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Abstract. We determine the electrostatic contribution to the elastic bending moduli of

an insulating fluid membrane composed of either permanent, or field induced dipoles oriented

along the normal directors of the surface. Using Debye-Hfickel screening theory,
we show that

in contrast to the uniformly charged membrane the bending rigidity becomes softened by the

electrostatic interaction.

1 Introduction.

Internal degrees of freedom
can

have
a

striking effect on the fluctuations of twc-dimensional

fluid membranes. Amongst cases
recently studied include membranes with internal order pa-

rameters of both scalar [1-3], such as with concentration fluctuations, and vector degrees of

freedom, such as molecular orientation [4].
In this paper we investigate the influence of dipolar interactions on the fluctuation of insu-

lating fluid membranes immersed in an ionic solution. Existing theories of uniformly charged
membranes suggest a stabilisation associated with an increase in the modulus of rigidity [5-8].

In contrast, we demonstrate that dipolar interactions
can lead to a softening of the membrane

rigidity which can ultimately cause the persistence length of the membrane to vanish. Re-

stricting attention to moments oriented normal to the surface, we examine membranes in the

presence of both permanent and field induced dipoles. The electrostatic interaction, screened

by the surrounding solution, favours a
locally curved orientation of the host membrane in which

neighbouring dipoles
are no longer parallel. This competes with the elastic bending energy,

which favours a
flat orientation, and serves to diminish the effective mean bending modulus.

Permanent dipoles can arise either by the constituent molecules possessing an intrinsic dipole
moment, or by the existence of a

potential difference
across an insulating membrane. In the

case of monolayers, it is reasonable to suppose that the asymmetry is capable of supporting

an intrinsic molecular dipole moment that acts across the membrane. For bilayers of
a

single
component only intrinsic quadrupoles appear feasible. However molecular asymmetry in two

component bilayers do allow for the existence of permanent dipole moments. (Even in single
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component bilayers dipolar effects may become important if the screening length becomes

comparable with the membrane thickness.) Finally, the application of
a potential difference

across an
insulating membrane can be used to induce dipole moments across bilayers and

monolayers. Indeed, biological systems contain
numerous

examples of membranes, such
as

neural axons, which display
a

potential difference of as much
as 100 mV [9].

The free energy of an ideal fluid membrane without dipoles is dominated by the elastic bend

energy [10, 11],

FB
"

/
dS () (li K)~ + it det Kj, (I.I)

where
K

and k denote the mean
and Gaussian elastic moduli respectively, and the integral is

performed over the entire twc-dimensional surface of the membrane. Positions
on

the mem-

brane
are

specified by a vector X(a), with
a denoting the parametric coordinates of the surface.

The curvature tensor is related to the surface tangent vectors at a, en =
00X by Kop

= n. 0aep
with

n
denoting the outward pointing director of the surface, and where we

have used the nota-

tion, 0a % 0/3a". Finally, the element of surface area is given by, dS
=

da~da~v+% where

the metric gap = ea £p. For simplicity we have assumed a membrane with zero spontaneous

curvature.

The contribution of the electrostatic energy to the free energy of the membrane, FE can be

determined from the thermodynamic relation [10, 12],

s
=

((py~), (1.2)

where E denotes the electrostatic field energy, fl
=

I/kT.
Throughout, we

will suppose that the compressibility of the membrane is zero and that the

area remains fixed. To sensibly compare the elastic bending energy with electrostatic energies
it is necessary to compare the free energy per unit area.

In this way we can formally eliminate

the chemical potential of total area. However, in section 3, the breaking of symmetry by
an

external electric field requires the introduction of a "chemical potential of projected
area [7]".

2. Permanent dipoles.

For fluid membranes composed of rod-like molecules, it is natural to suppose that permanent
electric dipole moments are directed along the central axis of the molecule and parallel to the

normal directors of the surface. For simplicity
we

will suppose the "dipole layer" to be ideal in

having a
negligible thickness whilst maintaining a finite dipole moment. In this way, we neglect

the dielectric properties of the membrane itself
as

well as the position of the neutral surface

with respect to the dipole layer. The ionic solution that surrounds the membrane screens

the electrostatic interaction of the dipoles. The electric field
on

each side of the membrane is

assumed to satisfy the linearised version of the Poisson-Boltzman equation, the Debye-Hfickel
equation,

v~i
=

>~#, (2.1)

where A~~ denotes the Debye screening length.
In general, the solvents that surround the membrane will have different dielectric and screen-

ing properties. For simplicity we will suppose that both the screening length and dielectric

constant are uniform above and below the membrane,
as

would be the case for bilayers. (A
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more careful investigation which accounts for the asymmetry would yield contributions to the

electrostatic energy which are dependent on the spontaneous curvature.) For a
monovalent

solution of ionic concentration, no with a dielectric constant e = ereo, the screening length is

determined by A~
=

8~noe~lekT. For an isolated dipole ofstrength, p at position, X
=

0 the

screened potential is given by,

~~~~~
l

~3~ expl->rj, (~ ~~

The regime in which the linear approximation is valid can be estimated by requiring that

the potential in the vicinity of the surface remains smaller than kTle. This translates to the

condition that p ~ kTele giving an upper bound to the surface dipole density in aqueous

solution (er
=

80) of p ~w
0.I Dli~. Above this dipole density the linear approximation of the

Poisson-Boltzmann equation becomes unreliable.

The electrostatic energy of a surface of dipoles is given by,

Ed-d
"

£ /
ds ds' ~

~3 (P P' ~
)2~~ (P £) (P~ £)j (2.3)

where r =
X'- X, and the dipole surface density, p = p n, with p uniform. As usual, the

convergence of the integralis assured by a minimum wavelength cut-off at the length scale ofthe

solvent size
a. Moreover, the dipole-dipole interaction is made short-ranged by the screening

enabling a
controlled expansion of the electrostatic energy in powers of the curvature.

A comparison ofthe electrostatic energy with the elastic free energy ofthe membrane requires

an expansion up to second order in the gradients of the deformation. The integration over

the primed coordinates is performed with respect to each position vector X(a) using the

representation of the relative coordinates, r(p)
=

(pi,p2,f(p)), where p denotes the relative

parametric coordinate of the surface. It is convenient to work in the metric of the tangent
plane at each X(a), for which gap(«)

=
60p, and where both fin f[a and the afline connection,

r[,
= £b oaf, vanish. Applying these conditions together with the identities,

00n
=

Kop£P,

3afipn
= (3aK( + r[,I<j) ej + Ko, Kjn, ~~'~~

which imply the following expansions about X(a),

n'
=

(i )P"P~I<«, I<I) n + (p"I<i + )p*pPooi<j) e, + o(p3),

r =
p°£~ + )p°pP K~pn, (2.5)

9$P "
~°P + P' p~ Il,« Kjp + tl(p~),

we obtain the following expression for the electrostatic energy,

Ed-d
=

£ Ids fdpidp~ ~jj[' ii
j(3

+ >(p() papflp7p~ K~p K,~j. (2.6)

At this level of approximation the integration over the relative coordinates can be performed
when we find,
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Ed-d
"

(
(Ar[-I, Aa]

/
dS

( /
dS [3(li K)~ 4det K]j

,

(2.7)
f

The first term denotes the positive shift in energy arising from the predominantly parallel
dipoles while the remaining terms describe how the electrostatic energy is reduced by defor-

mations. Since the first term scales in proportion to the surface area it has the effect of merely
shifting the total energy per unit area of the membrane by a constant. The remaining two

components contribute to the mean and Gaussian bending energy. The contribution of the

electrostatic energy to the total free energy of the membrane can be estimated by integrating
the thermodynamic relation (1.2).

~
~ ~~~ ~~~~

(2.8)

=

C (- /
dS

j /
dS [3(li K)~ 4det K]j

,4e a

where we have assumed
a

Debye length much larger than the solvent size, la « I implying
Ar[-I, Aa]

~w
I la. The curvature independent part of the electrostatic free energy is of order

p~lae, while the curvature dependent part can be combined with elastic free energy by defining
the effective bending moduli,

21p2 ~p2
'~~~ " '~ ii ken

"
k + ~. (2_g~

The decrease in the effective mean bending modulus from the bare value implies
a

softening
of the membrane rigidity. Indeed for sufficiently large dipole moments the effective mean

bending modulus can vanish implying a vanishing of the persistence length. The change in

Gaussian bending modulus favours the creation of handles over components. This effect can

be understood by recognising that the local dipole energy is lowered by a relative saddle splay
deformation of neighbouring dipoles which changes their relative orientation whilst preserving

an average separation comparable to that of the flat surface.

The permanent electric dipole moment of amphiphilic molecules will generally be of the

order of lD. However, exceptions include the zwitterions, such as the Poly(ammonium alkoxy-
dicyanoethenolates) [13] where dipole moments of 26D or equivalently 90 x

10~~° Cm have been

measured. The Debye screening length, A~i varies from 10~l for extremely pure water to just

a few I for ionic solvents. Typically each molelcule occupies
an area of the order a~

~w
50 i~.

Thus, a
dipolar membrane immersed in an aqueous solution with

a dielctric constant of er =
80

has
a

reduction in mean bending modulus of order 50 pev (pa~/D)~ (A~~ Ii) corresponding
to 2mkT (pa~/D)~ (A~~ Ii) at room temperature. Thus, for a dipole moment per molecule of

pa~
=

lD, and
a

typical screening length of A~
=

10~l, the reduction is an order of magnitude
smaller than the bare elastic moduli of surfactants, for which K ~w

kT.

Permanent dipoles may also be induced by the creation of a voltage difference across a

membrane. For
a

typical molecular polarisability of o ~w
eoda~, where d denotes the layer

thickness,
a

potential difference V across
the layer gives rise to a surface dipole density, p ~w eo V.

For
a

screening length of A~~
=

10~l, the corresponding change in
mean

bending modulus is of

order 0AkT(V/Volt)~. Typically the effect of the renormalisation would be beyond resolution

for biological systems where it is possible to find potential differences of at most 100 mV in

bilayers with bend moduli of order 10kT. However, as we will investigate in the next section,
potential differences across

membranes can also be created artificially by charging an insulating
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membrane in a
conducting background by

an
external field when in principle voltages in excess

of100 mV can be produced in membranes of much smaller bend moduli.

Whilst the permanent dipole moment of an amphiliphile can be large, fluid membranes in

polar solvents such as the zwitterionic lecthicins mentioned above, tend to form bilayers. The

membrane then comprises two dipolar surfaces with opposite polarity. Then if the screening
length is smaller than the membrane thickness, and the dipoles are well offset from the neutral

surface of the membrane, the dipolar interactions on each side of the bilayer become approx-
imately independent. Their behaviour becomes equivalent to two superposed monolayers and

in the most simple approximation the electrostatic contribution to the bending moduli simply
doubles [14]. On the other hand, if the Debye length is greater than the width of the mem-

brane the bilayer behaves approximately as a
quadrupolar surface. At leading order, dipoles

on
opposite sides of the bilayer impart an equal and opposite effect

on
the neighbouring dipoles

and the modulus of rigidity remains approximately unchanged.
As mentioned above, the charge symmetry of the membrane can

be broken by
an

external

electric field. In the next section
we

will investigate the influence of dipole moments induced

by
a

uniform electric field on the fluctuations of
a

fluid membrane.

3. Field induced dipoles.

In the previous section
we demonstrated that the effect of permanent electric dipoles oriented

along the normal directors of a
membrane

was to soften the modes of distortion. In this section,

we will examine the influence of dipole moments induced by
a

uniform "external" electric field

E maintained in the solution.

For simplicity
we

will again imagine the membrane to be composed of rod-shaped
arn-

phiphilic molecules but with
a

molecular polarisability, o. As before, the local rod axis will be

assumed to define the normal director of the membrane. The action of the external field is to

induce electric dipole moments along the
axes

of the molecules. The electrostatic interaction

of the dipoles with the external field strongly favour
a surface orientation of the membrane

that remains normal to the applied field. However, as we
have seen in the previous section the

interaction of the dipoles within the layer favour curvature of the surface. We will demonstrate

that the competition between these two requirements results in a short-wavelength softening
of the membrane rigidity.

For a molecular polarisability, o = a n n, the induced surface dipole density is given by,

P(X)
=

j«
EL(X)> (3. i)

where EL denotes the local electric field. The local field deviates from the value of the bare

external field by the depolarising effect of the neighbouring dipoles. Summing over the all the

neighbouring dipoles the local field can be related to the external field by EL(X)
=

A(X) E,
where

A[~(X)
= (6ij +

"

~
dS' ~

~
[ni (3 + Ar) (n r) ri] njj. (3.2)

4ma

/ ~~

r

Redefining the surface dipole density by p =
deXe E, the susceptibility is given by x~ =

a
.A/da~e. The integration over the relative coordinates in (3.2) can be performed to the same

level of approximation achieved in the previous section when we find, x~ =
x~(X)

n n, where

~~~~~ ~~~
~

~ 2~~~~~~ ~'~~~
~A~~

~~ ~~~ ~ ~~t K))j (3.3)
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Then, for curvatures Kap £ fi, the susceptibility is approximately given by,

Xe(X)
= (I +

f(5
(Tf K)~ 4 det K)j xf, (3.4)

where xf is defined to be the susceptibilty of
a

flat surface found by setting K + 0.

Using the constituitive relations defined above, the total electrostatic energy of the mem-

brane is given by, EDip "
SE-d + Ed-d where the direct interaction of the dipoles with the

external field is determined by,

SE-d
"

-j /
dS p E

= jde
/

dS Xe(X) (n E)~, (3.5)

and the dipole-dipole energy, Ed-d is given by (2.3) but where the magnitude of the dipole
density is allowed to fluctuate according to xe(X). Using the

same expansion of the primed
coordinates as in the previous section, and integrating over the relative coordinates

we obtain,

Ed-d
"

(~ /
dS Xe(X)~ (n E)

(Ar[-
I, la] ~

[29(Tf K)~ 44det K]) (n E)
16

(3.6)

+ 0a(1<( £p E)

Since the parameters which enter (3.5) and (3.6) are dependent on the orientation of the

membrane with respect to the field it is not in general possible to find
a

simple reparameter-
isation in terms ofelastic constants. However, since the direct interaction of the dipoles with

the external field strongly favours an orientation of the membrane which is normal to the field

direction
we can

proceed by examining perturbative deformations of a flat surface.

For an external field E
=

E k3 we will investigate a surface, X
=

(zi,z~, f(x)) where

00f(x) « I, and the mean and Gaussian curvatures are given by Tf K/2
=

V~f/2 and

det K
=

det 303p f respectively. By reexpressing the Gaussian curvature as a total derivative,
-eimejn3m3n[(31f)(3y f)] its contribution in the electrostatic energy for this geometry can be

shown to vanish. Similarly, the total derivative that appears in the final term of (3.6) also

integrates to zero.

Using this representation, the bare elastic free energy of the membrane, (I.I) is determined

up to a constant factor by,

y
f

d~ d~ (~(~72f)2 j
(~ ~)i 2 j

,

where the symmetry breaking effect of the field requires the introducion of a "chemical poten-
tial" of projected area, r, taken to be zero for the unperturbed membrane. Similarly, in this

representation the electrostatic energy is

~
i

~ ~~ ~~ dxf>rj- i, >al j
~ ~ ~

j
~ ~D>p " j Xff

~
Xi z2

~)) (34 5dXfAr[-1, Aa])
/ dzidz2(V~

)~j ~~ ~~

As before, the electrostatic contribution to the free energy can be deternJined by integrating
the thermodynamic relation (1.2) when, using the

same assumption that la « I we find,
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FDip
= )dxfeE~

(1 )~ /
dS 2

/
dzidz2

~~~
(34

~~~~ / dzidz2(V~
)~j ~~ ~~

16A
a

The electrostatic energy can
then be combined with the unperturbed surface free energy by

defining
a

chemical potential ofprojected area to account for the second term,

r~n =
dxfeE~ (1 ~~~), (3.10)

and an effective mean
bending modulus,

~ ~ ~
d

~
~2

dXf
~

sdxf
~

~~ 16A
~ ~ (3.ll)

The positive sign of the chemical potential, which favours
a

large projected area is natural since

the dipole moment together with the corresponding direct interaction with the external field

is maximised in this configuration. As for permanent dipoles, the,mean bending modulus is

generally reduced by the interaction indicating
a

softening of the membrane rigidity. Although
the topology of the flat surface prevents a

discussion of the Gaussian curvature, it is clear from

(3.6) that the effect of the interaction is to increase the modulus
as

for permanent dipoles.
For typical molecular polarisabilities of a ~w

da~eo, and dla £ 10, the susceptibility is

approximately xf ~w
tier. Then for A~~

~w

10~l,
a membrane thickness of d

~w
30 1 and

an

external electric field corresponding to E
=

V/d the chemical potential is approximately, r~n ~w

0A (V/Volts)~kT per molecule, and the mean bending modulus is reduced by approximately
0.3 (V/Volts)~kT from the bare value. Therefore,

as
in the case of the permanent dipoles, the

renormalisation at high voltages is comparible to the bare mean bending modulus of surfactant

membranes.

4 Discussion.

We have demonstrated that the effective membrane rigidity softens in the presence of both

permanent and field induced dipoles. In the case of the latter, the gain in electrostatic energy
from bending is diminished by the reduction in projected area. For q~ » q)

=
rem/Ken,

where the bend modulus dominates, second order perturbation theory predicts
a membrane

persistence length of [15],

fp
= aexp l~)))~l. (4.i)

Then, for increasing external field, and
a

corresponding decrease in effective bend modulus, the

persistence length becomes rapidly reduced. In particular,
we

would expect a
short- wavelength

instability if the effective bend modulus changes sign. The estimates for the magnitude of the

renormalisation indicate that these effects can realistically be observed. The crumpled state

of the membrane in which the electrostatic energy donfinates the elastic energy is much more

complicated, and beyond the scope of this paper. However, one
simple possibility is for the

membrane to collapse into
a compact structure in which the layers roll into a spiral and thereby

minimise the dipolar energy.
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In conclusion, we have focused attention
on a

simple model of dipoles in membranes showing
their effects to be experimentally relevant. We have exanfined the behaviour of both perma-

nent and field induced dipoles, where in both cases we
have assumed the dipolar surface to

be of negligible thickness. Moreover, we
have made the implicit assuption that the dipoles lie

on the neutral surface of the membrane. We have neglected the "non-local" interaction of the

dipolar surfaces but rather focused attention on the perturbations of an approximately flat

unilamella membrane. As mentioned in the text, these results could be extended to describe

more accurately the behaviour of real membranes. In particular, the finite thickness, and in-

ternal dielectric and compositional properties of the membrane could be included. In addition,
throughout this work we

have assumed that the dipoles are aligned along the normal directors

of the surface. More realistically, the moments could develop some component in the plane of

the membrane. The influence of the electrostatic energy on
the fluctuation of the membrane

would then depend crucially on the degree of orientational order of the dipoles. This problem
bares sinfilarities to the role of molecular orientational order in smectic-A liquid crystals [16]
recently discussed by MacKintosh and Lubensky [4].
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