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1 LIAFA, Université Paris-Diderot and CNRS, Case 7014, 75205 Paris Cedex 13, France.
E-mail address: Jean-Eric.Pin@liafa.jussieu.fr
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Abstract. In this paper, we prove an extension of Mahler’s theorem, a celebrated result
of p-adic analysis. Mahler’s original result states that a function from N to Z is uniformly
continuous for the p-adic metric dp if and only if it can be uniformly approximated by
polynomial functions. We prove the same result for functions from A∗ to Z, where dp is
now the profinite metric defined by p-groups (pro-p metric).

This paper was originally motivated by two main research lines of automata theory, but
resulted into an approximation theorem that goes far beyond our original project. We first
present our original motivations and then describe our main result. Recall that a variety

of languages is a class of regular languages closed under Boolean operations, left and right
quotients and inverse morphisms.

1. Motivations

Our first motivation was the study of regularity-preserving functions f from A∗ to B∗, in
the following sense: ifX is a regular language of B∗, then f−1(X) is a regular language of A∗.
More generally, we were interested in functions preserving a given variety of languages V: if
X is a language of V, then f−1(X) is also a language of V. There is an important literature
on the regular case [20, 6, 18, 12, 13, 2], including the authors recent paper [14]. A similar
problem was also recently considered for formal power series [3]. A remarkable contribution
to the second problem can be found in [16], where a characterization of sequential functions
preserving aperiodic languages (respectively group-languages) is given.

Our second motivation was the study of certain reductions. A fundamental idea of
descriptive set theory is to use continuous reductions to classify topological spaces: given two
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sets X and Y , Y reduces to X if there exists a continuous function f such that X = f−1(Y ).
For Polish spaces, this gives rise to the Wadge hierarchy [21], nowadays entirely described
and very well understood. Wagner [22] was the first to consider the restriction of the Wadge
hierarchy to ω-rational languages. He proved in particular that the hierarchy doesn’t change
if continuous functions are replaced by sequential functions, a much more restricted class
of functions (see [10, Chapter 5] for more details).

Our idea was to consider similar reductions for regular languages (of finite words this
time). The first obstacle was to find an appropriate topology, but there is a natural can-
didate: the profinite topologies, a notion first introduced in [5]. Indeed, by Eilenberg’s
theorem, to each variety of languages V corresponds a unique variety of finite monoids V,
which in turn defines the pro-V topology [15]. We shall not give here the precise definition,
but it suffices to know that, in the most interesting cases, this topology can be defined by
a metric dV. Let us call V-reduction a uniformly continuous function between the metric
spaces (A∗, dV) and (B∗, dV). These V-reductions define a hierarchy similar to the Wadge
hierarchy among regular languages, which we would like to explore. Note that a different
notion of reduction for regular languages was recently considered in [19]. The first author
had very instructive discussions with Selivanov and Kunc in June 2006 on the comparison
between these two reductions and this paper is partly motivated by this conversation.

Regularity-preserving functions and V-reductions are actually strongly related. Indeed,
one can show that a function from (A∗, dV) to (B∗, dV) is uniformly continuous if and only
if, for every language L in V(B∗), f−1(L) belongs to V(A∗). This encouraging fact lead
us to search for a more precise description of V-reductions. However, apart from general
results, not so much is known on pro-V topologies, except when V is a variety of finite
groups. Among groups, the variety Gp of p-groups, where p is a given prime, is of special
interest for two reasons. First, Eilenberg and Schützenberger gave a very nice description of
the languages recognized by a p-group (see Proposition 2.2 below). Second, a special case
of the metric dp has been widely studied in mathematics: indeed, the free monoid over a
one-letter alphabet is isomorphic to N, and the metric dp is known as the p-adic metric. The
completion of the metric space (N, dp) is the space of p-adic numbers and p-adic analysis is
the branch of number theory that deals with functions of p-adic numbers [1, 17, 9].

Our main result takes advantage of this powerful mathematical framework to provide a
characterization of the Gp-reductions from A∗ to N, that is, the uniformly continuous func-
tions from (A∗, dp) to (N, dp). It turns out that this characterization extends a celebrated
result of number theory, Mahler’s theorem (see http://en.wikipedia.org/wiki/Mahler’

s_theorem), giving our result a mathematical interest on its own. Our result states that
a function from A∗ to N is uniformly continuous for dp if and only if it can be uniformly
approximated by a sequence of polynomial functions. Before stating this result in a precise
form, we need a few formal definitions.

2. The p-adic and pro-p topologies

In the sequel, A denotes a finite alphabet, A∗ is the free monoid on A and 1 denotes
the empty word.

Let p be a prime number. Recall that a p-group is a finite group whose order is a power
of p. Let u and v be two words of A∗. A p-group G separates u and v if there is a monoid
morphism from A∗ onto G such that ϕ(u) 6= ϕ(v). One can show that any pair of distinct
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words can be separated by a p-group. We now set

rp(u, v) = min { n | there is a p-group of order pn separating u and v }

dp(u, v) = 2−rp(u,v)

with the usual convention min ∅ = −∞ and 2−∞ = 0. One can show that dp is an ultramet-

ric, that is, satisfies the following properties, for all u, v, w ∈ A∗:

(1) dp(u, v) = 0 if and only if u = v,

(2) dp(u, v) = dp(v, u),

(3) dp(u, v) 6 max(dp(u,w), dp(w, v))

One can also show that the concatenation product on A∗ is uniformly continuous for this
metric. It follows that the completion of the metric space (A∗, dp) is naturally equipped
with a structure of monoid, which is in fact a compact group, called the free pro-p group.
The topology defined by the metric dp is usually called the pro-p topology in the literature.

There is a nice connection [11] between this topology and a generalization of the bino-

mial coefficients. Let u and v be two words of A∗. Let u = a1 · · · an, with a1, . . . , an ∈ A.
Then u is a subword of v if there exist v0, . . . , vn ∈ A∗ such that v = v0a1v1 . . . anvn.
Following [4, 7], we define the binomial coefficient of u and v by setting

(

v

u

)

= |{(v0, . . . , vn) | v = v0a1v1 . . . anvn}| .

Observe that if a is a letter, then
(

v
a

)

is simply the number of occurrences of a in v, also
denoted by |v|a. Also note that if A = {a}, u = an and v = am, then

(

v

u

)

=

(

m

n

)

and hence these numbers constitute a generalization of the classical binomial coefficients.
The next proposition, whose proof can be found in [7, Chapter 6], summarizes the basic
properties of the generalized binomial coefficients and can serve as an alternative definition.

Lemma 2.1. Let u, v ∈ A∗ and a, b ∈ A. Then

(1)
(

u
1

)

= 1,

(2)
(

u
v

)

= 0 if |u| 6 |v| and u 6= v,

(3)
(

ua
vb

)

=

{

(

u
vb

)

if a 6= b
(

u
vb

)

+
(

u
v

)

if a = b

A third way to define the binomial coefficients is to use the Magnus automorphism of the
algebra Z〈A〉 of polynomials in noncommutative indeterminates in A defined by µ(a) = 1+a
for all a ∈ A. One can show that, for all u ∈ A∗,

µ(u) =
∑

x∈A∗

(

u

x

)

x (2.1)

which leads to the formula
(

u1u2

x

)

=
∑

x1x2=x

(

u1

x1

)(

u2

x2

)

(2.2)
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The connection between the pro-p topology and the binomial coefficients comes from the
characterization of the languages recognized by a p-group given by Eilenberg and Schützen-
berger (see [4, Theorem 10.1, p. 239]). Let us call a p-group language a language recognized
by a p-group. Note that such a language is necessarily regular.

Proposition 2.2. A language of A∗ is a p-group language if and only if it is a Boolean

combination of the languages

L(x, r, p) = {u ∈ A∗ |

(

u

x

)

≡ r mod p},

for 0 6 r < p and x ∈ A∗.

Let us set now

r′p(u, v) = min

{

|x|
∣

∣ x ∈ A∗ and

(

u

x

)

6≡

(

v

x

)

(mod p)

}

d′p(u, v) = p−r′p(u,v).

It is proved in [11, Theorem 4.4] that d′p is an ultrametric uniformly equivalent to dp. We
shall use this result under a slightly different form.

Theorem 2.3. A function f : A∗ → B∗ is uniformly continuous for dp if and only if,

for every regular language L of A∗ recognized by a p-group, the language f−1(L) is also

recognized by a p-group.

Proof. Let L be a language recognized by a p-group G of order pk. Then there exists a
monoid morphism ϕ : A∗ → G such that L = ϕ−1(ϕ(L)). If f is uniformly continuous
for dp, there exists n > 0 such that if rp(u, v) > n, then rp(f(u), f(v)) > k. It follows in
particular that f(u) and f(v) cannot be separated by G and hence ϕ(f(u)) = ϕ(f(v)).

Let (ψi)i∈I be the family of all monoid morphisms from A∗ onto a p-group Hi of order
6 pn. Let ψ : A∗ →

∏

i∈I Hi be the morphism defined by ψ(x) = (ψi(x))i∈I and let H
be the range of ψ. Then H is a p-group and if ψ(u) = ψ(v), then rp(u, v) > n and thus
ϕ(f(u)) = ϕ(f(v)). We claim that

ψ−1(ψ(f−1(L)) = f−1(L)

First, f−1(L) is clearly a subset of ψ−1(ψ(f−1(L)). To prove the opposite inclusion, let
u ∈ ψ−1(ψ(f−1(L)). Then ψ(u) ∈ ψ(f−1(L)), that is, ψ(u) = ψ(v) for some v ∈ f−1(L). It
follows that ϕ(f(u)) = ϕ(f(v)) and since f(v) ∈ L, f(u) ∈ ϕ−1(ϕ(L)) and finally f(u) ∈ L

since L = ϕ−1(ϕ(L)). This proves the claim and shows that f−1(L) is a p-group language.
Suppose now that if L is a p-group language, then f−1(L) is also a p-group language.

Let ϕ be a morphism from A∗ onto a p-group G. For each g ∈ G, ϕ−1(g) is a p-group
language and hence f−1(ϕ−1(g)) is recognized by a morphism ψg : A∗ → Hg onto a p-
group. Let ψ : A∗ →

∏

g∈GHg be the mapping defined by ψ(x) = (ψg(x))g∈G and let

H = ψ(A∗). Then H is also a p-group and if ψ(u) = ψ(v), then ψg(u) = ψg(v) for all
g ∈ G. Since ψg recognizes f−1(ϕ−1(g)), it follows that u ∈ f−1(ϕ−1(g)) if and only if
v ∈ f−1(ϕ−1(g)) and hence ϕ(f(u)) = ϕ(f(v)).

Now let k ∈ N. If we consider all the morphisms ϕ from A∗ onto a p-group of order
6 pk, and take n ∈ N large enough so that every group H corresponding to ϕ has order
6 pn, it follows that

rp(u, v) > n⇒ rp(f(u), f(v)) > k

holds for all u, v ∈ A∗. This shows that f is uniformly continuous for dp.
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In the case of a one-letter alphabet, A∗ is isomorphic to the additive monoid N and the
definition of dp can be further simplified. If n is a non-zero integer, recall that the p-adic
valuation of n is the integer

νp(n) = max
{

k ∈ N | pk divides n
}

By convention, νp(0) = +∞. The p-adic norm of n is the real number

|n|p = p−νp(n).

The p-adic norm satisfies the following axioms, for all n,m ∈ N:

(1) |n|p > 0,

(2) |n|p = 0 if and only if n = 0,

(3) |mn|p = |m|p|n|p,

(4) |m+ n|p 6 max{|m|p, |n|p}.

Finally, the metric dp can be defined by

dp(u, v) = |u− v|p.

and is known as the p-adic metric. Since Z is naturally embedded in the p-adic completion
of N, the definitions above can be readily extended to Z. In the sequel, it will be more
convenient to use the metric space (Z, dp) in place of (N, dp).

3. Mahler’s expansions

The classical Stone-Weierstrass approximation theorem states that a continuous func-
tion defined on a closed interval can be uniformly approximated by a polynomial function.
In particular, if a function f is infinitely differentiable in the neighbourhood of 0, it can be
approximated, under some convergence conditions, by its Taylor polynomials

k
∑

n=0

f (n)(0)

n!
xn

The p-adic analogue of these results is Mahler’s theorem [8]. For a fixed k ∈ N, the binomial
polynomial function

u→

(

u

k

)

defines a uniformly continuous function from (N, dp) to (Z, dp). The Mahler’s expansion of
a function f from N to Z is defined as the series

∞
∑

k=0

(∆kf)(0)

(

u

k

)

where ∆ is the difference operator, defined by

(∆f)(u) = f(u+ 1) − f(u)

Mahler’s theorem states that f is uniformly continuous for dp if and only if its Mahler’s
expansion converges uniformly to f . Of course, the most remarkable part of the theorem
is the fact that any uniformly continuous function can be approximated by polynomial
functions, in contrast to Stone-Weierstrass approximation theorem, which requires much
stronger conditions.
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For instance, if f is the Fibonacci sequence defined by f(0) = f(1) = 1 and f(n) =
f(n− 1) + f(n− 2) for n > 2, then

f(n) =

∞
∑

k=0

(−1)k+1f(k)

(

n

k

)

This function is not uniformly continuous for dp for any choice of p. If f(n) = rn, then

f(n) =
∞
∑

k=0

(r − 1)k

(

n

k

)

and f is uniformly continuous for dp if and only if p divides r − 1.
The first step to extend Mahler’s theorem to functions from words to integers is to

define a suitable notion of Mahler’s expansion for these functions.
Let f : A∗ → Z be a function. For each letter a, we define the difference operator ∆a

by
(∆af)(u) = f(ua) − f(u)

One can now define inductively an operator ∆w for each word w ∈ A∗ by setting (∆1f)(u) =
f(u), and for each letter a ∈ A,

(∆awf)(u) = (∆a(∆wf))(u).

It is easy to see that these operators can also be defined directly by setting

∆wf(u) =
∑

06|x|6|w|

(−1)|w|+|x|

(

w

x

)

f(ux) (3.1)

For instance, ∆aabf(u) = −f(u) + 2f(ua) + f(ub) − f(uaa) − 2f(uab) + f(uaab).
For a fixed v ∈ A∗, the function

u→

(

u

v

)

from A∗ to Z which maps a word u to the binomial coefficient
(

u
v

)

is uniformly continuous
for dp. This family of functions, for v ranging over A∗, is locally finite in the sense that,
for each u ∈ A∗, the binomial coefficient

(

u
v

)

is null for all but finitely many words v. In
particular, if (mv)v∈A∗ is a family of integers, there is a well-defined function from A∗ to Z

defined by the formula

f(u) =
∑

v∈A∗

mv

(

u

v

)

We can now state our first result, which doesn’t require any assumption on f .

Theorem 3.1. Let f : A∗ → Z be an arbitrary function. Then there exists a unique family

〈f, v〉v∈A∗ of integers such that, for all u ∈ A∗,

f(u) =
∑

v∈A∗

〈f, v〉

(

u

v

)

(3.2)

This family is given by

〈f, v〉 = (∆vf)(1) =
∑

06|x|6|v|

(−1)|v|+|x|

(

v

x

)

f(x) (3.3)
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Proof. First observe that, according to (3.1)

(∆vf)(1) =
∑

06|x|6|v|

(−1)|v|+|x|

(

v

x

)

f(x) (3.4)

Thus
∑

v∈A∗

(∆vf)(1)

(

u

v

)

=
∑

v∈A∗

∑

|x|6|v|

(−1)|v|+|x|

(

v

x

)(

u

v

)

f(x)

=
∑

x∈A∗

(−1)|u|+|x|





∑

06|v|6|u|

(−1)|v|+|u|

(

u

v

)(

v

x

)



 f(x)

= f(u)

in view of the following relation from [7, Corollary 6.3.8]:

∑

06|v|6|u|

(−1)|u|+|v|

(

u

v

)(

v

w

)

=

{

1 if u = w

0 otherwise
(3.5)

Uniqueness of the coefficients 〈f, v〉 follows inductively from the formula

〈f, u〉 = f(u) −
∑

06|v| < |u|

〈f, v〉

(

u

v

)

,

a straightforward consequence of (3.2).

The series defined by (3.2) is called the Mahler’s expansion of f .
For instance, let f : {0, 1}∗ → N be the function mapping a binary word onto its value

as a binary number. Thus f(010111) = f(10111) = 23. Then one has

(∆vf) =

{

f + 1 if |v|1 > 0

f otherwise

(∆vf)(ε) =

{

1 if |v|1 > 0

0 otherwise

Thus, if u = 01001, one gets

f(u) =

(

u

1

)

+

(

u

10

)

+

(

u

11

)

+

(

u

100

)

+

(

u

101

)

+

(

u

1001

)

= 2 + 2 + 1 + 1 + 2 + 1 = 9

4. Mahler polynomials

A function f : A∗ → Z is a Mahler polynomial if its Mahler’s expansion has finite

support, that is, if the number of nonzero coefficients 〈f, v〉 is finite. In this section, we
prove in particular that Mahler polynomials are closed under addition and product. We
first introduce a convenient combinatorial operation, the infiltration product. We follow the
presentation of [7].

Let Z〈〈A〉〉 be the ring of formal power series in noncommutative indeterminates in A.
Any series s is written as a formal sum s =

∑

u∈A∗〈s, u〉u, a notation not to be confused with
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our notation for the Mahler’s expansion. The infiltration product is the binary operation
on Z〈〈A〉〉, denoted by ↑ and defined inductively as follows:

for all u ∈ A∗,

u ↑ 1 = 1 ↑ u = u, (4.1)

for all u, v ∈ A∗, for all a, b ∈ A

ua ↑ bv =

{

(u ↑ vb)a+ (ua ↑ v)b+ (u ↑ v)a if a = b

(u ↑ vb)a+ (ua ↑ v)b otherwise
(4.2)

for all s, t ∈ Z〈〈A〉〉,

s ↑ t =
∑

u,v∈A∗

〈s, u〉〈t, v〉(u ↑ v) (4.3)

Intuitively, the coefficient 〈u ↑ v, x〉 is the number of pairs of subsequences of x which
are respectively equal to u and v and whose union gives the whole sequence x. For instance,

ab ↑ ab = ab+ 2aab+ 2abb+ 4aabb+ 2abab

ab ↑ ba = aba+ bab+ abab+ 2abba+ 2baab+ baba

Also note that 〈u ↑ v, u〉 =
(

u
v

)

. We shall need the following relation (see [7, p.131]). For all
v1, v2 ∈ A∗,

(

u

v1

)(

u

v2

)

=
∑

x∈A∗

〈v1 ↑ v2, x〉

(

u

x

)

(4.4)

Formula 4.4 leads to an explicit computation of the Mahler’s expansion of the product of
two functions.

Proposition 4.1. Let f and g be two functions from A∗ to N. Then the coefficients of the

Mahler’s expansion of fg are given by the formula:

〈fg, x〉 =
∑

v1,v2∈A∗

〈f, v1〉〈g, v2〉〈v1 ↑ v2, x〉

Proof. Indeed, if f(u) =
∑

v∈A∗〈f, v〉
(

u
v

)

and g(u) =
∑

v∈A∗〈g, v〉
(

u
v

)

, then

fg(u) =
∑

v1,v2∈A∗

〈f, v1〉〈g, v2〉

(

u

v1

)(

u

v2

)

and the result follows by Formula (4.4).

It is now easy to prove the result announced at the beginning of this section.

Proposition 4.2. Mahler polynomials form a subring of the ring of all functions from A∗

to Z for addition and multiplication.

Proof. It is clear that the difference of two Mahler polynomials is a Mahler polynomial.
Further Proposition 4.1 shows that Mahler polynomials are closed under product.
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5. Mahler’s theorem

We are now ready to state our main result, which extends Mahler’s theorem. In this
section, uniform continuity always refers to the metric dp.

Theorem 5.1. Let f(u) =
∑

v∈A∗〈f, v〉
(

u
v

)

be the Mahler’s expansion of a function from

A∗ to Z. Then f is uniformly continuous if and only if lim|v|→∞ |〈f, v〉|p = 0.

Proof. Suppose that lim|v|→∞ |〈f, v〉|p = 0. Then there exists s ∈ N such that, if |v| > s,
νp(〈f, v〉) > r. Setting

g(u) =
∑

|v|<s

〈f, v〉

(

u

v

)

and h(u) =
∑

|v|>s

〈f, v〉

(

u

v

)

we get f = g+ h. Further pr divides 〈f, v〉 for |v| > s. Since g is a Mahler polynomial, it is
uniformly continuous and there exists t ∈ N such that dp(u, u

′) 6 p−t implies g(u) ≡ g(u′)
(mod pr) and hence f(u) ≡ f(u′) (mod pr). Thus f is uniformly continuous.

This proves the easy direction of the theorem. The key argument for the opposite
direction is the following approximation result.

Theorem 5.2. Let f : A∗ → N be a uniformly continuous function. Then there exists a

Mahler polynomial P such that, for all u ∈ A∗, f(u) ≡ P (u) (mod p).

Proof. We first prove the theorem for some characteristic functions related to the binomial
coefficients. The precise role of these functions will appear in the course of the main proof.

Let x ∈ A∗ and let s be an integer such that 0 6 s < p. Let χs,x : A∗ → N be the
function defined by

χs,x(u) =

{

1 if
(

u
x

)

≡ s (mod p)

0 otherwise

Lemma 5.3. There is a Mahler polynomial Ps,x such that, for all u ∈ A∗, χs,x(u) ≡ Ps,x(u)
(mod p).

Proof. Let

Ps,x(u) = −

[(

u
x

)] [(

u
x

)

− 1
]

· · ·
[(

u
x

)

− (p− 1)
]

(

u
x

)

− s

Then Ps,x is a Mahler polynomial by Proposition 4.2. If
(

u
x

)

6≡ s (mod p), then Ps,x(u) ≡ 0

(mod p). If
(

u
x

)

≡ s (mod p), then by Al-Haytham’s theorem,

Ps,x(u) ≡ −(p− 1)! ≡ 1 (mod p)

It follows that Ps,x(u) ≡ χs,x(u) (mod p) in all cases.

We now prove Theorem 5.2. Since f is uniformly continuous, there exists a positive integer
n such that if, for 0 6 |x| 6 n,

(

u

x

)

≡

(

v

x

)

(mod p)

then
f(u) ≡ f(v) (mod p)

It follows that the value of f(u) modulo p depends only on the residues modulo p of the
family

{(

u
x

)}

06|x|6n
.
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Let C be the set of all families r = {rx}06|x|6n such that 0 6 rx < p. For 0 6 i < p, let

Ci be the set of all families r of C satisfying the following condition:

if, for 0 6 |x| 6 n,

(

u

x

)

≡ rx (mod p), then f(u) ≡ i (mod p) (5.1)

The sets (Ci)06i<p are pairwise disjoint and their union is C. We claim that, for all u ∈ A∗,

f(u) ≡
∑

06i<p

iPi(u) (mod p) (5.2)

where Pi is the Mahler polynomial

Pi =
∑

r∈Ci

∏

06|x|6n

Prx,x (5.3)

First consider, for r ∈ C, the characteristic function

χr(u) =
∏

06|x|6n

χrx,x(u)

By construction, χr is defined by

χr(u) =

{

1 if, for 0 6 |x| 6 n,
(

u
x

)

≡ rx (mod p)

0 otherwise

and it follows from (5.1) and from the definition of Ci that

f(u) ≡
∑

06i<p

(

i
∑

r∈Ci

χr(u)
)

(mod p) (5.4)

Now Lemma 5.3 gives immediately

χr(u) ≡
∏

06|x|6n

Prx,x(u) (mod p) (5.5)

and thus (5.2) follows now from (5.3), (5.4) and (5.5). The result follows, since

P =
∑

06i<p

iPi(u)

is a Mahler polynomial.

Theorem 5.2 can be extended as follows.

Corollary 5.4. Let f : A∗ → N be a uniformly continuous function. Then, for each positive

integer r, there exists a Mahler polynomial Pr such that, for all u ∈ A∗, f(u) ≡ Pr(u)
(mod pr).

Proof. We prove the result by induction on r. For r = 1, the result follows from Theorem
5.2. If the result holds for r, there exists a Mahler polynomial Pr such that, for all u ∈ A∗,
f(u)−Pr(u) ≡ 0 (mod pr). Let g = f −Pr. Since g is uniformly continuous, there exists a
positive integer n such that if

(

u
x

)

≡
(

v
x

)

(mod p) for |x| 6 n, then g(u) ≡ g(v) (mod p2r).

It follows that 1
pr g(u) ≡

1
pr g(v) (mod pr), and thus 1

pr g is uniformly continuous.

Applying Theorem 5.2 to 1
pr g, we get a Mahler polynomial P such that, for all u ∈ A∗,

1

pr
g(u) ≡ P (u) (mod p)
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Setting Pr+1 = Pr + prP , we obtain finally

f(u) ≡ Pr+1(u) (mod pr+1)

which concludes the proof.

We now conclude the proof of Theorem 5.1. For each positive integer r, there exists
a Mahler polynomial Pr such that, for all u ∈ A∗, f(u) ≡ Pr(u) (mod pr). Using (3.3) to
compute explicitly the coefficients 〈f − Pr, v〉, we obtain

〈f − Pr, v〉 ≡ 0 (mod pr)

Since Pr is a polynomial, there exists an integer nr such that for all v ∈ A∗ such that
|v| > n, 〈Pr, v〉 = 0. It follows |〈f, v〉|p < p−r and thus lim|v|→∞ |〈f, v〉|p = 0.

Mahler’s theorem is often presented as an interpolation result (see for instance [9,
p. 57]). This can also be extended to functions from words to integers. Given a family
of integers (cv)v∈A∗ , one can ask whether there is a (uniformly) continuous function f

from the free pro-p group to Z such that f(v) = cv. Then answer is yes if and only if

lim|v|→∞ |mv|p = 0, where mv =
∑

06|x|6|v|(−1)|v|+|x|
(

v
x

)

cx.

6. Conclusion

We proved an extension of Mahler’s theorem for functions from words to integers. It
would be interesting to find a suitable extension for functions from words to words. It would
also be interesting to see whether other results from p-adic analysis can be extended to the
word case.
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