Unsolvable one-dimensional lifting problems for congruence lattices of lattices

Jiri Tuma, Friedrich Wehrung

To cite this version:

HAL Id: hal-00004023
https://hal.archives-ouvertes.fr/hal-00004023
Submitted on 21 Jan 2005

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
UNIVERSAL LIFTING PROBLEMS FOR
CONGRUENCE LATTICES OF LATTICES

JIŘÍ TŮMA AND FRIEDRICH WEHRUNG

Abstract. Let \(S \) be a distributive \(\{ \lor, 0 \} \)-semilattice. In a previous paper, the second author proved the following result:

\[
\text{Suppose that } S \text{ is a lattice. Let } K \text{ be a lattice, let } \varphi : \text{Con}_c K \to S \text{ be a } \{ \lor, 0 \} \text{-homomorphism. Then } \varphi \text{ is, up to isomorphism, of the form } \text{Con}_c f, \text{ for a lattice } L \text{ and a lattice homomorphism } f : K \to L.
\]

In the statement above, \(\text{Con}_c K \) denotes as usual the \(\{ \lor, 0 \} \)-semilattice of all finitely generated congruences of \(K \).

We prove here that this statement characterizes \(S \) being a lattice.

Introduction

The Congruence Lattice Problem (CLP in short) asks whether for any distributive \(\{ \lor, 0 \} \)-semilattice \(S \), there exists a lattice \(L \) such that \(\text{Con}_c L \cong S \). While this problem is still unsolved, many related problems have been solved. Among these, we mention the following, due to G. Grätzer and E.T. Schmidt, see [4, 5], and also [6] for a survey about this and related problems.

Theorem 1. Let \(S \) be a finite distributive \(\{ \lor, 0 \} \)-semilattice, let \(K \) be a finite lattice, let \(\varphi : \text{Con}_c K \to S \) be a \(\{ \lor, 0 \} \)-homomorphism. Then there are a finite lattice \(L \), a lattice homomorphism \(f : K \to L \), and an isomorphism \(\alpha : \text{Con}_c L \to S \) such that \(\alpha \circ \text{Con}_c f = \varphi \).

In the statement of Theorem 1, \(\text{Con}_c f \) denotes the map from \(\text{Con}_c K \) to \(\text{Con}_c L \) that with any congruence \(\alpha \) of \(K \) associates the congruence of \(L \) generated by all the pairs \(\langle f(x), f(y) \rangle \) where \(\langle x, y \rangle \in \alpha \).

In [10], the second author proves that provided that \(S \) is a lattice, all finiteness assumptions in Theorem 1 can be dropped, that is:

Theorem 2. Let \(S \) be a distributive lattice with zero, let \(K \) be a lattice, let \(\varphi : \text{Con}_c K \to S \) be a \(\{ \lor, 0 \} \)-homomorphism. Then \(\varphi \) can be “lifted”, that is, there are a lattice \(L \), a lattice homomorphism \(f : K \to L \), and an isomorphism \(\alpha : \text{Con}_c L \to S \) such that \(\alpha \circ \text{Con}_c f = \varphi \).

In the result of Theorem 2, instead of lifting a distributive \(\{ \lor, 0 \} \)-semilattice \(S \) (with respect to the \(\text{Con}_c \) functor), we lift a \(\{ \lor, 0 \} \)-homomorphism \(\varphi : \text{Con}_c K \to S \).
S. For this reason, we shall call such a statement “one-dimensional Congruence Lattice Problem”, in short 1-CLP. With this terminology, the usual CLP would have to be called 0-CLP. By replacing K by a truncated n-dimensional cube (diagram) of lattices, we can define the n-CLP, for any positive integer n. It turns out that this problem is interesting only for $n \in \{0, 1, 2\}$. Indeed, it follows from [8] that the 3-CLP holds only for trivial S—but much more is proved in [8], while the result about 3-CLP follows from a trivial (and unpublished) example of the second author. The 2-CLP is another matter (far less trivial than 3-CLP but still far easier than 1-CLP), which will be considered elsewhere.

Our main result (see Theorem A) states that for a given distributive $\{\lor, 0\}$-semilattice S, Theorem 2 characterizes S being a lattice. This solves also a problem formulated by H. Dobbertin in the (yet unpublished) monograph [2], see Corollary 1.4. In fact, our approach is inspired by Dobbertin’s solution for the particular case of his own problem where S is primely generated, see Theorem 15 in [1]. It gives, for a distributive $\{\lor, 0\}$-semilattice S that is not a lattice, the construction of a Boolean algebra B of size at most $2^{2^{|S|}}$ and a $\{\lor, 0\}$-homomorphism φ: $\text{Con}_\omega B \to S$ that cannot be “lifted” as in Theorem 2.

Even in the particular case where $S = D$, the simplest distributive $\{\lor, 0\}$-semilattice that is not a lattice, see Section 2, it has been an open problem, stated at the end of Section 1 in [1], whether the size of B can be reduced from 2^{61} to 8_1 (without the Continuum Hypothesis). We solve this affirmatively in Theorem B. This also gives us that there are a Boolean algebra B of size 8_1 and a $\{\lor, 0\}$-homomorphism φ: $\text{Con}_\omega B \to D$ that cannot be lifted, see Corollary 2.4.

We use standard notation and terminology. For a partially ordered set (P, \leq) and for $a \in P$, we put

$$(a) = \{x \in P \mid x \leq a\}.$$

We denote by ω the set of all natural numbers, and by ω_1 the first uncountable ordinal.

1. Characterization of distributive $\{\lor, 0\}$-semilattices with 1-CLP

The main lemma of this section is the following.

Lemma 1.1. Let S be a distributive $\{\lor, 0\}$-semilattice, let $a_0, a_1 \in S$ be such that the set $Q = \{a_0\} \cup \{a_1\}$ has no largest element.

There are a Boolean algebra B and a $\{\lor, 0\}$-homomorphism $\mu: B \to S$ such that the following holds:

(a) $\mu(1) = a_0 \lor a_1$;

(b) there are no maps $\mu_0, \mu_1: B \to S$ that satisfy the following properties:

(i) $\mu(x) = \mu_0(x) \lor \mu_1(x)$, for all $x \in B$,

(ii) μ_0 and μ_1 are order-preserving,

(iii) $\mu_\ell(1) \leq a_\ell$, for all $\ell < 2$.

Proof. Let κ be the minimum size of a cofinal subset of Q, and pick a cofinal subset $\{x_\xi \mid \xi < \kappa\}$ of Q. So κ is an infinite cardinal. We define recursively a map $f: \kappa \to \kappa$ by the rule

$$f(\alpha) = \min\{\xi < \kappa \mid x_\xi \notin \text{Id}\{x_{f(\beta)} \mid \beta < \alpha\}\}$$ \hspace{1cm} (1.1)

for all $\alpha < \kappa$, where $\text{Id} X$ denotes the ideal of S generated by a subset X of S. Let $\beta < \alpha$. Then, by (1.1), $x_{f(\alpha)} \notin \text{Id}\{x_{f(\gamma)} \mid \gamma < \alpha\}$, so $f(\alpha) \neq f(\beta)$. Moreover,
\(x_{f(\alpha)} \notin \text{Id}\{ x_{f(\gamma)} \mid \gamma < \beta \}\), so \(f(\beta) \leq f(\alpha)\), whence \(f(\beta) < f(\alpha)\). So \(f\) is strictly increasing.

For \(\alpha < \kappa\), we put \(q_\alpha = x_{f(\alpha)}\) and \(Q_\alpha = \text{Id}\{ q_\beta \mid \beta < \alpha \}\). By (1.1), \(q_\alpha \notin Q_\alpha\) for all \(\alpha < \kappa\). Furthermore, all the sets \(Q_\alpha\) are ideals of \(Q\) and \(Q_\alpha \subset Q_\beta\) whenever \(\alpha < \beta\). Finally, for \(\alpha < \beta\), the relation \(q_\alpha \in Q_\beta\) holds. (Otherwise \(x_{f(\alpha)} \notin Q_\beta = \text{Id}\{ x_{f(\gamma)} \mid \gamma < \beta \}\), thus, by (1.1), \(f(\beta) \leq f(\alpha)\), a contradiction since \(f\) is strictly increasing.) Hence \(\bigcup_{\alpha < \kappa} Q_\alpha = Q\).

For \(x \in Q\), we denote by \(\|x\|\) the least \(\alpha < \kappa\) such that \(x \in Q_\alpha\). Observe that the following obvious properties hold:

\[
\|q_\alpha\| = \alpha + 1, \quad \text{for all } \alpha < \kappa, \quad (1.2)
\]

\[
\|x \vee y\| = \|x\| \vee \|y\|, \quad \text{for all } x, y \in Q. \quad (1.3)
\]

Now pick a partition \(\kappa = \bigcup_{\alpha < \kappa} Z_\alpha\) of \(\kappa\) into sets \(Z_\alpha\) such that \(|Z_\alpha| = \kappa\) for all \(\alpha < \kappa\). Define ideals \(I, I_0, I_1\) of the Boolean algebra \(B = P(\kappa)\) as follows:

\[
I = \{ X \subseteq \kappa \mid X \text{ finite} \},
\]

\[
I_0 = \text{ideal of } B \text{ generated by } \{ Z_\alpha \mid \alpha < \kappa \},
\]

\[
I_1 = \{ X \subseteq \kappa \mid X \cap Z_\alpha \text{ is finite for every } \alpha < \kappa \}.
\]

It is obvious that \(I = I_0 \cap I_1\), and that \(\kappa \notin I_0 \cup I_1\). We define a map \(\mu: B \to S\) by the following rule:

\[
\mu(X) = \begin{cases}
\bigvee_{\alpha < X} q_\alpha, & \text{if } X \text{ is finite,} \\
\alpha_\ell, & \text{if } X \in I_\ell \setminus I, \text{ for } \ell < 2, \\
\alpha_0 \vee \alpha_1, & \text{if } X \notin I_0 \cup I_1.
\end{cases}
\]

So \(\mu\) is a \(\{ \vee, 0 \}\)-homomorphism from \(B\) to \(S\) with \(\mu(1) = \alpha_0 \vee \alpha_1\).

Now suppose that \(\mu_0, \mu_1: B \to S\) satisfy (i)–(iii) above. For \(\alpha < \kappa\), \(\mu_1(Z_\alpha) \leq \mu(Z_\alpha) = \alpha_0\) (because \(Z_\alpha \in I_0 \setminus I\)), and \(\mu_1(Z_\alpha) \leq \mu_1(\kappa) \leq \alpha_1\) (by the assumption (iii)), hence \(\mu_1(Z_\alpha) \in Q\). Hence, since \(Z_\alpha\) is a cofinal subset of \(\kappa\), there exists \(\xi_\alpha \in Z_\alpha\) such that \(\alpha \vee \|\mu_1(Z_\alpha)\| \leq \xi_\alpha\). We put \(Z = \{ \xi_\alpha \mid \alpha < \kappa \}\). Observe that \(Z \in I_1 \setminus I\), hence \(\mu(Z) = \alpha_1\). So \(\mu_0(Z) \leq \mu(Z) = \alpha_1\) on the one hand, and \(\mu_0(Z) \leq \mu_0(\kappa) = \alpha_0\) on the other hand, thus \(\mu_0(Z) \in Q\). Put \(\beta = \|\mu_0(Z)\|\). Then

\[
\xi_\beta + 1 = \|q_{\xi_\beta}\| \quad \text{(by (1.2))}
\]

\[
= \|\mu(\{ \xi_\beta \})\| \quad \text{(by the definition of } \mu \text{)}
\]

\[
= \|\mu_0(\{ \xi_\beta \})\| \vee \|\mu_1(\{ \xi_\beta \})\| \quad \text{(by (i) and (1.3))}
\]

\[
\leq \|\mu_0(Z)\| \vee \|\mu_1(Z_\beta)\| \quad \text{(by (iii))}
\]

\[
= \beta \vee \|\mu_1(Z_\beta)\|
\]

\[
\leq \xi_\beta,
\]

a contradiction. \(\square\)

In order to formulate Corollary 1.3, we recall the following definition, used in particular in [9]. It generalizes the classical definition of a weakly distributive homomorphism presented in [7].

Definition 1.2. Let \(S\) and \(T\) be join-semilattices, let \(a \in S\). A join-homomorphism \(\mu: S \to T\) is **weakly distributive** at \(a\), if for all \(b_0, b_1 \in T\) such that \(\mu(a) = b_0 \lor b_1\), there are \(a_0, a_1 \in S\) such that \(a = a_0 \lor a_1\) and \(\mu(a_\ell) \leq b_\ell\) for all \(\ell < 2\).
Corollary 1.3. Let S be a $\{\lor, 0\}$-semilattice that is not a lattice. There exist a Boolean algebra B and a $\{\lor, 0\}$-homomorphism $\varphi : \text{Con}_c B \to S$ such that there are no lattice L, no lattice homomorphism $f : B \to L$ and no $\{\lor, 0\}$-homomorphism $\alpha : \text{Con}_c L \to S$ that satisfy the following properties:

(i) α is weakly distributive at $\Theta_L(f(0_B), f(1_B))$.

(ii) $\varphi = \alpha \circ \text{Con}_c f$.

Proof. By assumption, there exist $a_0, a_1 \in S$ such that $Q = (a_0] \cap (a_1]$ has no largest element. We consider B, μ as in Lemma 1.1. Since the lattice B is Boolean, the rule $x \mapsto \Theta_B(0_B, x)$ defines an isomorphism $\pi : B \to \text{Con}_c B$. We put $\varphi = \mu \circ \pi^{-1}$.

So suppose that L, f, and α are as above. Observe that $\alpha \Theta_L(f(0_B), f(1_B)) = \alpha \circ (\text{Con}_c f)(\Theta_B(0_B, 1_B)) = \varphi \Theta_B(0_B, 1_B) = \mu(1_B) = a_0 \lor a_1$, thus, since α is weakly distributive at $\Theta_L(f(0_B), f(1_B))$, there are $\Psi_0, \Psi_1 \in \text{Con}_c L$ such that $\Psi_0 \lor \Psi_1 = \Theta_L(f(0_B), f(1_B))$ and $\alpha(\Psi_\ell) \leq a_\ell$, for all $\ell < 2$. Thus there are positive integers n and a decomposition

$$f(0_B) = t_0 \leq t_1 \leq \cdots \leq t_{2n} = f(1_B) \quad (1.4)$$

in L such that the relations

$$t_{2i} \equiv t_{2i+1} \pmod{\Psi_0},$$

$$t_{2i+1} \equiv t_{2i+2} \pmod{\Psi_1}$$

hold for all $i < n$. For $x \in B$, we put

$$\mu_0(x) = \bigvee_{i < n} \alpha \Theta_L(t_{2i} \land f(x), t_{2i+1} \land f(x)),$$

$$\mu_1(x) = \bigvee_{i < n} \alpha \Theta_L(t_{2i+1} \land f(x), t_{2i+2} \land f(x)).$$

We verify that conditions (i)–(iii) of Lemma 1.1 are satisfied, thus causing a contradiction.

Condition (i). For $x \in B$, we get

$$\mu_0(x) \lor \mu_1(x) = \bigvee_{i < 2n} \alpha \Theta_L(t_i \land f(x), t_{i+1} \land f(x))$$

$$= \alpha \Theta_L(f(0_B) \land f(x), f(1_B) \land f(x)) \quad \text{(by (1.4))}$$

$$= \alpha \Theta_L(f(0_B), f(x))$$

$$= \varphi(\Theta_B(0, x))$$

$$= \mu(x).$$

Condition (ii). For $x \leq y$ and $i < n$, the relation

$$\Theta_L(t_{2i} \land f(x), t_{2i+1} \land f(x)) \leq \Theta_L(t_{2i} \land f(y), t_{2i+1} \land f(y))$$

holds (because $f(x) \leq f(y)$), thus $\mu_0(x) \leq \mu_0(y)$. So μ_0 is order-preserving. The proof that μ_1 is order-preserving is similar.

Condition (iii). For $i < n$, $\Theta_L(t_{2i}, t_{2i+1}) \subseteq \Psi_0$, thus $\alpha \Theta_L(t_{2i}, t_{2i+1}) \leq \alpha(\Psi_0) \leq a_0$, whence $\mu_0(1) = \bigvee_{i < n} \alpha \Theta_L(t_{2i}, t_{2i+1}) \leq a_0$. Similarly, $\mu_1(1) \leq a_1$.

This contradicts, by Lemma 1.1, the existence of L, f, and α. \qed
Theorem A. Let S be a distributive $\{\lor, 0\}$-semilattice. Then the following are equivalent:

(i) For any lattice K and any $\{\lor, 0\}$-homomorphism $\varphi: \text{Con}_c K \to S$, there are a lattice L, a lattice homomorphism $f: K \to L$, and an isomorphism $\alpha: \text{Con}_c L \to S$ such that $\varphi = \alpha \circ \text{Con}_c f$.

(ii) S is a lattice.

Proof. (ii)\Rightarrow(i) follows from Theorem C in [10].

(i)\Rightarrow(ii) is a particular case of Corollary 1.3. □

With the terminology mentioned in the Introduction, this proves that 1-CLP holds at S iff S is a lattice, for any distributive $\{\lor, 0\}$-semilattice.

We also mention the following immediate consequence of Corollary 1.3, that solves (positively) the problem, stated by Dobbertin in [2], whether “strongly measurable semilattices are lattices”:

Corollary 1.4. Let S be a distributive $\{\lor, 0\}$-semilattice. Then the following are equivalent:

(i) For any Boolean algebra B, any $\{\lor, 0\}$-homomorphism $\mu: B \to S$, and any $a_0, a_1 \in S$ such that $\mu(1_B) = a_0 \lor a_1$, there are $\{\lor, 0\}$-homomorphisms $\mu_0, \mu_1: B \to S$ such that $\mu = \mu_0 \lor \mu_1$ and $\mu_\ell(1_B) = a_\ell$, for all $\ell < 2$.

(ii) S is a lattice.

Proof. (ii)\Rightarrow(i) is proved in Corollary 10 of [1], see also [2].

(i)\Rightarrow(ii) follows immediately from Corollary 1.3. □

2. A counterexample of size \aleph_1

Throughout this section, we shall denote by D the $\{\lor, 0\}$-semilattice defined as $D = \omega \cup \{a_0, a_1, \infty\}$, with ω a $\{\lor, 0\}$-subsemilattice of D, $\omega < a_\ell < \infty$ for all $\ell < 2$, and $\infty = a_0 \lor a_1$, see Figure 1.

![Figure 1. The semilattice D](image)

Now we shall construct a Boolean algebra B. By Cantor’s Theorem, $\aleph_1 \leq 2^{\aleph_0}$, thus there exists a one-to-one map $f: \omega_1 \to \mathcal{P}(\omega)$ (where $\mathcal{P}(\omega)$ denotes the powerset of ω). We define a map $g: \omega_1 \times \omega_1 \to \omega$ by the rule

$$g(\xi, \eta) = \begin{cases} \text{least } n < \omega \text{ such that } f(\xi) \cap (n + 1) \neq f(\eta) \cap (n + 1), & \text{if } \xi \neq \eta, \\ 0, & \text{if } \xi = \eta. \end{cases}$$
Lemma 2.1. Let $n < \omega$, let X be a subset of ω_1. If $g(\xi, \eta) < n$ for all $\xi, \eta \in X$, then $|X| \leq 2^n$.

Proof. Let p be the map from X to $\mathcal{P}(n)$ defined by the rule

$$p(\xi) = f(\xi) \cap n, \quad \text{for all } \xi \in X.$$

(We identify n with $\{0, 1, \ldots, n - 1\}$.) If $|X| > 2^n$, then there are $\xi, \eta \in X$ such that $\xi \neq \eta$ and $p(\xi) = p(\eta)$. Hence $g(\xi, \eta) \geq n$, by the definition of g, a contradiction.

Definition 2.2. We denote by B the Boolean algebra defined by generators $u_{0,\xi}$ and $u_{1,\xi}$, for $\xi < \omega_1$, and v_n, for $n < \omega$, and the following relations:

$$u_{0,\xi} \land u_{1,\xi} \leq v_{g(\xi, \eta)}, \quad \text{for all } \xi, \eta < \omega_1.$$

(2.1)

Furthermore, we put $w_n = \bigvee_{k \leq n} v_k$, for all $n < \omega$.

Lemma 2.3. $u_{0,\xi} \land u_{1,\eta} \leq w_n$ iff $g(\xi, \eta) \leq n$, for all $\xi, \eta < \omega_1$ and all $n < \omega$.

Proof. If $g(\xi, \eta) \leq n$, then $u_{0,\xi} \land u_{1,\eta} \leq w_n$ by (2.1).

Conversely, suppose that $u_{0,\xi} \land u_{1,\eta} \leq w_n$. We define elements $u_{0,\xi}', u_{1,\eta}',$ and v_k of the two-element Boolean algebra 2, for $\xi', \eta' < \omega_1$ and $k < \omega$, as follows:

$$u_{0,\xi}' = u_{1,\eta}' = 1; \quad (2.2)$$

$$u_{0,\xi}' = 0, \quad \text{for all } \xi' < \omega_1 \text{ such that } \xi' \neq \xi; \quad (2.3)$$

$$u_{1,\eta}' = 0, \quad \text{for all } \eta' < \omega_1 \text{ such that } \eta' \neq \eta; \quad (2.4)$$

$$v_{g(\xi, \eta)} = 1; \quad (2.5)$$

$$v_k = 0, \quad \text{for all } k < \omega \text{ such that } k \neq g(\xi, \eta). \quad (2.6)$$

Let $\xi', \eta' < \omega_1$. If $\xi' = \xi$ and $\eta' = \eta$, then $u_{0,\xi}' \land u_{1,\eta}' = 1 - v_{g(\xi, \eta)}$. Otherwise, $u_{0,\xi}' \land u_{1,\eta}' = 0 \leq v_{g(\xi', \eta')}$. So the elements $u_{0,\xi}', u_{1,\eta}',$ and v_k, for $\xi', \eta' < \omega_1$ and $k < \omega$, verify the inequalities (2.1). Therefore, there exists a homomorphism of Boolean algebras $\varphi: B \to 2$ such that

$$\varphi(u_{\ell,\xi'}) = u_{0,\xi}', \quad \text{for all } \xi' < \omega_1 \text{ and } \ell < 2,$$

$$\varphi(v_k) = v_k, \quad \text{for all } k < \omega.$$

In particular, by assumption, $u_{0,\xi}' \land u_{1,\eta}' \leq \bigvee_{k \leq n} v_k$, that is, $\bigvee_{k \leq n} v_k = 1$. Therefore, by (2.6), $g(\xi, \eta) \leq n$.

Theorem B. There exist a Boolean algebra B of size \mathfrak{c} and a $\{\lor, 0\}$-homomorphism $\mu: B \to D$ such that the following holds:

(a) $\mu(1_B) = \infty$;

(b) there are no maps $\mu_0, \mu_1: B \to D$ that satisfy the following properties:

(i) $\mu(x) = \mu_0(x) \lor \mu_1(x)$, for all $x \in B$,

(ii) μ_0 and μ_1 are order-preserving,

(iii) $\mu_\ell(1) \leq a_\ell$, for all $\ell < 2$.

Proof. Let B be the Boolean algebra constructed in Definition 2.2. It is clear that $|B| = \mathfrak{c}$. We define ideals I_0, I_1, and I of B, as follows:

$I = \text{ideal of } B \text{ generated by } \{u_{\ell,\xi} \mid \xi < \omega_1\} \cup \{v_k \mid k < \omega\}$, for all $\ell < 2$,

$I = \text{ideal of } B \text{ generated by } \{v_k \mid k < \omega\}$.

Problem 1. Let one-to-one every lattice $K \bigcup$ properties:

\[
\{ \bigvee \mu \}
\]

Claim 1.

Proof. As in the proof of Corollary 1.3.

(i) is trivial.

Proof of Claim. (i) is trivial.

(ii) Let $\xi < \omega$. Then

\[
\mu_1(u_{0,\xi}) \leq \mu(u_{0,\xi}) \leq a_0
\]

(by assumption (i))

while also $\mu_1(u_{0,\xi}) \leq a_1$ by assumptions (ii) and (iii). Therefore, $\mu_1(u_{0,\xi}) \leq n$ for some $n < \omega$. This proves that $\omega_1 = \bigcup_{n < \omega} X_n$. The proof that $\omega_1 = \bigcup_{n < \omega} Y_n$ is similar. □ Claim 1.

Now we put $Z_n = X_n \cap Y_n$, for all $n < \omega$. It follows from Claim 1 that $\omega_1 = \bigcup_{n < \omega} Z_n$. In particular, one of the Z_n should be infinite (and even uncountable). We fix such an n. For all $\xi, \eta \in Z_n$, $\mu_1(u_{0,\xi}) \leq n$ and $\mu_0(u_{1,\eta}) \leq n$, thus, by assumptions (i) and (ii), $\mu(u_{0,\xi} \land u_{1,\eta}) \leq n$, that is, $u_{0,\xi} \land u_{1,\eta} \leq w_n$. Thus, by Lemma 2.3, $g(\xi, \eta) \leq n$. Hence, by Lemma 2.1, Z_n is finite, a contradiction. □

Corollary 2.4. There exist a Boolean algebra B of size \aleph_1 and a $\{ \lor, 0 \}$-homomorphism $\varphi: \text{Con}_c B \to D$ such that there are no lattice L, no lattice homomorphism $f: B \to L$ and no $\{ \lor, 0 \}$-homomorphism $\alpha: \text{Con}_c L \to D$ that satisfy the following properties:

(i) α is weakly distributive at $\Theta_L(f(0_B), f(1_B))$.

(ii) $\varphi = \alpha \circ \text{Con}_c f$.

Proof. As in the proof of Corollary 1.3. □

3. Open problems

The main result of Theorem A states that the possibility, for a given distributive $\{ \lor, 0 \}$-semilattice S, to lift every $\{ \lor, 0 \}$-homomorphism $\text{Con}_c K \to S$ for any lattice K is equivalent to S being a lattice. The maps considered in the proof of this result are not one-to-one. This leaves open the following question:

Problem 1. Let S be a distributive $\{ \lor, 0 \}$-semilattice. When is it possible to lift every one-to-one $\{ \lor, 0 \}$-homomorphism $\varphi: \text{Con}_c K \to S$, for any lattice K?
By Theorem C of [10], the condition that S be a lattice is sufficient. Is this condition also necessary?

Problem 2. Let K be a lattice, let S be a distributive $\{\lor, 0\}$-semilattice, let $\varphi : \operatorname{Con}c K \to S$ be a distributive $\{\lor, 0\}$-homomorphism. Can φ be lifted?

Recall (see [7]) that for $\{\lor, 0\}$-semilattices S and T, a homomorphism $\varphi : S \to T$ is distributive, if φ is surjective and $\ker \varphi$ is a directed union of the form $\bigcup_{i \in I} \ker s_i$, where s_i is a closure operator on S for all i. The result of Corollary 1.3 is of no help for solving Problem 2, because the contradiction follows there from the failure of α to be (weakly) distributive.

Problem 3. Let K be a countable lattice, let S be a countable distributive $\{\lor, 0\}$-semilattice. Can every $\{\lor, 0\}$-homomorphism from $\operatorname{Con}c K$ to S be lifted?

For countable S, not every $\{\lor, 0\}$-homomorphism from $\operatorname{Con}c K$ to S can be lifted as a rule, even for K of size \aleph_1 (this follows from Corollary 2.4). However, the problem is still open for countable K.

Our last problem is more oriented to axiomatic set theory. It originates in the observation that the construction of the Boolean algebra of the proof of Theorem A does not rely on the Axiom of Choice (but it has size the continuum), while the construction of the Boolean algebra of the proof of Theorem B does not rely on the Continuum Hypothesis (but it relies on the Axiom of Choice, in the form of the existence of a one-to-one map from ω_1 into $\mathcal{P}(\omega)$).

Problem 4. Can one prove Theorem B by using neither the Axiom of Choice nor the Continuum Hypothesis?

References

[10] , Forcing extensions of partial lattices, manuscript.