psi_{1,0}(2) &= \psi_{1,0}(3) = \alpha_0, & \psi_{1,0}(0) &= \psi_{1,0}(1) = \beta_0, \\
\psi_{2,1}(1) &= \psi_{2,1}(2) = \alpha_1, & \psi_{2,1}(0) &= \psi_{2,1}(3) = \beta_1, \\
\psi_{2,0}(2) &= \psi_{2,0}(3) = \alpha_0, & \psi_{2,0}(0) &= \psi_{2,0}(1) = \beta_0.
\end{align*}
\tag{5.1}
\]

The computations of the values are always based on the fact that each of the (co)atoms \(\alpha_i, \beta_i \), for \(i < 3 \), omits exactly two elements of the set \(\{0, 1, 2, 3\} \) and hence it lies under exactly two coatoms of each semilattice \(T_j \), for \(j < 3 \).

Next we describe the mappings \(\psi_j : U \mapsto T_j \), for \(j < 3 \), the duals of the inclusion mappings \(T_j \hookrightarrow U \). It is easy to describe the values of \(\psi_j \) at the coatoms \(0, 1, 2, 3 \in U \), since each of them is also a coatom of \(T_j \), thus

\[
\psi_j(0) = 0, \quad \psi_j(1) = 1, \quad \psi_j(2) = 2, \quad \psi_j(3) = 3,
\]

for all \(j < 3 \). The values \(\psi_j(4) \) are crucial. So \(\psi_0(4) \) is the largest element of \(T_0 \) not containing \(4 \) as an element, hence

\[
\psi_0(4) = \xi_1 \lor \xi_2 = \{2, 3\} = 0 \land \overline{1},
\]

where the meet is computed in \(T_0 \), of course. Similarly, we obtain that

\[
\psi_1(4) = \{2\} = 0 \land \bar{1} \land 3, \\
\psi_2(4) = \{1, 3\} = 0 \land 2.
\]

Thus we also get \(\psi_{j,i} \psi_j(4) = \alpha_i \land \beta_i = 0 \), for all \(i \neq j \). Moreover, for any other coatom \(k, k < 4 \), we get that \(\psi_{j,i} \psi_j(k) \) is the unique of the (co)atoms \(\alpha_i, \beta_i \) not containing \(k \) as an element. It is computed by the same formulas as those in (5.1).

The dual of any inclusion mapping \(2 \hookrightarrow X \), where \(X \) is any one of the Boolean lattices \(U, T_j, S_i \), maps every coatom of \(X \) to the unique coatom of \(2 \), namely to \(0 \).

6. A lifting of \(\mathcal{D}_c \)

We shall construct in this section a lifting of \(\mathcal{D}_c \), based on the computations of Section 5.2. The computations in this section are relatively tedious; however, in our opinion, they carry the hope of being generalizable to further situations, like being able to lift arbitrary \(2^n \)-diagrams of finite distributive \(\{\lor, 0\} \)-semilattices. This purpose in mind, we found it useful to give the computations in some detail.

It is also important to note that the lattices that constitute our lifting do not have permutator congruences—they cannot, by Theorem 4.1.

For a variety \(V \) of lattices and a set \(X \), we denote by \(F_V(X) \) the free lattice in \(V \) generated by \(X \). If \(Y \subseteq X \), then \(F_V(Y) \) is a sublattice of \(F_V(X) \). In fact, \(F_V(Y) \) is a retract of \(F_V(X) \). Indeed, let \(f \) be any map from \(X \) to \(F_V(Y) \) such that \(f|_Y = \text{id}_Y \). We still denote by \(f \) the unique lattice homomorphism from \(F_V(X) \) to \(F_V(Y) \) that extends \(f \). If \(j \) denotes the inclusion map from \(F_V(Y) \) into \(F_V(X) \), then \(f \circ j = \text{id}_{F_V(Y)} \), which proves our claim. In particular, the equality

\[
(\text{Con} f) \circ (\text{Con} j) = \text{id}_{\text{Con} F_V(Y)}
\]
holds, thus \(\text{Con } j \) is one-to-one, which means that \(j \) has the congruence extension property.

We shall fix in this section a seven-element set,

\[
X = \{a, b, c, d, e, u, v\},
\]

and we define subsets \(Y_i, X_i \) (for \(i < 3 \)) of \(X \) by

\[
X_0 = \{a, b, c, e\}, \quad X_1 = \{a, b, c, d\}, \quad X_2 = \{a, b, d, e\},
\]

\[
Y_0 = \{a, b, d\}, \quad Y_1 = \{a, b, e\}, \quad Y_2 = \{a, b, c\},
\]

\[
Y = \{a, b\}.
\]

Let \(S \) be the lattice diagrammed on Figure 4.

```
1_S
  "\( a \)"
  /   \ 
q --- f --- 0_S
  \.   .   .
  /   \,   /
  r --- f --- f'
  
Figure 4. The lattice \( S \)
```

Note, in particular, that \(S \) is a finite, simple, non-modular lattice. In fact, the argument could be carried out for any simple, bounded, non-modular lattice instead of \(S \). We denote by \(\mathcal{V} \) the variety generated by \(S \).

We define lattices \(A_k \), for \(k < 5 \), as follows:

\[
A_0 = A_1 = A_2 = A_3 = 2, \quad A_4 = S.
\]

Note that all the \(A_k \)-s are simple lattices of \(\mathcal{V} \). Next, we define maps \(f_k : X \to A_k \), for \(k < 5 \), as follows. For \(k < 4 \), the \(f_k \)-s are uniquely determined by

\[
\begin{align*}
 f_0(a) &= f_0(c) < f_0(b) = f_0(c) = f_0(d) = f_0(u) = f_0(v), \\
 f_1(a) &= f_1(c) < f_1(b) = f_1(d) = f_1(e) = f_1(u) = f_1(v), \\
 f_2(a) &= f_2(d) < f_2(b) = f_2(c) = f_2(e) = f_2(u) = f_2(v), \\
 f_3(a) &= f_3(e) = f_3(d) = f_3(e) < f_3(b) = f_3(u) = f_3(v), \\
 f_4(a) &= 0_S, \quad f_4(b) = 1_S, \quad f_4(c) = p, \\
 f_4(d) &= q, \quad f_4(e) = r, \quad f_4(u) = p', \quad f_4(v) = r'.
\end{align*}
\]

Note that \(f_k[X] \) generates \(A_k \), for all \(k < 5 \). Since \(A_k \) belongs to \(\mathcal{V} \), \(f_k \) induces a unique surjective lattice homomorphism from \(F_{\mathcal{V}}(X) \) onto \(A_k \), that we still denote by \(f_k \).

We put \(g_k = \ker f_k \), the kernel of \(f_k \), for all \(k < 5 \). Since \(A_k \) is a simple lattice, \(g_k \) is a coatom of \(\text{Con } F_{\mathcal{V}}(X) \). Furthermore, for \(i \neq j \), \(f_i \) and \(f_j \) define distinct partitions of \(X \), thus \(g_i \neq g_j \). We define a congruence \(\Theta \) of \(F_{\mathcal{V}}(X) \) and a lattice \(P \), by

\[
\Theta = \bigwedge \{ g_k \mid k < 5 \}, \quad P = F_{\mathcal{V}}(X)/\Theta.
\]

The congruence lattice of \(P \) can be easily computed by using the following folklore lemma:
Lemma 6.1. Let D be a distributive lattice with unit, let $n \in \omega$, let a_i, for $i < n$, be mutually distinct coatoms of D. We put $a = \bigwedge\{a_i \mid i < n\}$. Then the interval $[a, 1]$ of D is isomorphic to 2^n.

By using Lemma 6.1 for $D = \text{Con} F_{\mathcal{V}}(X)$, $n = 5$, and $a_k = \eta_k$, for $k < 5$, we obtain that the upper interval $\left[\Theta, F_{\mathcal{V}}(X)\right]$ of $\text{Con} F_{\mathcal{V}}(X)$ is isomorphic to 2^5. Thus, $\text{Con} P \cong 2^5$. The coatoms of $\text{Con} P$ are the congruences η_k/Θ, for $k < 5$. Therefore, we have obtained:

Lemma 6.2. $\text{Con} P \cong 2^5$, and the elements η_k/Θ, for $k < 5$, are the distinct coatoms of $\text{Con} P$.

We now construct a commutative cube of lattices, as on Figure 2. For $i < 3$, we denote by Θ_i (resp., Θ'_i) the restriction of Θ to $F_{\mathcal{V}}(X_i)$ (resp., to $F_{\mathcal{V}}(Y_i)$). Furthermore, we denote by Φ the restriction of Θ to $F_{\mathcal{V}}(Y)$. We define lattices K_i, K'_i, and L_i, for $i < 3$, by

$K = F_{\mathcal{V}}(Y)/\Phi$, \quad $K_i = F_{\mathcal{V}}(Y_i)/\Theta'_i$, \quad $L_i = F_{\mathcal{V}}(X_i)/\Theta_i$.

Since the relations

$Y \subseteq Y_i \subseteq X_j \subseteq X$

hold for all $i \neq j$ in $\{0, 1, 2\}$, there are induced lattice embeddings $f_i: K \hookrightarrow K_i$, $g_{ij}: K_i \hookrightarrow L_j$, and $h_{ij}: L_j \hookrightarrow P$, for all $i \neq j$ in $\{0, 1, 2\}$. It is obvious that these maps form a commutative diagram as on Figure 2. We denote by \mathcal{L} this diagram.

The rest of this section is devoted to the proof of the following result:

Theorem 6.3. The image of the diagram \mathcal{L} under the Con functor is isomorphic to \mathcal{D}_c.

In order to prove Theorem 6.3, if is sufficient, by Section 5.1, to prove that the image under the Res functor of the diagram \mathcal{L} is isomorphic to the dual diagram of \mathcal{D}_c, described by the maps $\psi_j: U \to T_j$, $\psi_{ji}: T_j \to S_i$, and $\varphi_i: S_i \to 2$, for $i \neq j$ in $\{0, 1, 2\}$. Such an isomorphism of diagrams would consist of a family of eight isomorphisms, respectively from $\text{Con} P$ onto U, from $\text{Con} L_i$ onto T_i, from $\text{Con} K_i$ onto S_i (for $i < 3$), and from $\text{Con} K$ onto 2, satisfying a certain set of twelve commutation relations, each of them to be verified on the corresponding set of at most five meet-irreducible elements. Instead of writing down those cumbersome relations, it is convenient to observe that the dual of \mathcal{D}_c may be described by the following data:

(i) U is Boolean, and it has the coatoms \check{k}, for $k < 5$.
(ii) $\psi_i(k) = \check{k}$, a coatom of T_j, for all $i < 3$ and all $k < 4$.
(iii) $\psi_0(4) = 0 \wedge 1$, $\psi_1(4) = 0 \wedge 1 \wedge 3$, $\psi_2(4) = 0 \wedge 2$.
(iv) T_0, T_1, and T_2 are Boolean, and they have the coatoms \check{k}, for $k < 4$.
(v) The equations (5.1).
(vi) S_i is Boolean, and α_i, β_i are the coatoms of S_i, for all $i < 3$.
(vii) For $i < 3$, φ_i is the map that sends 1 to 1, and all the other elements to 0.

Let us first highlight which elements of $\text{Con} P$, $\text{Con} L_j$, and $\text{Con} K_i$, will play the role of the k, for $k < 5$, and the α_i, β_i, for $i < 3$.

We have already seen in Lemma 6.2 that the coatoms of $\text{Con} P$ are the η_k/Θ, for $k < 5$. Let η_k/Θ correspond to k, for $k < 5$.
Now the candidates for the coatoms of L_j, for $j < 3$. Let $f_{j,k}$: $F_V(X_j) \to A_k$ be the restriction of f_k to $F_V(X_j)$, for $k < 5$. We put $\varrho_{j,k} = \ker f_{j,k}$. So $\varrho_{j,k}$ is the restriction of ϱ_k to $F_V(X_j)$.

Lemma 6.4. Let $j < 3$. Then $\text{Con } L_j \cong 2^4$, and the elements $\varrho_{j,k}/\Theta_j$, for $k < 4$, are the distinct coatoms of $\text{Con } L_j$. Furthermore, the following equalities hold:

\[
\begin{align*}
\varrho_{0,4} &= \varrho_{0,0} \wedge \varrho_{0,1}, \\
\varrho_{1,4} &= \varrho_{1,0} \wedge \varrho_{1,1} \wedge \varrho_{1,3}, \\
\varrho_{2,4} &= \varrho_{2,0} \wedge \varrho_{2,2}.
\end{align*}
\]

Proof. Let us first verify this for L_0. We recall that $X_0 = \{a, b, c, e\}$. We compute the values of the maps $f_{0,k}$ on the elements of X_0, by just looking at (6.1) and (6.2) and removing all the elements of $X \setminus X_0$:

\[
\begin{align*}
f_{0,0}(a) &= f_{0,0}(c) < f_{0,0}(b) = f_{0,0}(e), \\
f_{0,1}(a) &= f_{0,1}(c) < f_{0,1}(b) = f_{0,1}(e), \\
f_{0,2}(a) &= f_{0,2}(b) = f_{0,2}(c) = f_{0,2}(e), \\
f_{0,3}(a) &= f_{0,3}(c) = f_{0,3}(e) < f_{0,3}(b),
\end{align*}
\]

while $f_{0,4}$ is determined by

\[
f_{0,4}(a) = 0_s, \quad f_{0,4}(b) = 1_s, \quad f_{0,4}(c) = p, \quad f_{0,4}(e) = r.
\]

Since $f_{0,k}[X_0]$ generates the range of $f_{0,k}$, the range of $f_{0,k}$ equals 2, if $k < 4$, and $A_{0,4} = \{0_s, 1_s, p, r\}$, a two-atom Boolean lattice, if $k = 4$. In particular, for $k < 4$, $\varrho_{0,k}$ is a coatom of $\text{Con } F_V(X_0)$. These congruences are mutually distinct, because, by (6.5), they induce different partitions of X_0. Furthermore, we consider the natural projections ξ_0, ξ_1 from $A_{0,4}$ to 2, defined by $\xi_0(r) = \xi_1(p) = 0$ and $\xi_0(p) = \xi_1(r) = 1$. By checking on the elements of X_0, we obtain easily that $f_{0,0} = \xi_0 \circ f_{0,4}$ and $f_{0,1} = \xi_1 \circ f_{0,4}$. Since the map $x \mapsto (\xi_0(x), \xi_1(x))$ from $A_{0,4}$ to 2^2 is a lattice embedding, the equation $\varrho_{0,4} = \varrho_{0,0} \wedge \varrho_{0,1}$ follows.

We do the same for L_1. We recall that $X_1 = \{a, b, c, d\}$. As in the previous paragraph, we compute the values of the maps $f_{1,k}$ on the elements of X_1:

\[
\begin{align*}
f_{1,0}(a) &= f_{1,0}(b) = f_{1,0}(c) = f_{1,0}(d), \\
f_{1,1}(a) &= f_{1,1}(c) < f_{1,1}(b) = f_{1,1}(d), \\
f_{1,2}(a) &= f_{1,2}(d) < f_{1,2}(b) = f_{1,2}(c), \\
f_{1,3}(a) &= f_{1,3}(c) = f_{1,3}(d) < f_{1,3}(b),
\end{align*}
\]

while $f_{1,4}$ is determined by

\[
f_{1,4}(a) = 0_s, \quad f_{1,4}(b) = 1_s, \quad f_{1,4}(c) = p, \quad f_{1,4}(d) = q.
\]

So the range of $f_{1,k}$ equals 2, if $k < 4$, and $A_{1,4} = \{0_s, 1_s, p, q\}$, a four-element chain, if $k = 4$. In particular, for $k < 4$, $\varrho_{1,k}$ is a coatom of $\text{Con } F_V(X_1)$. These congruences are mutually distinct. Furthermore, we consider the natural projections η_0, η_1, and η_2 from $A_{1,4}$ to 2, defined by $\eta_0(p) = 1$, $\eta_1(p) = 0$, $\eta_1(q) = 1$, and $\eta_2(p) = \eta_2(q) = 0$, $\eta_2(1) = 1$. By checking on the elements of X_1, we obtain easily that $f_{1,0} = \eta_0 \circ f_{1,4}$, $f_{1,1} = \eta_1 \circ f_{1,4}$, and $f_{1,3} = \eta_2 \circ f_{1,4}$. Since the map $x \mapsto (\eta_0(x), \eta_1(x), \eta_2(x))$ from $A_{1,4}$ to 2^3 is a lattice embedding, the equation $\varrho_{1,4} = \varrho_{1,0} \wedge \varrho_{1,1} \wedge \varrho_{1,3}$ follows.
We do it finally for L_2. We recall that $X_2 = \{a, b, d, e\}$. We compute the values of the maps $f_{2,k}$ on the elements of X_2:

\begin{align}
 f_{2,0}(a) &= f_{2,0}(c) < f_{2,0}(b) = f_{2,0}(d), \\
 f_{2,1}(a) &= f_{2,1}(b) = f_{2,1}(d) = f_{2,1}(e), \\
 f_{2,2}(a) &= f_{2,2}(d) < f_{2,2}(b) = f_{2,2}(e), \\
 f_{2,3}(a) &= f_{2,3}(d) = f_{2,3}(e) < f_{2,3}(b),
\end{align}

while $f_{1,4}$ is determined by

\begin{align}
 f_{2,4}(a) &= 0, \\
 f_{2,4}(b) &= 1, \\
 f_{2,4}(d) &= q, \\
 f_{2,4}(e) &= r.
\end{align}

So the range of $f_{2,k}$ equals 2, if $k < 4$, and $A_{2,4} = \{0, 1, 2, 4\}$, a two-atom Boolean lattice, if $k = 4$. In particular, for $k < 4$, $g_{2,k}$ is a coatom of $\text{Con} F_V(X_2)$. These congruences are mutually distinct. Furthermore, we consider the natural projections q_0 and q_1 from $A_{2,4}$ to 2, defined by $q_0(r) = q_1(q) = 0$, and $q_0(q) = q_1(r) = 1$. By checking on the elements of X_2, we obtain easily that $f_{2,0} = q_0 \circ f_{2,4}$ and $f_{2,2} = q_1 \circ f_{2,4}$. Since the map $x \mapsto (q_0(x), q_1(x))$ from $A_{2,4}$ to 2^2 is a lattice embedding, the equation $\varrho_{2,4} = \varrho_{2,0} \land \varrho_{2,2}$ follows.

In particular, it follows from (6.3), (6.4) that the equation

$$\Theta_j = \bigwedge \{ \varrho_{j,k} \mid k < 4 \}$$

holds for all $j < 3$. Thus the $\varrho_{j,k}/\Theta_j$, for $k < 4$, are exactly the coatoms of L_j. \qed

At this point, we have verified (i)–(iv) of the data that describe the dual of D_c:

(i) $\text{Con} P$ is Boolean, and it has the coatoms $\varrho_k = \varrho_k/\Theta$, for $k < 5$.

(ii) We put $\tilde{\varrho}_{j,k} = (\text{Res} h_j)(\varrho_k)$, for all $j < 3$ and all $k < 4$. By Lemma 5.5, $\tilde{\varrho}_{j,k} = \varrho_{j,k}/\Theta_j$. If $k < 4$, then $\tilde{\varrho}_{j,k}$ is a coatom of $\text{Con} L_j$.

(iii) The following equations hold:

\begin{align}
 (\text{Res} h_0)(\tilde{\varrho}_4) &= \tilde{\varrho}_{0,4} = \tilde{\varrho}_{0,0} \land \tilde{\varrho}_{0,1}, \\
 (\text{Res} h_1)(\tilde{\varrho}_4) &= \tilde{\varrho}_{1,4} = \tilde{\varrho}_{1,0} \land \tilde{\varrho}_{1,1} \land \tilde{\varrho}_{1,3}, \\
 (\text{Res} h_2)(\tilde{\varrho}_4) &= \tilde{\varrho}_{2,4} = \tilde{\varrho}_{2,0} \land \tilde{\varrho}_{2,2}.
\end{align}

(iv) By Lemma 6.4, $\text{Con} L_j$ is Boolean, for $j < 3$, and its coatoms are the $\tilde{\varrho}_{j,k}$-s, for $k < 4$.

We proceed through the verification of (v)–(vii). The analogues of α_i, β_i have not been defined yet. We do this now.

For $i < 3$ and $k < 5$, we denote by $f'_{i,k}$ the restriction of f_k to $F_V(Y_i)$, and by $\varrho'_{i,k}$ the kernel of $f'_{i,k}$. If $j \neq i$ in $\{0, 1, 2\}$, then $\varrho'_{j,k}$ is the restriction of $\varrho_{j,k}$ to $F_V(X_2)$. In particular, by the equations (6.4) in Lemma 6.4, $\varrho'_{i,k}$ is the meet of elements of the form $\varrho'_{j,k}$, for $k < 4$. Thus, in order to determine the meet-irreducible elements of $\text{Con} K_i$, it is sufficient to compute $\varrho'_{i,k}$, for $k < 4$. We follow a similar, though slightly simpler, pattern as in the proof of Lemma 6.4.
We first compute $f'_{0,k}$, for $k < 4$, at the elements of $Y_0 = \{a,b,d\}$, by using (6.1). We obtain the following:

\begin{align*}
f'_{0,0}(a) < f'_{0,0}(b) &= f'_{0,0}(d), \\
f'_{0,1}(a) < f'_{0,1}(b) &= f'_{0,1}(d), \\
f'_{0,2}(a) = f'_{0,2}(d) < f'_{0,2}(b), \\
f'_{0,3}(a) = f'_{0,3}(d) < f'_{0,3}(b).
\end{align*}

(6.12)

In particular, $f'_{0,0} = f'_{0,1}$ and $f'_{0,2} = f'_{0,3}$. So we put $\alpha_0 = \phi'_{0,2} = \phi'_{0,3}$, and $\beta_0 = \phi'_{0,0} = \phi'_{0,1}$. We note that $\alpha_0 \neq \beta_0$, and that the range of $f'_{0,k}$ is isomorphic to 2, for $k < 4$. So, α_0 and β_0 are distinct coatoms of $\text{Con} F_\gamma(Y_0)$. By (6.3), they meet to Θ'_0. Hence, $\text{Con} K_0 \cong 2^2$, and the coatoms of $\text{Con} K_0$ are $\alpha_0 = \alpha_0/\Theta'_0$ and $\beta_0 = \beta_0/\Theta'_0$.

Similarly, we compute $f'_{1,k}$, for $k < 4$, at the elements of $Y_1 = \{a,b,e\}$. We obtain the following:

\begin{align*}
f'_{1,0}(a) = f'_{1,0}(e) < f'_{1,0}(b), \\
f'_{1,1}(a) < f'_{1,1}(b) &= f'_{1,1}(e), \\
f'_{1,2}(a) < f'_{1,2}(b) &= f'_{1,2}(e), \\
f'_{1,3}(a) = f'_{1,3}(e) < f'_{1,3}(b).
\end{align*}

(6.13)

In particular, $f'_{1,0} = f'_{1,3}$ and $f'_{1,1} = f'_{1,2}$. So we put $\alpha_1 = \phi'_{1,1} = \phi'_{1,2}$, and $\beta_1 = \phi'_{1,0} = \phi'_{1,3}$. We note that $\alpha_1 \neq \beta_1$, and that the range of $f'_{1,k}$ is isomorphic to 2, for $k < 4$. So, α_1 and β_1 are distinct coatoms of $\text{Con} F_\gamma(Y_1)$. They meet to Θ'_1. Hence, $\text{Con} K_1 \cong 2^2$, and the coatoms of $\text{Con} K_1$ are $\alpha_1 = \alpha_1/\Theta'_1$ and $\beta_1 = \beta_1/\Theta'_1$.

Finally, we compute $f'_{2,k}$, for $k < 4$, at the elements of $Y_2 = \{a,b,c\}$. We obtain the following:

\begin{align*}
f'_{2,0}(a) < f'_{2,0}(b) &= f'_{2,0}(c), \\
f'_{2,1}(a) = f'_{2,1}(c) < f'_{2,1}(b), \\
f'_{2,2}(a) < f'_{2,2}(b) &= f'_{2,2}(c), \\
f'_{2,3}(a) = f'_{2,3}(c) < f'_{2,3}(b).
\end{align*}

(6.14)

In particular, $f'_{2,0} = f'_{2,2}$ and $f'_{2,1} = f'_{2,3}$. So we put $\alpha_2 = \phi'_{2,1} = \phi'_{2,3}$, and $\beta_2 = \phi'_{2,0} = \phi'_{2,2}$. We note that $\alpha_2 \neq \beta_2$, and that the range of $f'_{2,k}$ is isomorphic to 2, for $k < 4$. So, α_2 and β_2 are distinct coatoms of $\text{Con} F_\gamma(Y_2)$. They meet to Θ'_2. Hence, $\text{Con} K_2 \cong 2^2$, and the coatoms of $\text{Con} K_2$ are $\alpha_2 = \alpha_2/\Theta'_2$ and $\beta_2 = \beta_2/\Theta'_2$.

This takes care of (vi) of the data describing the dual of \mathcal{D}_γ: by (6.12)–(6.14), $\text{Con} K_i$ is Boolean and has distinct coatoms α_i, β_i, for all $i < 3$.

Now we verify (v). We just do the typical case from $\text{Con} L_0$ to $\text{Con} K_2$, the other five proceeding in a similar fashion. The computation is, actually, easy:

\begin{align*}
(\text{Res } g_{2,0})(\bar{0},0) &= \phi'_{2,0}/\Theta'_2 = \bar{\beta}_2, \\
(\text{Res } g_{2,0})(\bar{0},1) &= \phi'_{2,1}/\Theta'_2 = \bar{\alpha}_2, \\
(\text{Res } g_{2,0})(\bar{0},2) &= \phi'_{2,2}/\Theta'_2 = \bar{\beta}_2, \\
(\text{Res } g_{2,0})(\bar{0},3) &= \phi'_{2,3}/\Theta'_2 = \bar{\alpha}_2.
\end{align*}
Hence, Res$_{g_{2,0}}$ acts on $\tilde{\eta}_{0,k}$ as the map $\psi_{0,2}$ acts on \tilde{k}, for $k < 4$. Similarly, we can prove that for $i \neq j$ in $\{0, 1, 2\}$, Res$_{g_{j,i}}$ acts on $\tilde{\eta}_{i,k}$, for $k < 4$, as the map $\psi_{i,j}$ acts on \tilde{k}, for $k < 4$.

The verification of (vi) is easy. Since $f_k(a) < f_k(b)$ for all $k < 3$, the restriction mapping from every interval $[\Theta'_i, \Theta'_i(Y)]$, for $i < 3$, maps every coatom to the only coatom of 2, namely, 0. Thus Res$_{f_i}$ lifts the dual φ_i of the inclusion mapping $2 \hookrightarrow S_i$.

This completes the proof of Theorem 6.3. Note that since S is a finite lattice, the variety V is locally finite, so all lattices $F_V(X)$, $F_V(Y)$, and $F_Y(Y)$, for $i < 3$, are finite. Hence, a fortiori, all lattices P, L_i, K_i, and K, for $i < 3$, are finite. This proves that the diagram D_c has a lifting by finite lattices and lattice homomorphisms. It is, in fact, easy to prove that K_i, for $i < 3$, is a three-element chain. In particular, K_0 has almost permutable congruences.

7. A CUBE OF FINITE BOOLEAN SEMILATTICES WITHOUT A LIFTING BY LATTICES WITH ALMOST PERMUTABLE CONGRUENCES

We construct in this section an extension, D_{ac}, of the semilattice cube D_c described in Section 3, that cannot be lifted by lattices with almost permutable congruences. This gives a combinatorial analogue of Corollary 1.6.

The finite semilattices in the cube will again be subsemilattices of a Boolean lattice, this time on 8 elements. So U is, this time, the semilattice of all subsets of the set $S = \{0, 1, 2, 3, 4, 5, 6, 7\}$. We define elements ξ_i, η_i, ζ_i, for $i \in \{0, 1, 2, 3\}$, as follows:

$$
\begin{align*}
\xi_0 &= \{0, 4, 7\}, & \xi_1 &= \{3, 5, 6\}, & \xi_2 &= \{2, 5, 6\}, & \xi_3 &= \{1, 4, 7\}; \\
\eta_0 &= \{0, 4, 5, 7\}, & \eta_1 &= \{1, 4, 6, 7\}, & \eta_2 &= \{2, 5, 6, 7\}, & \eta_3 &= \{3, 4, 5, 6\}; \\
\zeta_0 &= \{0, 4, 6\}, & \zeta_1 &= \{1, 5, 7\}, & \zeta_2 &= \{3, 5, 7\}, & \zeta_3 &= \{2, 4, 6\}.
\end{align*}
$$

We denote by T_0 the $\{\lor, 0\}$-subsemilattice generated by $\{\xi_j \mid j < 4\}$. Because of the elements 0, 1, 2, 3, T_0 is isomorphic to the Boolean semilattice of all subsets of a four-element set. Similarly, the $\{\lor, 0\}$-subsemilattice T_1 of U generated by $\{\eta_j \mid j < 4\}$ is also isomorphic to the semilattice of all subsets of a four-element set. Similarly, the $\{\lor, 0\}$-subsemilattice T_2 of U generated by $\{\zeta_j \mid j < 4\}$ is isomorphic to both T_0 and T_1.

Further, we denote by α_i, β_i, $i < 3$, the following subsets of $\{0, 1, 2, 3, 4, 5, 6, 7\}$:

$$
\begin{align*}
\alpha_0 &= \{0, 1, 4, 5, 6, 7\}, & \beta_0 &= \{2, 3, 4, 5, 6, 7\}; \\
\alpha_1 &= \{0, 3, 4, 5, 6, 7\}, & \beta_1 &= \{1, 2, 4, 5, 6, 7\}; \\
\alpha_2 &= \{0, 2, 4, 5, 6, 7\}, & \beta_2 &= \{1, 3, 4, 5, 6, 7\}.
\end{align*}
$$

If S_i, for $i < 3$, denotes the $\{\lor, 0\}$-subsemilattice of U generated by α_i, β_i, then each semilattice S_i is isomorphic to 2^2. Moreover, $S_i \subseteq T_j$ if $i \neq j$. The bottom semilattice of the cube is $2 = \{\emptyset, 8\}$.

We denote by D_{ac} this new diagram of finite Boolean $\{\lor, 0\}$-semilattices. It has the same shape as D_c, but has new values for the S_i, T_j, U.

Theorem 7.1. There exists no lifting, with respect to the Con$_c$ functor, in the category of lattices, of the diagram D_{ac}, such that the lattices corresponding to S_i, for $i < 3$, have almost permutable congruences.
We merely outline the proof here, by indicating the modifications that have to be performed on the proof of Theorem 4.1. Lemma 3.2 has to be strengthened into the following:

Claim 1. The following relations hold:

\[\eta_1 \not\leq \xi_1 \lor \zeta_1; \quad \eta_2 \not\leq \xi_0 \lor \zeta_3; \quad \eta_3 \not\leq \xi_3 \lor \zeta_2; \quad \eta_0 \not\leq \xi_2 \lor \zeta_0. \]

Proof of Claim. These relations follow, respectively, from the relations

\[4 \in \eta_1 \setminus (\xi_1 \lor \zeta_1); \quad 5 \in \eta_2 \setminus (\xi_0 \lor \zeta_3); \quad 6 \in \eta_3 \setminus (\xi_3 \lor \zeta_2); \quad 7 \in \eta_0 \setminus (\xi_2 \lor \zeta_0). \]

\[\Box \text{ Claim 1.} \]

The proof of Theorem 7.1 proceeds then as follows. We choose the elements \(0_K, 1_K \in K, 0_{K_i} = f_i(0_K), 1_{K_i} = f_i(1_K), 0_{L_i} = g_{ij}(0_{K_i}), \) for \(i \neq j, i, j < 3, \) and \(0_P, 1_P \in P\) in the same way.

Now, because each \(S_i\) has almost permutable congruences, there are elements \(x_i \in S_i\) such that \(0_{K_i} < x_i < 1_{K_i}\) and

\[\Phi_{K_i}(0_{K_i}, x_i) \in \{\alpha_i, \beta_i\}, \quad \Phi_{K_i}(x_i, 1_{K_i}) \in \{\alpha_i, \beta_i\}. \]

and \(\Phi_{K_i}(0_{K_i}, x_i) \not\sim \Phi_{K_i}(x_i, 1_{K_i})\).

The rest consists of considering various combinations for the elements \(\Phi_{K_i}(0_{K_i}, x_i)\) and \(\Phi_{K_i}(x_i, 1_{K_i})\). The proof of Theorem 4.1 works in the case \(\Phi_{K_i}(0_{K_i}, x_i) = \alpha_i\) for \(i < 3\), and also in the case \(\Phi_{K_i}(0_{K_i}, x_i) = \beta_i, \Phi_{K_i}(x_i, 1_{K_i}) = \alpha_i\). In the latter case we only need to dualize the original proof, which leads to the same contradiction.

Finally, the case \(\Phi_{K_i}(0_{K_i}, x_i) = \alpha_i, \Phi_{K_i}(0_{K_i}, x_i) = \beta_1, \Phi_{K_i}(x_i, 1_{K_i}) = \alpha_2\) is dual. The case \(\Phi_{K_i}(0_{K_i}, x_i) = \alpha_0, \Phi_{K_i}(0_{K_i}, x_i) = \alpha_1, \Phi_{K_i}(x_i, 1_{K_i}) = \alpha_2\) leads to the inequality \(\eta_2 \leq \xi_0 \lor \zeta_3\) which contradicts the second case of Claim 1. The case \(\Phi_{K_i}(0_{K_i}, x_i) = \alpha_0, \Phi_{K_i}(0_{K_i}, x_i) = \alpha_1, \Phi_{K_i}(x_i, 1_{K_i}) = \alpha_2\) is dual to the former one and leads to the same contradiction.

We shall give in this section a very elementary diagram of finite Boolean semilattices and \(\{\lor, 0\}\)-homomorphisms, that cannot be lifted, in an isomorphism-preserving fashion, by lattices and lattice homomorphisms. This diagram is displayed on Figure 5:

Figure 5. Triangular semilattice diagram
The semilattice maps \(\varepsilon \) and \(\pi \) are defined as follows: \(\varepsilon(x) = \langle x, x \rangle \) and \(\pi(\langle x, y \rangle) = x \vee y \), for all \(x, y < 2 \). Thus it is obvious that the diagram of Figure 5 is commutative.

The proof of the following fact is so simple-minded that it hardly deserves to be called a theorem. However, it implies immediately that the Congruence Lattice Problem does not have a functorial solution from \(\{ \lor, 0 \} \)-semilattices and \(\{ \lor, 0 \} \)-homomorphisms, to lattices and lattice homomorphisms, see Corollary 8.2.

Theorem 8.1. There is no lifting, with respect to the \(\text{Con}_c \) functor, in the category of lattices, of the semilattice diagram displayed on Figure 5, that sends the identity to an isomorphism.

Proof. Assume, to the contrary, that the diagram can be lifted, by a lattice diagram of the format displayed on Figure 6, with \(f \) surjective.

![Figure 6. Triangular lattice diagram](image)

In particular, \(p \circ e = f \) is surjective, thus \(p \) is surjective. On the other hand, \(\text{Con}_c p \) is isomorphic (as a semilattice homomorphism) to \(\pi \), and \(\pi \) separates 0, thus \(p \) is one-to-one. Therefore, \(p \) is an isomorphism, which is impossible since \(\pi \cong \text{Con}_c p \) and \(\pi \) is not an isomorphism. \(\square \)

Corollary 8.2. There is no quasi-functor \(F \), from \(\{ \lor, 0 \} \)-semilattices and \(\{ \lor, 0 \} \)-homomorphisms to lattices and lattice homomorphisms, such that \(\text{Con}_c F(S) \cong S \) and \(\text{Con}_c F(f) \cong f \), for all finite Boolean semilattices \(S \) and \(T \) and all \(\{ \lor, 0 \} \)-homomorphisms \(f : S \to T \).

(The definition of a quasi-functor is similar to the definition of a functor, except that the image of an identity is not required to be an identity.)

Proof. If \(\nu : 2 \to 2 \) is the identity, then \(\nu \circ \nu = \nu \). Hence, if \(f = F(\nu) \), then \(f \circ f = f \). However, by assumption on \(F \), the relation \(\text{Con}_c f \cong \nu \) holds. Since \(\nu \) separates zero, \(f \) is one-to-one, thus, since \(f \) is idempotent, \(f = \text{id}_{F(2)} \). By Theorem 8.1, this is impossible. \(\square \)

Of course, the map \(\pi \) is not one-to-one, and, in particular, the proof of Theorem 8.1 does not imply the non-existence of a functor from \(\{ \lor, 0 \} \)-semilattices with \(\{ \lor, 0 \} \)-embeddings to lattices and lattice homomorphisms, that lifts the \(\text{Con}_c \) functor. In fact, the diagram of Figure 5 has a lifting by finite lattices and lattice homomorphisms, as follows. In Figure 6, define \(K_0 = 2 \), \(K_1 = M_3 \) (the five-element modular non-distributive lattice), \(L = 2^2 \); let \(e \) and \(f \) be the \(\{ 0, 1 \} \)-preserving maps, and let \(p \) be any embedding from \(2^2 \) into \(M_3 \).

9. Open problems

By a result of P. Pudlák, see Fact 4, page 100 in [10], every distributive \(\{ \lor, 0 \} \)-semilattice is the direct union of all its finite distributive \(\{ \lor, 0 \} \)-subsemilattices. Therefore, in view of the negative results of Section 8, a positive solution to the
following Problem 1 would be about the best possible solution to the Congruence Lattice Problem:

Problem 1. Does there exist a functor F, from finite distributive $\{\lor, 0\}$-semilattices and their embeddings to lattices and their embeddings, such that the functor $\text{Con}_c \circ F$ is naturally equivalent to the identity?

A related open problem is the following:

Problem 2. Does every finite diagram (indexed by a poset) of finite distributive $\{\lor, 0\}$-semilattices have a lifting, with respect to the Con_c functor, by a diagram of lattices?

We have seen in Section 6 that the diagram \mathcal{D}_c can be lifted with respect to the Con_c functor. However, we do not even know the general answer to the following problem, thus illustrating the level of our ignorance about Problem 2:

Problem 3. Let \mathcal{D} be a cube of finite distributive $\{\lor, 0\}$-semilattices. Is it decidable whether \mathcal{D} admits a lifting, with respect to the Con_c functor, by a cube of lattices (resp., lattices with permutable congruences)?

We do not even know the answer to Problem 3 in the particular case where $\mathcal{D} = \mathcal{D}_{ac}$.

Problem 4. Which algebraic distributive lattices are isomorphic to $\text{Con} L$, for some lattice L with permutable congruences?

A first approach to Problem 4 might be provided by E. T. Schmidt’s well-known sufficient condition, for a given algebraic distributive lattice, to be isomorphic to the congruence lattice of a lattice, see [11]. By using the amalgamation technique of [4] in a ring-theoretical context, the second author proved that every distributive $\{\lor, 0\}$-semilattice of cardinality at most \aleph_1 is isomorphic to $\text{Con}_c L$ for some sectionally complemented modular L, see [16]. Since every sectionally complemented lattice has permutable congruences, this provides a strong positive answer to Problem 4 for algebraic distributive lattices with at most \aleph_1 compact elements.

Problem 5. Let \mathcal{V} be a non-distributive variety of lattices. Does there exist a 2^3-diagram \mathcal{D} of lattices and lattice embeddings in \mathcal{V} such that the image of \mathcal{D} under Con_c cannot be lifted by lattices with almost permutable congruences?

As follows from Corollary 2.5, if \mathcal{V} is a non-distributive variety of lattices and if F is a free lattice in \mathcal{V} on at least \aleph_2 generators, then there exists no lattice L with almost permutable congruences such that $\text{Con}_c L \cong \text{Con}_c F$. So, Problem 5 asks for a combinatorial analogue of Corollary 2.5.

References

Representation of algebraic distributive lattices with ℵ1 compact elements as ideal lattices of regular rings, Publ. Mat., to appear.

Representation of algebraic distributive lattices with ℵ1 compact elements as ideal lattices of regular rings, Publ. Mat., to appear.

Department of Algebra, Faculty of Mathematics and Physics, Sokolovská 83, Charles University, 186 00 Praha 8, Czech Republic
E-mail address: tuma@karlin.mff.cuni.cz

C.N.R.S., E.S.A. 6081, Université de Caen, Campus II, Département de Mathématiques, B.P. 5186, 14032 CAEN CEDEX, FRANCE
E-mail address: wehrung@math.unicaen.fr
URL: http://www.math.unicaen.fr/~wehrung