Frequency conversion with superconducting point contacts operating as oscillator-mixers and its application to the measurement of the linewidth of the Josephson current at very high frequency

G. Vernet, R. Adde

To cite this version:
G. Vernet, R. Adde. Frequency conversion with superconducting point contacts operating as oscillator-mixers and its application to the measurement of the linewidth of the Josephson current at very high frequency. Revue de Physique Appliquee, 1974, 9 (1), pp.275-278. <10.1051/rphysap:0197400901027500>. <jpa-00243754>

HAL Id: jpa-00243754
https://hal.archives-ouvertes.fr/jpa-00243754
Submitted on 1 Jan 1974

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
FREQUENCY CONVERSION WITH SUPERCONDUCTING POINT CONTACTS OPERATING AS OSCILLATOR-MIXERS AND ITS APPLICATION TO THE MEASUREMENT OF THE LINEWIDTH OF THE JOSEPHSON CURRENT AT VERY HIGH FREQUENCY

G. VERNET and R. ADDE
Institut d'Electronique Fondamentale, Laboratoire associé au CNRS
Bâtiment 220, Université Paris XIe, 91405 Orsay, France

Abstract. — The Josephson frequency conversion in the millimeter and submillimeter wave region is studied with superconducting Nb-Nb point contact junctions at 4.2 K, using the contact both as the local oscillator and the mixer with intermediate frequencies of 0.1 and 9.2 GHz. Frequency conversion signals are only detected in the latter case with a microwave receiver at 9.2 GHz in a range of Josephson frequencies between 145 and 1 600 GHz. The experiments with intermediate frequency f_i of 0.1 GHz indicate for this small value of f_i that the observed signals are not related to frequency conversion but noise effects. An analysis of the frequency conversion mechanism in a Josephson junction operated as an oscillator-mixer is proposed which includes the noise effects and also the feedback effects induced in a junction driven by a constant current source.

We have then investigated the noise properties up to 450 GHz of superconducting point-contacts using the junction as an oscillator-mixer where the Josephson current is mixed with harmonics of an externally applied signal. The emitted intermediate frequency is detected at 9.2 GHz and its linewidth is measured. In the very high frequency range the dc quasiparticle current dominates in a Josephson weak-link and we compare the corresponding theoretical linewidth calculated by Scalapino with our experimental results.

We have studied the Josephson frequency conversion in superconducting contacts operating as oscillator-mixer in the purpose of using this method to measure the fluctuations of the Josephson current at very high frequencies (several hundred gigahertz), a frequency domain where sensitive narrow band receivers are not yet easily realized. Consequently, in our experimental set up, the point-contacts are in an X-band wave guide and have no shunt parallel resistance as in the Resistive-Squid. Then these driven-current contacts are not perturbed as in a resonant cavity and all their dc parameters are measured in each experiment. The applied external signal is generally at 145 GHz but in some experiments is at 32 GHz.

Two rf detection systems were used at 0.1 and 9.2 GHz. We describe first what are the observed signals in both cases when the contact is made to oscillate at $\omega_0 = 2 eV_0/h$ ($V_0 =$ measured dc voltage) and an external signal at $\omega_i/2 \pi = 145$ GHz is applied.

1. Experimental results. — 1.1 Low intermediate frequency. — Figure 1 represents the $I-V$ characteristic with the rf induced steps and the 100 MHz signal simultaneously detected. It shows that the voltage difference between a step and a neighbouring maximum signal strongly varies and is always much larger than the $\sim \pm 0.2 \mu V$ voltage difference expected with 100 MHz if. Also there is
FIG. 1. — 100 MHz response versus voltage of a Nb-Nb contact at 4.2 K operated as a Josephson oscillator mixer irradiated at 145 GHz with the corresponding V-I characteristic recorded simultaneously. The time constant is 1 s. The broad maxima detected on either side of each step occur at voltages such that the voltage difference with the neighbouring step is between \(\sim 6 \) and 20 \(\mu \)V, and result from low frequency noise current components.

a signal near the zero step where no mixing signal is expected. Figure 2 is an expansion of the 100 MHz signal near the 3rd step recorded versus dc current \(I \), in order to better observe the details near the step. It shows that the signal is correlated with the dynamic resistance \(R_D \) (see \(\Delta V_D/\Delta I \)). More precisely, the signal is always found to be proportional to \(R_D \) with \(0 < \alpha \leq 2 \). Here on figure 2 a good fit it obtained between the signal and the theoretical curve \(S \sim R_D \) (black dots). These results and others to be published later [1] show without doubt that the 100 MHz detected signals are not the expected mixing signals between \(\omega_0 \) and \(\omega_\alpha \) and must be attributed to some noise effects. We shall come back later on their nature.

1.2 HIGH INTERMEDIATE FREQUENCY. — Figure 3 shows typical results with 9.2 GHz if corresponding to mixing between \(\omega_0 \) and the third harmonic of \(\omega_\alpha \). The I-V characteristic and the if signal are simultaneously detected during the same run. With this large if the Josephson frequencies corresponding to both maximum obey very well to the frequency conversion condition, that is here 900 \(\pm \) 19 \(\mu \)V. Figure 4 shows on the left part an enlarged view of the 9.2 GHz signal near the voltage 900 \(\pm \) 19 \(\mu \)V. The two peaks separated by 60 MHz correspond to the frequency of the superheterodyne local oscillator \(\pm 30 \) MHz. These peaks which were not resolved on figure 3 because of the sweep rate are now clearly seen and give a good idea of the resolution obtained in the method. The frequency conversion phenomenon shown with the 3rd harmonic of \(\omega_0/2 \pi = 145 \) GHz has been observed for all harmonics comprised between \(n = 1 \) and \(n = 11 \), that is up to 3.3 mV corresponding to a Josephson frequency \(\sim 1 \) 600 GHz. The right part of figure 4 shows a result obtained for the 10th harmonic (\(\omega_0/2 \pi \sim 1 \) 450 GHz).

To sum up these experimental results, we obtain frequency conversion signals with large if, but not with small if.
FREQUENCY CONVERSION WITH SUPERCONDUCTING POINT CONTACTS

2. Interpretation of the different nature of the experimental results with high and low \(i_f \). — To explain the differences of the observed signals in the experiments with low and high \(i_f \) we find necessary to take into account not only the fluctuation phenomena linked with the current flow in the junction, but also the feedback effects generated by the contact parallel impedance, whose effects are considered in a phenomenological way. Consequently we write \(V(t) \) the time dependent voltage across the driven current contact as follows:

\[
V(t) = V_0 + V_1(t, \omega_0) + V_2(t, \omega_0) + V_3(t, \omega_i) + V_4(t)
\]

where \(V_0 \) is the mean dc voltage, \(V_1(t, \omega_0) \) the ac voltage due to irradiation by the external signal at frequency \(\omega_0 \) and we assume that they are the main terms. Feedback generated by the contact parallel impedance is only taken into account by the components \(V_2(t, \omega_0) \) and \(V_3(t, \omega_i) \). Noise is included with \(V_4(t) \). Introducing \(V(t) \) in the expression of the Josephson current and applying the FM noise theory developed by Stewart [2] the calculations give the following result [1]: beside mixing current components at the frequencies \(\omega_i = | \omega_0 \pm n \omega_i | \), low frequency noise components appear in the development in Bessel-Fourier series of the Josephson current. The ratio \(N \) of the detected power corresponding to the low frequency fluctuation current components to the detected power corresponding to the frequency conversion signal \(\omega_i \) is in first order proportional to \((\Delta \omega_i/\omega_i)^2 \). Frequency conversion with a Josephson oscillator-mixer may be observed under these conditions. But when \(\omega_0 \sim \Delta \omega_0 \) (e.g. with \(i_f \sim 100 \text{ MHz} \)) \(N \) is of order of unity and the mixing current components are buried in noise current components. This interpretation allows to explain fairly well all the characteristics of the observed 100 MHz signals and confirms that they are not mixing signals but are related to the detection of noise current components.

The presented theoretical interpretation confirms the fact that up to now we believe that the only cases where frequency conversion at high frequencies with a Josephson oscillator mixer has been demonstrated without any ambiguity are experiments using high \(i_f \) (\(\sim 9 \text{ GHz} \)) that is the experiments of Longacre [3], [4] and ours. In these experiments, the noise effects come out by a lowering of the detected level and a broadening of the signal linewidth. Our analysis points out that it is difficult to observe the true frequency conversion signal with current polarized contacts whose \(I V \) characteristic often present large \(R_0 \) in the vicinity of the steps and in this situation the condition \(\Delta \omega_i \ll \omega_0 = \omega_i \) is not easily realized. Consequently it seems to us that the use of low \(i_f \) for a high frequency Josephson oscillator-mixer, even with a Resistive-Squid to reduce the fluctuations, may not give necessarily frequency conversion signals. In the latter case, as the dc voltage to be applied is rather large and the currents necessary to draw the shunt are very high (larger than 1 A) [5], bias current fluctuations may also be of importance. Then, one must make experimentally sure that the Josephson linewidth of the device is much smaller than the \(i_f \), and that signals are seen at both Josephson frequen-

![Fig. 5. Experimental reduced Josephson oscillation linewidth of superconducting point contacts as a function of dc voltage compared to the theoretical calculation by Scalapino and Stephen. The white circle is obtained by direct observation of the emission at the fundamental Josephson frequency (9.2 GHz). The other points correspond to linewidth measurements of the intermediate frequency radiated at 9.2 GHz by point-contacts exposed to external radiations at 32 and 145 GHz.](image-url)
cies $\omega_0 = \omega_e \pm n\omega_i$ to have a guarantee that the if observed signals are frequency conversion ones.

3. Fluctuation of the Josephson current at very high frequencies. — In figure 5 the solid lines show as a function of the dc voltage (or Josephson frequency) the theoretical reduced oscillation linewidth for a Josephson junction as determined by Scalapino [9] and Stephen [10]. The two lines on the right part correspond to the two limits $I = I_q$ (quasiparticle current) and $I = I_p$ (pair current) [6]. As the I-V characteristic indicates that at high voltage the pair current is much smaller than the quasiparticle current, one expects experimental results to fit the lower line. The different experimental points correspond to Josephson linewidth at frequencies 32 ± 9.2 GHz (square dots), 145 ± 9.2 GHz (black triangular dot), $3 \times 145 \pm 9.2$ GHz (white triangular dot) measured with point-contacts operated as oscillator-mixers with high if (9.2 GHz) and at 9.2 GHz owing to direct emission from point-contacts [7]. For all the measurements corresponding to the use of the oscillator-mixer method the points are above the theoretical curve by a systematic factor of 1.5 to 2 in the best conditions, that is when the measurements are done with the minimum external signal power [8]. We think that this discrepancy has its origin in the low frequency components described previously which are neglected in the calculation of the Josephson linewidth. When this remark is taken into account we have a reasonable agreement between the experimental points and theoretical results.

References

[6] The Theoretical expression for the Josephson bandwidth is

$$\Delta f = \frac{\Delta \omega_0}{2\pi} = 2\pi \left(\frac{2e}{h}\right)^2 R_0 e \left[I_q \coth \left(\frac{eV_0}{2kT}\right) + I_p \coth \left(\frac{eV_0}{kT}\right) \right].$$