
https://hal.archives-ouvertes.fr/jpa-00226499
https://hal.archives-ouvertes.fr


JOURNAL DE PHYSIQUE 
Colloque C2, supplement au n o  6, Tome 48, juin 1987 

HEAVY ION COLLISIONS IN THREE-DIMENSIONAL CALCULATIONS BY Q U A N T m  
TRANSPORT EQUATIONS 

H. S . KOHLER( ) and B. S . NILSSON* , 

Physics Department, University of Arizona, Tucson, AZ 85721, 
U.S.A. 
"The Niels Bohr Institute, University of Copenhagen, 
DK-2100 Copenhagen 0, Denmark 

Rdsume - Un equation transport quantique avec les collisions deux corps inclus par un 
methode relaxation du temps et applique deja a collisions 2-D (plaque) est ici enlarger a 
calculs 3-D. le matrix densitd est a temp=O construit des fonctions d'onde auto-coherent et 
est evolve en coordinee Cartesienne. Le relation a methodes classique BUU (ou bien VUU) 
est discutd. Des resultats est montr6 pour des collisions 160 a 84 et 21 MeV/A energies lab. 

Abstract - A quantum transport equation with two-body collisions included via a time- 
relaxation method applied earlier to two-dimensional (2-D) (slab) collisions is now extended 
to three-dimensional (3-D) calculations. The density matrix is at time=O constructed from 
self-consistent field wave functions and is time evolved in Cartesian coordinates. The 
relation to the classical BUU (or VUU) method(s) is discussed. Results are shown for 1 6 0  

collisions at 84 and 21 MeV/A lab energies. 

r. Introduction 

A formalism based on a microscopic theory for the dynamics of fermi quantum systems has 
been presented in several previous publications [I]. Of special interest is the problem of collisions 
between heavy ions. Our previous calcuIations were restricted to a 2-D geometry; i.e. "slabs" of 
nuclear matter. Some important physics was already deduced from those calculations. 
Equilibration through thermalisation was clearly illustrated by presenting the results (by Wigner 
functions) in phase-space [2]. The importance of including both the two-body collisions and the 
mean field to obtain a perpendicular flow of nuclear matter in H.I. collisions of a magnitude 
observed experimentally was shown for the first time [3]. Neither the mean field alone, as in 
TDHF [4], nor the cascade calculations that included only the two-body collisions [5] (but neglected 
the mean field) gives sufficient perpendicular flow. 

The formalism is based on a quantum equation describing the time evolvement of the one- 
body density matrix p, 

There exists an extensive literature on the formalism involving this equation [6]. U(r) is the mean 
field, and the left-hand side of this equation is exactly the TDHF operator, although the TDHF 
equation is customarily written as a time evolvement of the single nucleon wave functions; initially 
a single Slater determinant. Collisions by the IQ operator implies a mixing with orbits outside this 
Slater determinant. (One can, in principle, work with the single-nucleon wave functions and 
calculate this mixing as several authors have done in the past. This is very awkward, however. 

(')supported i n  part by NSF grant number PHY-8604602 

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1987232

http://www.edpsciences.org
http://dx.doi.org/10.1051/jphyscol:1987232


C2-226 JOURNAL DE PHY SlQUE 

especially if one likes to include continuum states, which surely become important to describe 
emission and evaporation. It is therefore of great advantage to work with the density matrix, as in 
Eq. (I).) The quantum collision operator Iq has an important consequence. Nucleons are now 
propagating through an absorptive medium; i.e. a complex potential field. This will affect the 
energy conservation so that nucleons may scatter into single-particle states not reachable with 
energy conservation. Particles of high energy can come out of a collision region quicker than if 
energy is conserved in individual collisions. Danielewicz [7] has isolated this effect by studying an 
infinite medium (in which the real part of the-mean field does not contribute to the scattering). 
The initial system is that of two fermi spheres. The difference between the classical (Uehling- 
Uhlenbeck) and quantum results at some early time is very large, as shown in Fig. 1. There is, of 
course, a convergence of the results as the system equilibrates toward one hot fermi sphere. The 
quantum result is, in fact, very nicely reproduced by the time-relaxation method [S]. This method 
is therefore used in our present work, and the collision term is calculated from 

where T is the relaxation time. 
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Fig. 1. Distribution of nucleons perpendicular to the beam axis as a function of 
energy (MeV) at two times after collision. Dotted curve is by UUV, the short-dashed 
by quantum [7] and long-dashed by relaxation-time collision operator, Eq. (2). 

Extensive calculations on H.I. collisions have recently been done in the classical limit by the 
VUU (or BUU) equations. This implies two separate approximations in the quantum equation (1); 
one involves the scattering by the mean field and the other the two-body collisions. The first is the 
approximation 

U(r) - U(r') = (r-r') VU(r) . (3) 

The second is the replacement of the collision term by an energy-conserving scattering term; the 
Uehling-Uhlenbeck term. A direct comparison between the classical and the quantum treatment 
still remains to be done. Qualitative agreement between TDHF and the classical Vlassov equations 
has been demonstrated [9]. It was, in fact. already inferred in the first study of Wigner functions 
[lo]. Specific quantum effects are expected to show up in some cases. A direct comparison (or as 
direct as is possible) is planned. The mean-field approximation (3) can trivially be done in the 
computer code, which then, however, becomes very unstable. This numerical instability is in fact a 
characteristic of the Vlassov equation, and one may wonder if this approximation then is 
worthwhile. 

2. Formalism 

Much of the basic formalism has been presented in previous publications [I]. Only some 
essential formulae needed for the calculations~are shown here, especially as pertains to the 3-D 
geometry. Some improvements have also been made, e.g. in the definition of "tempeiature." In all 
calculations presented here, the initial matrix will be that of two non-interacting 160 nuclei in their 
respective ground states. This density is constructed from wave functions obtained by a 3-D 
(Cartesian coordinates) Hartree(-Fock) calculation performed by complex time stepping. The two- 
nucleon interaction is given by a local density-dependent force (see Chap. 3). Coulomb forces are 
included. The matrices are boosted in conventional fashion. The ensuing time evolvement is given 
by Eqs. (I) and (2). We found it convenient to write the density matrix as a function p(r,x;t), so 
that the Fourier transform with respect to x gives the Wigner function W(r,p;t). The density matrix 



p,(r,x;t) is a local fermi distribution 

where p(R;t) is the chemical potential, j(R;t) is the current, and Tp(R,t) is the temperature. These 
five quantities are uniquely defined by the five invariants of the two-nucleon collision: Particle 
number, momenta (3). and energy. (In the present work, the energy will be kinetic energy only 
because our mean field is local.) To find these quantites, we first need to express the particle 
density n(R;t), current j(R;t), and enegy density E(R,t) in terms of the density matrix. Thus 

R2 1 E(R;t) = - - [(Vk - V:) ~(R.r;t)l~=, (7) 
2m 4 

E(R,t) is the total kinetic energy of motion. Subtracting the energy of macroscopic motion, we get 
the kinetic energy of internal motion e(R,t), 

For a fermi distribution with given temperature T and chemical potential p, the density and energy 
is obtained from the zero and second moments of the monentum. T and p are then calculated by 
interpolation. At zero temperature, 

where ei is the Thomas-Fermi energy. This expression is to be compared with the energy density 
e(R;t) in Eq. (8) calculated from the density matrix. The difference e,(R;t) - e(R,t) - e,(R,t) gives 
the local excitation energy from which a local temperature is calculated using the formalism T,. It 
is used when calculating the relaxation time (which is allowed to depend on density and 
temperature [I]), and it will be displayed in some plots showing temperature distributions in the 
heavy ion system. It is, of course, not "the" TEMPERATURE, because that would apply only if the 
system was in equilibrium, or at least in near local equilibrium. In our case. this is not the 
situation other than in extreme cases. One such case is the initial state when each nucleus is 
assumed to be in the ground state; i.e. at zero temperature. 

It is desirable to define another temperature Tp for the construction of the density matrix. 
The excitation energy density is calculated for this purpose from ep(R,t) = e(R,t) - e,(R;t), i.e. 
without the surface correction. This means, in effect. that the density matrix in the surface of a 
nucleus (even at zero temperature) resembles that of heated nuclear matter. This effect is well- 
known from the works of Schuck and coworkers [12]. 

3. Computing Methods 

The density matrix is given by p(X,Y,Z,x,y,z;t) in a Cartesian coordinate system on a I-fm 
mesh for all coordinates. The X-Y plane is chosen to be the reaction plane. The reaction is 
assumed to take place inside a rectangular box. the size of which depends on the collision that is 
studied. For a head-on collision of 160 on "0, it is chosen to be 28 fm along the beam axis (X 
axis). Y and Z axes are chosen in this case to be 19 fm and 18 fm. respectively, while the x.y.z 
axes are all chosen to be 26 fm. The symmetry properties of the density matrix and the symmetry 
of the collision will allow a reduction in mesh points. The density matrix is assumed to be zero on 
the walls of the box and at the end points of the r axis. These zeroes are not stored in the array p. 
We do not distinguish between neutrons and protons: although a Coulomb potential is included. 
The size of the six-dimensional array is then 14*18*9*11*11*6*2 - 5645376 words. (The density 
matrix is complex; therefore, a factor of 2.) 
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The mean field is calculated from a density-dependent two-nucleon potential given by 

with to = -1072.14 MeV, t, = 14203 MeV fm-l, V, = -517.012 MeV, a = 0.45979 fm, and P = 16/15 
+ 4/15 P,. This interaction gives bulk properties of nuclear matter: volume energy = -15.77 MeV, 
surface energy 18.8 MeV, compressibility = 228 MeV. Surface thickness (obtained from semi- 
infinite self-consistent calculation) is 2.4 fm. 

4. Calculations 

Results will be displayed of 160 on 1 6 0  at 5.25 and 21 MeVIA in the c.m. coordinate system 
(21 and 84 MeV/A lab energy, respectively) at some selected impact parameters. Shown will be 
contour plots of the nucleon density and of the temperature T, in the scattering plane. Also shown 
will be contour plots of momentum distributions of nucleons in the p,-py plane; i.e, the Wigner 
function integrated over all position coordinates and over pZ. (The z direction is perpendicular to 
the scattering plane.) Mean values of the pressure tensors p,,, pyy. and pz in the system will also 
be displayed. 

The first set of calculations are chosen to show the effect of the collision term. Figures 2-6 
are contour plots with the distance between contours given by "incr." Units are fm. MeV. and 

s. These are head-on collisions, and without the collision term, the time evolvement of 
density (Fig. 2) shows a transparency typical to TDHF. The maximum density seen is 0.20 at t = 
0.10. With collisions (Fig. 3). there are also two distinguishable concentrations of particles emerging 
from the reaction zone, but they are of very low density. The system becomes practically gazified. 
The two low-density fragments are, oddly enough, octupole shaped. The maximum density is now 
slightly higher. It is 0.21 at t = 0.08. The temperature T, is shown in Fig. 4. There is initially a 
hot zone in the region of contact. The highest temperature is 29 MeV at t = 0.02. The excitation 
quickly becomes rather uniform over the whole system. This is mainly through convection, as the 
nucleons are allowed to stream into unoccupied states. There are notably some regions of high 
temperature in the "ears" seen formed perpendicular to the beam direction at t = 0.08. These are 
also regions of high pressure, and at t = 0.12, the system has consequently expanded 
perpendicularly. The highest macroscopic flux of particles seen in the reaction due to this 
expansion is 0.09 nucleons/fm2 at t = 0.10. There are also some regions of high temperature 
associated with "fermi jet" fragments seen at forward and backward scattering. At the later stage 
of the reaction, the system has expanded to a density that is less than 0.03 nucleons/fm2 (notice the 
change in scale at t > 0.16) and the temperature has dropped to a maximum of about 15 MeV. At 
the latest time calculated, t = 0.24, there are two clouds of low-density nucleons moving in opposite 
directions along the beam axis. each with an energy of less than 10 MeV/A. It would, of course. 
be of interest to follow these fragments in time to see if the theory would predict evaporation, 
cooling, condensation, etc. (Calculations in slab-geometry show tkat condensation may occur even 
in a mean-field calculation [I 11.) 

Figures 5 and 6 show the momentum distributions for the same cases. In the TDHF case 
(Fig. 5). there is a preservation of the elongation of the distribution, while the two-body collisions 
(Fig. 6) causes a redistribution (equilibration) towards isotropy. Some further observations are 
worth pointing out. At t = 0.08, the valley between the two initial peaks in Fig. 5 has deepened. 
This is reminiscent of the valley seen in earlier slab collisions [2]. The cause could already be 
attributed at that time to the effect of the time evolvement of the mean field. At t = 0.16, there are 
added high momentum particles seen. At t = 0.24, the two peaks in the distribution are gone, 
indicating that the two fragments have been heated. A11 scatterings are due to collisions with the 
mean field, so the heating is not associated with an entropy increase, but is heated only in the 
coarse-grained sense. The elongation is still preserved. When two-body collisions are included, the 
result is different, as shown in Fig. 6. The initial distribution due to two zero-temperature 160 is 
continuously changing to one hot fermi sphere corresponding to a complete thermalisation. Closer 
observation shows a slight deformation (elongation) related to the observation made above, that two 
distinguishable fragments are ejected along the beam axis. Similar information is obtained from 
looking at the pressures shown in Fig. 7. In slab collisions without two-body collisions, there is no 
coupling between pressures pyy or (p,) and p,,, i.e. pn and p, were constant. Mean-field effects 
cause some coupling for a f in~te system, as seen in Fig. 7(a), but it is much stronger when two-body 
collisions are included, as seen in Fig. 7(b). 
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Fig. 2. Density without Fig. 3. Density with Fig. 4. Temperature (actually 
collision term. collision term. excitation energy) with collision term. 

Figure 8 shows the collision with an impact parameter of 0.64 fm (L=20) at the same energy; 
21 MeV. 

At 5.25 MeV, the two 160 nuclei fuse in head-on collisions (Fig., 9). The fused system 
shows an elongated shape performing slow collective motions. The momentum distribution (Fig. 10) 
is of particular interest. The system is not showing a complete thermal equilibrium. The 
distribution rather corresponds to a specific quantum state defined by the mean field. Note that 
this is not the ground state of S-32, but rather some excited state with a temperature of 5-10 MeV. 

5. Discussion 

One purpose of the calculations presented here is a feasibility study: can the calcuIations 
be carried through, in practice, on available computers? The answer has been every positive. The 
calculations are very stable; more so than the previous slab calculations. Storage space and 
computing time requirements are large but reasonable. Calculations have only been done for 
symmetric 160 collisions. Extension to asymmetric collisions and larger nuclei is very feasible. One 
difference from "traditional" TDHF using wave functions is that in the density-matrix formulation, 
storage requirements will increase only with the size of the box. but not with the size of the 
nucleus. 

Agreement between our model and the classical B(V)UU model is expected to be qualitative. 
The essential difference is in method rather than content. Detailed comparison will, however. no 
doubt reveal some differences yet to be determined. The differences would stem both from the 
mean field and the two-body collisions. We treat not only the collisions with the mean field, but 
also the two-body collisions quantum mechanically. The latter allows nucleons to be scattered off 
the energy shell while still conserving overall energy. This affects the distribution of momenta at 
an early time of the equilibration process. as shown by Fig. I. Exactly how this will affect the 
results cannot be stated without numerical comparison. The simplest way to make such a 
comparison would probably be to use the relaxation method with B(V)UU. It would be of interest 
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to do the U(r)-U(r') expansion (Eq. 3) of the mean-field term in our equation, which would 
immediately establish the relation to the classical equation. This is hampered, however, by the fact 
that the ensuing equation is mathematically different requiring different computing methods. This 
problem is, however, of interest not the least from a mathematical point of view. 
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Fig. 5. Without collision term 
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Fig. 6. With collision term 

These plots are on different scales. 
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(a) Without collision term (b) With collision term 

Fig. 7. Unmarked curves show pxx: circles pyy. and triangles p,. 
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Fig. 8. With collision term. Impact Fig. 9. With collision term 
parameter is 0.64 fm. 
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Fig. 10. Momentum distribution. 



C2-232 JOURNAL DE PHYSIQUE 

The question is often raised whether the equilibrating mechanism is localized to the surface 
of the nucleus or not. We plan to investigate this within our model. For now. let us only recall 
that the collision rate due to the two-body collision term in our model is given by Eq. (2). T 

decreases with increasing temperature. but the collision rate may still not increase; this also requires 
p # p,. Chances for this to be true is larger in the surface with nucleons "sloshing" against the 
nuclear wall and excitations taking place. Related to this is the observation that a mean-field 
gradient (i.e. the surface) affects the momentum distribution in such a way that a "valley" results 
(Fig. (5) and Ref. 2). This valley means that the system is driven towards a state of non- 
equilibrium, resulting in a higher rate of two-body collisions to re-establish the equilibrium. The 
dissipation discussed here is, it seems, a coupling between wall motion and two-body collisions; the 
motion relative to the wall creating a state of non-equilibrium. This phenomenon is. of course. 
conceptually related to the famous wall formula of Swiatecki, although we stress the importance of 
two-body collisions to establish equilibrium. We hope to be able to pursue these ideas by 
calculations. It seems to be a topic of interest and, actually, rather easily investigated within our 
model. 

The model is now ready to be tested against experimental data such as momentum transfers. 
photon and pion production, and fusion. Although primarily designed for collisions of nuclei above 
20 MeV/A, it would be of interest to extend the calculations to fission and fusion phenomena at 
lower energies where the importance of surface collisions has been demonstrated by Nix and Sierk 
(Los Alamos preprint). 
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