Obscured High Mass X-Ray Binaries and Supergiant Fast X-ray Transients: Infrared Observations of INTEGRAL Sources
Sylvain Chaty

To cite this version:
Sylvain Chaty. Obscured High Mass X-Ray Binaries and Supergiant Fast X-ray Transients: Infrared Observations of INTEGRAL Sources. 2008. hal-00278294

HAL Id: hal-00278294
https://hal.archives-ouvertes.fr/hal-00278294
Submitted on 10 May 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Obscured High Mass X-Ray Binaries and Supergiant Fast X-ray Transients: Infrared Observations of INTEGRAL Sources

S. Chaty

Laboratoire AIM, CEA/DSM - CNRS - Université Paris Diderot, IRFU/Service d’Astrophysique, Bât. 709, CEA-Saclay, FR-91191 Gif-sur-Yvette Cedex, France

Abstract. A new type of high-energy binary system has been revealed by the INTEGRAL satellite. These sources are being unveiled by means of multi-wavelength optical, near- and mid-infrared observations. Among these sources, two distinct classes are appearing: the first one is constituted of intrinsically obscured high-energy sources, of which IGR J16318-4848 seems to be the most extreme example. The second one is populated by the so-called supergiant fast X-ray transients, with IGR J17544-2619 being the archetype. We report here on multi-wavelength optical to mid-infrared observations of a sample constituted of 21 INTEGRAL sources. We show that in the case of the obscured sources our observations suggest the presence of absorbing material (dust and/or cold gas) enshrouding the whole binary system. We finally discuss the nature of these two different types of sources, in the context of high energy binary systems.

1. Introduction

The INTEGRAL observatory has performed a detailed survey of the Galactic plane. The ISGRI detector on the IBIS imager has discovered many new high energy sources, most of which have been reported in Bird et al. (2007). The most important result of INTEGRAL to date is the discovery of many new high energy sources – concentrated in the Galactic plane, and in the Norma arm (see e.g. Chaty & Filliatre 2005) – exhibiting common characteristics which previously had rarely been seen. Many of them are high mass X-ray binaries (HMXBs) hosting a neutron star orbiting around an O/B companion, in most cases a supergiant star. They divide into two classes: some of the new sources are very obscured, exhibiting a huge intrinsic and local extinction, and the others are HMXBs hosting a supergiant star and exhibiting fast and transient outbursts – an unusual characteristic among HMXBs. These are therefore called Supergiant Fast X-ray Transients (SFXTs, Negueruela et al. 2006; Sguera et al. 2005). High-energy observations are not sufficient to reveal the nature of the newly discovered sources, since the INTEGRAL localisation (∼ 2′) is not accurate enough to unambiguously pinpoint the source at other wavelengths. Once X-ray satellites such as XMM-Newton, Chandra, or Swift provide an arcsecond position, the hunt for the optical counterpart of the source is open. However, the high level of absorption towards the galactic plane makes the near-infrared (NIR) domain more efficient for identifying these sources. We first report on multi-wavelength observations of two sources, one belonging to each class described above, and we then give general results on INTEGRAL sources, before discussing them and concluding.

1See also http://isdc.unige.ch/~rodrigue/html/igrsources.html
2. Observations and Results

The multiwavelength observations were performed at the European Southern Observatory (ESO), using Target of Opportunity (ToO) and Visitor modes, in 3 domains: optical (400 – 800 nm) with EMMI, NIR (1 – 2.5 µm) with SOFI, both instruments at the focus of the 3.5m New Technology Telescope (NTT) at La Silla, and mid-infrared (MIR, 5 – 20 µm) with the VISIR instrument on Melipal, the 8m Unit Telescope 3 (UT3) of the Very Large Telescope (VLT) at Paranal (Chile). With these observations we performed accurate astrometry, photometry and spectroscopy on a sample constituted of 21 INTEGRAL sources, aiming at identifying their counterparts and the nature of the companion star, deriving their distance, and finally characterising the presence and temperature of their circumstellar medium.

2.1. IGR J16318-4848: Extreme among the Obscured High-Energy Sources

IGR J16318-4848 was the first source discovered by IBIS/ISGRI on INTEGRAL on 29 January 2003 ([Courvoisier et al. 2003]). XMM-Newton observations revealed an unusually high level of absorption: \(N_H \approx 2 \times 10^{24} \text{ cm}^{-2} \) ([Matt & Guainazzi 2003]). The accurate localisation by XMM-Newton allowed Filliatre & Chaty (2004) to rapidly trigger ToO photometric and spectroscopic observations in optical/NIR, leading to the discovery of the optical counterpart and to the confirmation of the NIR one ([Walter et al. 2003]). The extremely bright NIR source (\(K_s = 7.20 \text{ magnitudes} \)) exhibits an unusually strong intrinsic absorption in the optical (\(A_v = 17.4 \text{ magnitudes} \)), much stronger than the absorption along the line of sight (\(A_v = 11.4 \text{ magnitudes} \)), but still 100 times lower than the absorption in X-rays. This led Filliatre & Chaty (2004) to suggest that the material absorbing in X-rays was concentrated around the compact object, while the material absorbing in optical/NIR was enshrouding the whole system. The NIR spectroscopy revealed an unusual spectrum, with many strong emission lines, originating from a highly complex and stratified circumstellar environment of various densities and temperatures, suggesting the presence of an envelope and strong stellar outflow responsible for the absorption. Only luminous early-type stars such as su-
pergiant sgB[e] show such extreme environments, and Filliatre & Chaty (2004) concluded that IGR J16318-4848 was an unusual HMXB. By combining these optical and NIR data with MIR observations, and fitting these observations with a model of a sgB[e] companion star, Rahoui et al. (2008) showed that IGR J16318-4848 exhibits a MIR excess (see Figure 1, left panel), that they interpreted as being due to the strong stellar outflow emanating from the sgB[e] companion star. They found that the companion star had a temperature of \(T = 22200 \text{ K} \) and radius \(R_\star = 20.4 R_\odot \), and an extra component of temperature \(T = 1100 \text{ K} \) and radius \(R = 10 R_\star \), with \(A_v = 17.6 \) magnitudes. By taking a typical orbital period of 10 days and a mass of the companion star of 20 \(M_\odot \), we obtain an orbital separation of 50 \(R_\odot \), smaller than the extension of the extra component, suggesting that this component enshrouds the whole binary system, as would do a cocoon of gas/dust (see Figure 2, left panel). In summary, IGR J16318-4848 is an HMXB system, located at a distance between 1 and 6 kpc, hosting a compact object (probably a neutron star) and a sgB[e] star (it is therefore the second HMXB with a sgB[e] star, after CI Cam; Clark et al. 1999). The most striking facts are (i) the compact object seems to be surrounded by absorbing material and (ii) the whole binary system seems to be surrounded by a dense and absorbing circumstellar
material envelope or cocoon, made of cold gas and/or dust. This source exhibits such extreme characteristics that it might not be fully representative of the other obscured sources.

2.2. IGR J17544-2619: Archetype of the Supergiant Fast X-ray Transients

SFXTs constitute a new class of sources identified among the recently discovered INTEGRAL sources, exhibiting these common characteristics: rapid outbursts lasting only hours, a faint quiescent emission, high energy spectra requiring a BH or NS accretor, and O/B supergiant companion stars. IGR J17544-2619, a bright recurrent transient X-ray source discovered by INTEGRAL on 17 September 2003 (Sunyaev et al. 2003), seems to be their archetype. Observations with XMM-Newton have shown that it exhibits a very hard X-ray spectrum, and a relatively low intrinsic absorption (10^{22} \text{ cm}^{-2}, González-Riestra et al. 2004). Its bursts last for hours, and in between bursts it exhibits long quiescent periods, which can reach more than 70 days (Zurita Heras & Chaty, in prep.). The compact object is probably a neutron star (in’t Zand 2005). Pellizza et al. (2006) managed to get optical/NIR ToO observations only one day after the discovery of this source. They identified a likely counterpart inside the XMM-Newton error circle, confirmed by an accurate localization from Chandra. Spectroscopy showed that the companion star was a blue supergiant of spectral type O9Ib, with a mass of 25 – 28 M\odot and temperature of T \sim 31000 K; the system is therefore an HMXB (Pellizza et al. 2006). Rahoui et al. (2008) combined optical, NIR and MIR observations and showed that they could accurately fit the observations with a model of an O9Ib star, with temperature T = 31000 K and radius R_\star = 21.9 R_\odot. They derived an absorption A_v = 6.1 magnitudes and a distance D = 3.6 kpc. The source does not exhibit any MIR excess (see Figure 1, right panel, Rahoui et al. 2008). In summary, IGR J17544-2619 is an HMXB at a distance of \sim 3.6 kpc, constituted of an O9Ib supergiant, with a mild stellar wind and a compact object which is probably a neutron star, without any MIR excess.

3. General Results on INTEGRAL Sources and Discussion

To better characterize this population, Chaty et al. (2008) and Rahoui et al. (2008) studied a sample of 21 INTEGRAL sources belonging to both classes described above. Some results are reported in Table 1. The optical/NIR study, through accurate astrometry, photometry, and spectroscopy, allowed Chaty et al. (2008) to identify the counterparts, and to show that most of these systems are HMXBs containing massive and luminous early-type companion stars. By combining MIR photometry, and fitting their optical–MIR spectral energy distributions, Rahoui et al. (2008) showed that (i) most of these sources exhibit an intrinsic absorption and (ii) three of them exhibit a MIR excess, which they suggest is due to the presence of a cocoon of dust and/or cold gas enshrouding the whole binary system (see also Chaty & Rahoui 2006). Nearly all the INTEGRAL HMXBs for which both spin and orbital periods have been measured are located in the upper part of the Corbet diagram (Corbet 1986). They are wind accretors, typical of supergiant HMXBs, and X-ray pulsars exhibiting longer pulsation periods and higher absorption (by a factor \sim 4) as compared to the average of previously known HMXBs (Bodaghee et al. 2007). This extra absorption might be due to the presence of a cocoon of dust/cold gas enshrouding the whole binary system in the case of the obscured sources. The intrinsic properties of the supergiant companion star could therefore explain some properties of these sources. However, differences exist between obscured sources and SFXTs, which might be explained by the geometry of the binary systems, and/or the extension of the wind/cocoon enshrouding either the companion star or the whole system. Indeed, obscured sources are naturally explained by a compact object orbiting inside a cocoon of dust and/or cold gas, while the fast X-ray behaviour of SFXTs needs a clumpy
Table 1. Results on the sample of *INTEGRAL* sources; more details are given in Chaty et al. (2008). We indicate respectively the name of the sources, the region of the Galaxy in the direction which they are located, their spin and orbital period, the interstellar, optical-IR, and X-ray derived column density respectively (in units of 10^{22} cm$^{-2}$), their spectral type, nature and reference. Type abbreviations: AGN = Active Galactic Nucleus, B = Burster, BHC = Black Hole Candidate, CV = Cataclysmic Variable, D = Dipping source, H = High Mass X-ray Binary system, IP = Intermediate polar, L = Low Mass X-ray Binary, O = Obscured source, P = Persistent source, S = Supergiant Fast X-ray Transient, T: Transient source, XP: X-ray Pulsar. Reference are: c: Chaty et al. (2008), co: Combi et al. (2006), f: Filliatre & Chaty (2004), h: Hannikainen et al. (2007), m1: Masetti et al. (2004) m2: Masetti et al. (2006) n1: Negueruela et al. (2005), n2: Negueruela et al. (2006), n3: Nespoli et al. (2007), p: Pellizza et al. (2006), t: Tomsick et al. (2006).

<table>
<thead>
<tr>
<th>Source</th>
<th>Reg</th>
<th>P$_s$(s)</th>
<th>P$_o$(d)</th>
<th>N$_{hi}$</th>
<th>N$_{IR}$</th>
<th>N$_{X}$</th>
<th>SpT</th>
<th>Type</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGR J16167-4957</td>
<td>No</td>
<td></td>
<td></td>
<td>2.2</td>
<td>0.23</td>
<td>0.5</td>
<td>A0</td>
<td>CV/IP</td>
<td>t,m2</td>
</tr>
<tr>
<td>IGR J16195-4945</td>
<td>No</td>
<td></td>
<td></td>
<td>2.18</td>
<td>2.9</td>
<td>7</td>
<td>OB</td>
<td>H?/S?/O</td>
<td>t</td>
</tr>
<tr>
<td>IGR J16207-5129</td>
<td>No</td>
<td>1.73</td>
<td>2.10</td>
<td></td>
<td></td>
<td></td>
<td>BOI</td>
<td>H/O</td>
<td>t,m2</td>
</tr>
<tr>
<td>IGR J16318-4848</td>
<td>No</td>
<td></td>
<td></td>
<td>2.06</td>
<td>3.3</td>
<td>200</td>
<td>sgB[e]</td>
<td>H/O/P</td>
<td>f</td>
</tr>
<tr>
<td>IGR J16320-4751</td>
<td>No</td>
<td>1250</td>
<td>8.96(1)</td>
<td>2.14</td>
<td>6.6</td>
<td>21</td>
<td>sgOB</td>
<td>H/XP/T/O</td>
<td>c</td>
</tr>
<tr>
<td>IGR J16358-4726</td>
<td>No</td>
<td>5880</td>
<td>2.20</td>
<td>3.3</td>
<td>33</td>
<td></td>
<td>sgB[e]</td>
<td>H/XP/T/O</td>
<td>c</td>
</tr>
<tr>
<td>IGR J16393-4643</td>
<td>No</td>
<td>912</td>
<td>3.6875(6)</td>
<td>2.19</td>
<td>2.19</td>
<td>24.98</td>
<td>BIV-V</td>
<td>H/XP/T</td>
<td>c</td>
</tr>
<tr>
<td>IGR J16418-4532</td>
<td>No</td>
<td>1246</td>
<td>3.753(4)</td>
<td>1.88</td>
<td>2.7</td>
<td>10</td>
<td>sgOB?</td>
<td>H/XP/S</td>
<td>c</td>
</tr>
<tr>
<td>IGR J16466-4507</td>
<td>No</td>
<td>228</td>
<td>2.12</td>
<td>1.1</td>
<td>60</td>
<td>B0.5I</td>
<td>H/S</td>
<td>n1</td>
<td></td>
</tr>
<tr>
<td>IGR J16479-4514</td>
<td>No</td>
<td></td>
<td></td>
<td>2.14</td>
<td>3.4</td>
<td>7.7</td>
<td>sgOB</td>
<td>H/S?</td>
<td>c</td>
</tr>
<tr>
<td>IGR J16558-5203</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Sey1.2</td>
<td>AGN</td>
</tr>
<tr>
<td>IGR J17094-4614</td>
<td>GC</td>
<td></td>
<td></td>
<td>0.77</td>
<td>1.03</td>
<td>1.0</td>
<td>L</td>
<td>L/BHC</td>
<td>c</td>
</tr>
<tr>
<td>IGR J17195-4110</td>
<td>GC</td>
<td></td>
<td></td>
<td>0.77</td>
<td>0.08</td>
<td></td>
<td>CV/IP</td>
<td>t,m2</td>
<td></td>
</tr>
<tr>
<td>IGR J17252-5616</td>
<td>GC</td>
<td>413</td>
<td>9.74(4)</td>
<td>1.56</td>
<td>3.8</td>
<td>15</td>
<td>sgOB</td>
<td>H/XP/O</td>
<td>c</td>
</tr>
<tr>
<td>IGR J17391-3011</td>
<td>GC</td>
<td></td>
<td></td>
<td>1.37</td>
<td>1.7</td>
<td>29.98</td>
<td>O8Iab(f)</td>
<td>H/S/O</td>
<td>n2</td>
</tr>
<tr>
<td>IGR J17544-2619</td>
<td>GC</td>
<td>≥70?</td>
<td></td>
<td>1.44</td>
<td>1.1</td>
<td>1.4</td>
<td>O9Ib</td>
<td>S</td>
<td>p</td>
</tr>
<tr>
<td>IGR J17557-2201</td>
<td>GC</td>
<td></td>
<td></td>
<td>1.17</td>
<td>2.84</td>
<td>4.50</td>
<td>L</td>
<td>L/B/D/P</td>
<td>c</td>
</tr>
<tr>
<td>IGR J18027-4455</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Sey1</td>
<td>AGN</td>
</tr>
<tr>
<td>IGR J18027-4016</td>
<td>GC</td>
<td>139</td>
<td>4.5696(9)</td>
<td>1.04</td>
<td>1.53</td>
<td>9.05</td>
<td>sgOB</td>
<td>H/XP/T</td>
<td>c</td>
</tr>
<tr>
<td>IGR J18483-4611</td>
<td>GC</td>
<td>21.05</td>
<td>18.55</td>
<td>1.62</td>
<td>2.45</td>
<td>27.69</td>
<td>sgOB?</td>
<td>H/XP</td>
<td>c</td>
</tr>
<tr>
<td>IGR J19144-0051</td>
<td>GC</td>
<td>13.558(4)</td>
<td>1.68</td>
<td>2.9</td>
<td>6</td>
<td>sgB0.5I</td>
<td>H/O</td>
<td>n3,h</td>
<td></td>
</tr>
</tbody>
</table>

Chaty: Infrared Observations of *INTEGRAL* Sources
stellar wind environment, to account for fast and transient accretion phenomena (see Figure 2, left and right panels respectively, and Chaty & Rahoui 2006). These results show the existence in our Galaxy of a dominant population of a previously rare class of high-energy binary systems: supergiant HMXBs, some exhibiting a high intrinsic absorption (Chaty et al. 2008; Rahoui et al. 2008). A careful study of this population, recently revealed by INTEGRAL, will provide a better understanding of the formation and evolution of short-living HMXBs. Furthermore, stellar population models will henceforth have to take these objects into account, to assess a realistic number of high-energy binary systems in our Galaxy. Our final word is that only a multiwavelength study reveal the nature of these obscured high-energy sources.

Acknowledgments. SC would like to thank the organisers for their invitation to report on these exciting results about newly discovered INTEGRAL sources, and for organising an interesting workshop, in a nice place, fruitful for scientific discussions and new ideas to arise.

References

Chaty; Infrared Observations of INTEGRAL Sources

