Prolate Spheroidal Wave Functions In q-Fourier Analysis
Lazhar Dhaouadi

To cite this version:
Lazhar Dhaouadi. Prolate Spheroidal Wave Functions In q-Fourier Analysis. 2008. <hal-00163624v2>

HAL Id: hal-00163624
https://hal.archives-ouvertes.fr/hal-00163624v2
Submitted on 9 Apr 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Prolate Spheroidal Wave Functions In
\(q\)-Fourier Analysis

Lazhar Dhaouadi
Mathematics Department
Institut Préparatoire aux Études d’Ingénieur de Bizerte
Route Menzel Abderrahmene Bizerte
Zarzouna, 7021, Tunisia
lazhardhaouadi@yahoo.fr

Abstract

In this paper we introduce a new version of the Prolate spheroidal wave function using standard methods of \(q\)-calculus and we formulate some of its properties. As application we give a \(q\)-sampling theorem which extrapolates functions defined on \(q^n\) and \(0 < q < 1\).

Keywords : \(q\)-Prolate spheroidal wave function, \(q\)-sampling,

2000 AMS Mathematics Subject Classification—Primary 33D15,47A05.

1 Introduction

The prolate spheroidal wave functions, which are a special case of the spheroidal wave functions, possess a very surprising and unique property [7]. They are an orthogonal basis of both \(L^2(-1,1)\) and the Paley-Wiener space of bandlimited functions. They also satisfy a discrete orthogonality relation. No other system of classical orthogonal functions is known to possess this strange property. We prove that there are new systems possessing this property in \(q\)-Fourier analysis. In the following we discuss some properties of the \(q\)-Prolate spheroidal wave function using new developments and technics in \(q\)-Fourier analysis. In particular we prove that these functions forms an orthogonal basis of the \(q\)-Paley-Wiener space \(PW_{q,a}^v\). Finally and as application we give a constructive \(q\)-sampling formula having as sampling points \(q^n\) where \(n \in \mathbb{Z}\). In the end, we cit the reference [4], where the reproducing kernel for the \(q\)-Paley-Wiener space was already discussed, and the explicit formula for the kernel was given, similar to the formula in Remark [3]. However, the paper [4] proceeds with a \(q\)-sampling theorem which
extrapolates functions defined on the zeros of the q-Bessel function. These zeros are given in the following form

$$\{q^{-n+\epsilon_n}\}_{n\in\mathbb{N}},$$

where $0 < \epsilon_n < 1$, but it is not explicitly evaluated.

2 Preliminary

Throughout this paper we consider $0 < q < 1$ and we adopt the standard conventional notations of [3]. We put

$$\mathbb{R}_q = \{\pm q^n, \; n \in \mathbb{Z}\}, \quad \mathbb{R}_q^+ = \{q^n, \; n \in \mathbb{Z}\},$$

and if $a = q^n$, $n \in \mathbb{Z}$ put

$$[0, a]_q = \{q^s, \; s \in \mathbb{Z}, \; s \geq n\}.$$

For complex z, let

$$ (z; q)_0 = 1, \quad (z; q)_n = \prod_{i=0}^{n-1} (1 - \frac{z}{q^i}), \quad n = 1\ldots\infty. $$

Jackson’s q-integral in the interval $[0, a]$ and in the interval $[0, \infty]$ are defined, respectively, by (see [3])

$$\int_0^a f(x) d_q x = (1 - q)a \sum_{n=0}^{\infty} q^n f(aq^n),$$

$$\int_0^\infty f(x) d_q x = (1 - q) \sum_{n=-\infty}^{\infty} q^n f(q^n).$$

For $v > -1$, let $L_{q,p,v}$ be the space of even functions f defined on \mathbb{R}_q such that

$$\|f\|_{q,p,v} = \left[\int_0^\infty |f(x)|^p x^{2v+1} d_q x \right]^{1/p} < \infty.$$

The set $L_{q,2,v}$ is an Hilbert space with the inner product

$$\langle f, g \rangle = \int_0^\infty f(t) g(t) t^{2v+1} d_q t.$$
We consider $L_{q,v,a}$ the space of function defined on $[0,a]_q$ which satisfies
\[
\int_0^a |f(x)|^2 x^{2v+1} d_q x < \infty,
\]
and $L_{v,a}^{q,v}$ the subspace of $L_{q,2,v}$ given by the natural embedding of $L_{q,v,a}$ in $L_{q,2,v}$.

The normalized Hahn-Exton q-Bessel function of order $v > -1$ (see [6]) is defined by
\[
j_v(z,q) = \sum_{n=0}^{\infty} (-1)^n \frac{q^{n(n+1)}}{(q,q)_n(q^{v+1},q)_n} z^{2n}.
\]
It is an entire analytic function in z.

Proposition 1 For $\Re(v) > -1$, $a > 0$ and $y,z \in \mathbb{C}\backslash \{0\}$ we have
\[
\int_0^a j_v(yt, q^2) j_v(zt, q^2) t^{2v+1} d_q t
= \frac{1 - q}{1 - q^{2v+2}} a^{2v+2} y^2 j_{v+1}(ay, q^2) j_v(az^{-1} q^{-1} y, q^2) - z^2 j_{v+1}(aq^{-1} y, q^2) j_v(az^{-1} q^{-1} y, q^2).
\]

Proof. See [5] (Proposition 1.3) ■

The following results in this section were proved in [2].

Proposition 2
\[
|j_v(q^n, q^2)| \leq \left(-q^2:q^2 \right)_\infty \left(-q^{2v+2}:q^2 \right)_\infty \left(q^{n(2v+1)} \right) \begin{cases} 1 & \text{if } n \geq 0 \\ q^{n^2+(2v+1)n} & \text{if } n < 0 \end{cases}.
\]

The q-Bessel Fourier transform $F_{q,v}$ introduced in [3,4] as follow
\[
F_{q,v} f(x) = c_{q,v} \int_0^\infty f(t) j_v(zt, q^2) t^{2v+1} d_q t,
\]
where
\[
c_{q,v} = \frac{1}{1 - q} \left(q^{2v+2}, q^2 \right)_\infty
\]
The q–Bessel translation operator is defined as follows:
\[
T_{q,v}^y f(y) = c_{q,v} \int_0^\infty F_{q,v}(f)(t) j_v(xt, q^2) j_v(yt, q^2) t^{2v+1} d_q t, \quad \forall x, y \in \mathbb{R}_q, \forall f \in L_{q,1,v},
\]
Recall that $T_{q,x}^v$ is said positive if $T_{q,x}^v f \geq 0$ for $f \geq 0$. In the following we tack $q \in Q_v$ where

$$Q_v = \{ q \in [0,1], \quad T_{q,x}^v \text{ is positive for all } x \in \mathbb{R} \}.$$

The q–convolution product of both functions $f, g \in L_{q,1,v}$ is defined by

$$f \ast_q g(x) = c_{q,v} \int_{0}^{\infty} T_{q,x}^v f(y) g(y) y^{2v+1} d_q y.$$

Theorem 1 The operator $F_{q,v}$ satisfying

1. For all functions $f \in L_{q,2,v}$, $F_{q,v}^2 f(x) = f(x)$, $\forall x \in \mathbb{R}_q$.
2. For all functions $f, g \in L_{q,2,v}$, $\langle F_{q,v} f, g \rangle = \langle f, F_{q,v} g \rangle$.
3. For all functions $f \in L_{q,2,v}$, $\| F_{q,v} f \|_{q,v,2} = \| f \|_{q,v,2}$.
4. For all functions $f, g \in L_{q,1,v}$,

$$F_{q,v} (f \ast_q g)(x) = F_{q,v} f(x) \times F_{q,v} g(x), \quad \forall x \in \mathbb{R}_q.$$

In the end we consider $PW_{q,a}^v$ the q-Paley Wiener space

$$PW_{q,a}^v = \left\{ f(x) = \int_{a}^{0} u(t) j_v(xt, q^2) t^{2v+1} d_q t, \quad u \in L_{q,a}^v \right\},$$

the set of q-bandlimited signal.

3 Main Results

We introduce the q-analogue of the Prolate Spheroidal Wave Functions ψ_i as the eigenfunction of the integral operator T_{a}^v acting on the Hilbert space $L_{q,v,a}$ as follows

$$T_{a}^v u(x) = c_{q,v} \int_{0}^{a} u(t) j_v(xt, q^2) t^{2v+1} d_q t,$$

then we have

$$T_{a}^v \psi_i = \lambda_i \psi_i.$$

It’s easy to see that the operator T_{a}^v is symmetric and compact

$$\int_{0}^{a} T_{a}^v u(t) w(t) t^{2v+1} d_q t = \int_{0}^{a} u(t) T_{a}^v w(t) t^{2v+1} d_q t,$$

then the sequence $\{ \psi_i \}_{i \in \mathbb{N}}$ form an orthogonal basis of the Hilbert space $L_{q,v,a}$ and any eigenvalue λ_i is real.
Proposition 3 The sequence of eigenvalue \(\{ \lambda_i \}_{i \in \mathbb{N}} \) satisfying
\[
\lambda_0^2 \geq \lambda_1^2 \geq \ldots > 0.
\]

Proof. The operator \(T_a^v \) is compact, then the spectrum is a countably infinite subset of \(\mathbb{R} \) (\(T_a^v \) is symmetric) which has 0 as its only limit point. If we denote by \(\Lambda = \{ \lambda_0, \lambda_1, \ldots \} \),
the spectrum of \(T_a^v \) then we can write
\[
|\lambda_0| \geq |\lambda_1| \geq \ldots \geq 0.
\]
To finish the proof, if suffice to prove that 0 \(\notin \) \(\Lambda \). In fact if \(T_a^v \psi = 0 \) then \(\mathcal{F}_{q,v} \psi \) is an entire function which vanishes on \([0, a]\). By the identity theorem for analytic functions, \(\mathcal{F}_{q,v} \psi = 0 \) everywhere and thus \(\psi = 0 \). ■

Remark 1 Consider the operator
\[
k_a^v = T_a^v \circ T_a^v,
\]
then \(K_a^v \) is an integral operator acting on the Hilbert space \(L_{q,v,a} \) as follows
\[
k_a^v u(x) = \int_0^a u(y)k(x, y)y^{2v+1} dq_y,
\]
where
\[
k(x, y) = c_{q,v}^2 \int_0^a j_v(xt, q^2)j_v(yt, q^2)t^{2v+1} q^{2v+1} dt.
\]
The function \(\psi_i \) is an eigenfunction of \(k_a^v \)
\[
k_a^v \psi_i = \lambda_i^2 \psi_i.
\]

Lemma 1 The function \(\psi_i \) initially defined on \(\mathbb{R}_q \) can be extended as an analytic function on \(\mathbb{C} \).

Proof. The result follows from the relation
\[
\psi_i(z) = \frac{1}{\lambda_i} c_{q,v} \int_0^a \psi_i(t)j_v(zt, q^2)t^{2v+1} dq_t,
\]
and the fact that \(j_v(., q^2) \) is an entire function. ■

Proposition 4 The function \(\psi_i \) belonging to the Paley-Wiener space \(PW_{q,a}^v \)
Proof. Let
\[\phi_i(x) = \frac{1}{\lambda_i} \psi_i(x) \chi_{[0,a]}(x), \]
then
\[\mathcal{F}_{q,v} \phi_i(x) = c_{q,v} \int_0^\infty \phi_i(t) j_v(xt, q^2 t^{2v+1} d_q t) \]
\[= \frac{c_{q,v}}{\lambda_i} \int_0^a \psi_i(t) j_v(xt, q^2 t^{2v+1} d_q t = \psi_i(x), \]
which implies that \(\psi_i \in PW_{q,a}^v \).

In the following we assume that
\[\| \psi_i \|^2_{q,2,v} = \langle \psi_i, \psi_i \rangle = 1. \]

Proposition 5 The sequence \(\{\psi_i\}_{i \in \mathbb{N}} \) form an orthonormal basis of \(PW_{q,a}^v \).

Proof. The \(q \)-Bessel Fourier transform
\[\mathcal{F}_{q,v} : L_{q,a}^v \rightarrow PW_{q,a}^v, \]
define an isomorphism, and the sequence \(\{\phi_i\}_{i \in \mathbb{N}} \) form an orthogonal basis of the Hilbert space \(L_{q,a}^v \), which lead to the result. \(\blacksquare \)

Proposition 6 Let
\[k_x : y \mapsto k(x, y), \]
then
\[f \in PW_{q,a}^v \iff f(x) = \langle f, k_x \rangle, \quad \forall x \in \mathbb{R}_q. \]

Proof. Let
\[\sigma_a(y) = \mathcal{F}_{q,v} \left(\chi_{[0,a]} \right)(x) = c_{q,v} \int_0^a j_v(ty, q^2 t^{2v+1} d_q t, \]
therefore
\[T_{q,v} \sigma_a(y) = c_{q,v} \int_0^a j_v(tx, q^2 t^{2v+1} d_q t = \frac{1}{c_{q,v}} k(x, y), \]
and then
\[f \in PW_{q,a}^v \iff \mathcal{F}_{q,v} f(x) = \mathcal{F}_{q,v} f(x) \chi_{[0,a]}(x) = \mathcal{F}_{q,v} f(x) \mathcal{F}_{q,v} \sigma_a(x) \]
\[\iff f(x) = f * q \sigma_a(x) = c_{q,v} \langle f, T_{q,v} \sigma_a \rangle = \langle f, k_x \rangle. \]
This finish the proof \(\blacksquare \)
Corollary 1 We have

\[k(x, y) = \sum_{i=0}^{\infty} \psi_i(x)\psi_i(y), \quad \forall x, y \in \mathbb{R}. \]

Proof. In fact \(k_x \in PW_{q,a}^v \). Then

\[k_x(y) = \sum_{i=0}^{\infty} \langle k_x, \psi_i \rangle \psi_i(y). \]

On the other hand

\[\psi_i \in PW_{q,a}^v \iff \langle \psi_i, k_x \rangle = \psi_i(x), \]

which prove the result. ■

Lemma 2 For \(i, j \in \mathbb{N} \)

\[\int_0^a \psi_i(x)\psi_j(x)x^{2v+1}d_qx = \lambda_i\lambda_j\delta_{ij}. \]

Proof. In fact

\[\langle \phi_i, \phi_j \rangle = \langle F_{q,v}\phi_i, F_{q,v}\phi_j \rangle = \langle \psi_i, \psi_j \rangle, \]

and

\[\langle \phi_i, \phi_j \rangle = \frac{1}{\lambda_i\lambda_j} \int_0^a \psi_i(x)\psi_j(x)x^{2v+1}d_qx. \]

On the other hand, if \(i \neq j \) then

\[\langle \phi_i, \phi_j \rangle = \int_0^a \phi_i(t)\phi_j(t)t^{2v+1}d_qt = 0. \]

Moreover, \(\|\phi_i\|_{2,v,q} = \|\psi_i\|_{2,v,q} = 1 \) which prove that \(\langle \phi_i, \phi_j \rangle = \delta_{ij} \). This leads to the result. ■

In order to be more precise about what it means for the energy of a \(q \)-bandlimited single \(f \in PW_{q,a}^v \) to be mainly concentrated on the interval \([0, a]_q\), we consider the concentration index:

\[\theta_v^a f = \frac{\int_0^a f(x)^2x^{2v+1}d_qx}{\|f\|_{q,v,2}^2}, \]

whose values range from 0 to 1.
Proposition 7 The maximum value of $\theta_v^w f$ is attained for $f = \psi_0$ and

$$\theta_v^w f = \frac{\sum_{i=0}^{n} \lambda_i^2 (f, \psi_i)^2}{\sum_{i=0}^{n} (f, \psi_i)^2} \geq \lambda_n^2, \quad \text{if} \quad f \in \text{span}\{\psi_0, \ldots, \psi_n\},$$

$$\theta_v^w f = \frac{\sum_{i=n+1}^{\infty} \lambda_i^2 (f, \psi_i)^2}{\sum_{i=n+1}^{\infty} (f, \psi_i)^2} \leq \lambda_{n+1}^2, \quad \text{if} \quad f \in \text{span}\{\psi_0, \ldots, \psi_n\}^\perp.$$

Proof. With the Parseval equality

$$\int_0^\alpha f(x)^2 x^{2v+1} d_q x = \sum_{i=0}^{\infty} (f, \phi_i)^2,$$

and the fact that

$$\sum_{i=0}^{\infty} (f, \phi_i)^2 = \sum_{i=0}^{\infty} (F_{q,v} f, \psi_i)^2$$

$$= \sum_{i=0}^{\infty} \lambda_i^2 (F_{q,v} f, \phi_i)^2 = \sum_{i=0}^{\infty} \lambda_i^2 (f, \psi_i)^2,$$

$$\|f\|_{q,v,2}^2 = \sum_{i=0}^{\infty} (f, \psi_i)^2,$$

We get

$$\theta_v^w f = \frac{\sum_{i=0}^{\infty} \lambda_i^2 (f, \psi_i)^2}{\sum_{i=0}^{\infty} (f, \psi_i)^2} \leq \lambda_0^2 = \theta_v^w \psi_0,$$

which leads to the result. \(\blacksquare\)

Remark 2 If $b > a$ then

$$PW_{q,a}^v \subset PW_{q,b}^v.$$

Now let $\{\mu_n\}_{n\in\mathbb{Z}}$ the sequence of eigenvalues of the operator T_b^v then we have

$$\lambda_0^2 = \theta_v^w \psi_0 \leq \theta_b^v \psi_0 \leq \mu_0^2.$$

Proposition 8 The q-Paley-Wiener space $PW_{q,a}^v$ is a closed subspace of $L_{q,2,v}$.

Proof. First we show that $PW_{q,a}^v$ is a subspace of $L_{q,2,v}$. In fact let
\[f \in PW_{q,a}^v \]
then there exist $u \in L_{q,a}^v$ such that
\[f(x) = c_{q,v} \int_0^a u(t) j_v(xt, q^2) t^{2v+1} d_q t = F_{q,v}(u)(x). \]
As $L_{q,a}^v \subset L_{q,2,v}$ and from the Theorem [3] we show that $F_{q,v}(u) \in L_{q,2,v}$ which implies
\[PW_{q,a}^v \subset L_{q,2,v}. \]
Now, given $f \in L_{q,2,v}$ and let \(\{f_n\}_{n \in \mathbb{N}} \) be a sequence of element of $PW_{q,a}^v$ which converge to f in L^2-norm. For $n \in \mathbb{N}$, there exist $u_n \in L_{q,a}^v$ such that
\[f_n(x) = c_{q,v} \int_0^a u_n(t) j_v(xt, q^2) t^{2v+1} d_q t. \]
Moreover
\[\lim_{n \to \infty} \|f_n - f\|_{q,2,v} = 0, \]
this give
\[\lim_{n \to \infty} \|F_{q,v} f_n - F_{q,v} f\|_{q,2,v} = 0, \]
and then
\[\int_0^a |F_{q,v} f_n(x) - F_{q,v} f(x)|^2 x^{2v+1} d_q x + \int_a^\infty |F_{q,v} f(x)|^2 x^{2v+1} d_q x \to 0, \]
which implies $F_{q,v} f(x) = 0$ if $x \in \mathbb{R}_q$ and $x > a$ and then $f \in PW_{q,a}^v$. ■

Theorem 2 For any function $f \in PW_{q,a}^v$ we have
\[f(z) = (1 - q) \sum_{k \in \mathbb{Z}} q^{2k(v+1)} f(q^k) k_z(q^k), \quad \forall z \in \mathbb{C}. \quad (1) \]

Proof. In fact f is an analytic function, and from Proposition [3]
\[f(x) = \langle f, k_x \rangle, \quad \forall x \in \mathbb{R}_q. \]
We have
\[\langle f, k_x \rangle = \langle F_{q,v} f, F_{q,v} k_x \rangle = c_{q,v} \langle F_{q,v} f, j_v(x \cdot q^2) \chi_{[0,a]} \rangle \]
\[= c_{q,v} \int_0^a F_{q,v} f(t) j_v(xt, q^2) t^{2v+1} d_q t. \]
which prove that
\[z \mapsto \langle f, k_z \rangle, \]
is an analytic function. On the other hand
\[\langle f, k_z \rangle = (1 - q) \sum_{k \in \mathbb{Z}} q^{2k(v+1)} f(q^k) k_z(q^k), \]
and
\[\langle f, q^n \rangle = f(q^n), \quad \forall k \in \mathbb{Z}. \]
As \(\{0\} \) is an accumulation point of the following set
\[\{q^k, \quad k \in \mathbb{Z}\}, \]
we conclude that \(\langle f, k_z \rangle = f(z), \quad \forall z \in \mathbb{C}. \)

Remark 3 In many fields, telecommunication in particular, the Whittaker-Shannon-Kotel’nikov sampling theorem plays a central role. It is known that sampling is the process of converting a signal (e.g., a function of continuous time or space) into a numeric sequence (a function of discrete time or space). Namely this theorem says that every function in the cosine Paley-Wiener space:
\[PW_{a}^{\frac{1}{2}} = \left\{ f(x) = \sqrt{\frac{2}{\pi}} \int_{0}^{a} u(t) \cos(\pi t) dt, \quad u \in L^2[0,a] \right\}, \]
can be written as
\[f(x) = \sqrt{\frac{2}{\pi}} \sum_{n \in \mathbb{Z}} f\left(\frac{\pi}{a} n\right) \sin\left(\pi x - \pi n\right). \]
Then the above theorem can be viewed as a sampling formula where the sampling points are \(q^n \) independent of \(a \). By the use of Proposition 1 we get
\[k_z(q^n) = \frac{(1 - q)c_{q,v}^{2} q^{2n+2} q^{2n+1}(aq^n, q^2) j_{v}(aq^{-1}z, q^2) - z^2 j_{v+1}(az, q^2) j_{v}(aq^{-1+n}, q^2)}{q^{2n} - z^2}. \]

Proposition 9 Given a function \(f \in L_{q,2,v} \) and let
\[f_a(x) = \langle f, k_x \rangle, \]
then
\[f_a \in PW_{q,a}^{v}, \]
and for all \(\delta > 0 \) we have
\[\lim_{a \to \infty} \sup_{x \in \delta, x \in \mathbb{R}_q} |f(x) - f_a(x)| = 0. \]
Proof. First
\[|f_a(x)| \leq \|f\|_{q,v,2}\|k_x\|_{q,v,2} < \infty. \]

Now we can write
\[
\begin{aligned}
f_a(x) &= \langle f, k_x \rangle = \langle \mathcal{F}_{q,v}f, \mathcal{F}_{q,v}k_x \rangle = c_{q,v} \langle \mathcal{F}_{q,v}f, j_v(x.,q^2)\chi_{(0,a]} \rangle \\
&= c_{q,v} \int_0^a \mathcal{F}_{q,v}f(t)j_v(x,t,q^2)t^{2v+1}dq_t.
\end{aligned}
\]
which prove that \(f_a \in PW_{q,a}^v \). On the other hand
\[
\begin{aligned}
f(x) &= c_{q,v} \langle \mathcal{F}_{q,v}f, j_v(x.,q^2) \rangle,
\end{aligned}
\]
and therefore
\[
\begin{aligned}
|f(x) - f_a(x)|^2 &= c_{q,v}^2 \left| \int_a^\infty \mathcal{F}_{q,v}f(t)j_v(x,t,q^2)t^{2v+1}dq_t \right|^2 \\
&\leq c_{q,v}^2 \left(\int_a^\infty |\mathcal{F}_{q,v}f(t)||j_v(x,t,q^2)|t^{2v+1}dq_t \right)^2 \\
&\leq c_{q,v}^2 \int_a^\infty |\mathcal{F}_{q,v}f(t)|^2t^{2v+1}dq_t \int_a^\infty |j_v(x,t,q^2)|^2t^{2v+1}dq_t \\
&\leq \frac{c_{q,v}^2}{x^{2v+2}} \int_a^\infty |\mathcal{F}_{q,v}f(t)|^2t^{2v+1}dq_t \int_a^\infty |j_v(t,q^2)|^2t^{2v+1}dq_t \\
&\leq \frac{c_{q,v}^2\|j_v(.q^2)\|_{q,v,2}^2}{x^{2v+2}} \int_a^\infty |\mathcal{F}_{q,v}f(t)|^2t^{2v+1}dq_t.
\end{aligned}
\]
Using the fact that
\[
\int_0^\infty |\mathcal{F}_{q,v}f(t)|^2t^{2v+1}dq_t = \|\mathcal{F}_{q,v}f\|_{q,v,2}^2 = \|f\|_{q,v,2}^2 < \infty,
\]
we finish the proof. ■

4 Application

In this section we tuck \(v = -1/2 \) and \(q = 0.5 \) and we put
\[
f(x) = \frac{1}{1 + x^2},
\]
an even function belong to the space \(L_{q,2,v} \). Using the sampling formula (1) for the function \(f_a(x) = \langle f, k_x \rangle \) respectively for \(a = 1 \), \(a = 1/q \) and \(a = 1/q^2 \) with sampling point
\[
q^n, \quad n = -1 \ldots 10
\]
we obtain

![Graphs showing data points and lines]

References

