Lattice distortions measured in actinide ferromagnets PuP, NpFe2 and NpNi2

To cite this version:

HAL Id: jpa-00218817
https://hal.archives-ouvertes.fr/jpa-00218817
Submitted on 1 Jan 1979

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Lattice distortions measured in actinide ferromagnets PuP, NpFe$_2$ and NpNi$_2$ (*)

Materials Science Div., Argonne Nat. Lab., Argonne, IL 60439, U.S.A.

Abstract. — X-ray low-temperature measurements indicate that: (1) cubic PuP distorts to tetragonal below $T_c = 125$ K with accompanying line broadening, (2) NpFe$_2$ exhibits a rhombohedral angle distortion from 60° to 60.53° below $T_c \sim 500$ K, and (3) in NpNi$_2$ the rhombohedral angle changes 0.19° (± 0.02°) below $T_c = 32$ K.

Actinide U and Np ferromagnets have been shown [1] to exhibit a large distortion from cubic symmetry below T_c, with all previous examples exhibiting a rhombohedral symmetry compatible with the (111) easy axes of magnetization found in these compounds. We report here the results of X-ray experiments at low temperature to examine the symmetry of PuP ($T_c = 125$ K), NpFe$_2$ ($T_c \sim 500$ K), and NpNi$_2$ ($T_c = 32$ K).

In PuP a (100) easy axis was found with neutron measurements [2] and, as expected, we find a tetragonal distortion such that

$$(c - a)/a = -(31 \pm 1) \times 10^{-4}$$

at 5 K. The variation of the lattice parameters and the strain are shown as functions of temperature in figures 1 and 2, respectively. Below T_c the diffraction peaks also broaden, presumably a consequence of strain induced by the magnetoelastic interactions (see Fig. 3).

In NpFe$_2$ neutron experiments [3] determined a (111) easy axis and we find a rhombohedral distortion such that the rhombohedral angle changes from 60° to 60.53°. An alternative description of the rhombohedral distortion is to define a length c as a distance along the unique trigonal axis and a as a distance in the plane perpendicular to c such that $c/a = 1.00$ in the cubic phase. This definition is especially useful when comparing the magnitude of trigonal and tetragonal distortions. In this case the strain in NpFe$_2$ is $-(120 \pm 5) \times 10^{-4}$, which is the largest found in any actinide compound.

In NpNi$_2$ the quality of the powder patterns is rather poor, but we estimate the change in the
rhombohedral angle to be $0.19^\circ \pm 0.02^\circ$ from the broadening of the lines below T_c. The absolute value of the strain is then $(43 \pm 5) \times 10^{-5}$. Our results are compatible with the theory that all actinide ferromagnets exhibiting localized $5f$ moments reduce their symmetry below T_c as a consequence of strong magnetoelastic interactions. PuP is the first system to be found with a tetragonal distortion, and NpFe$_2$ has the largest rhombohedral distortion found so far.

The behaviour of the ferromagnetic compounds is in contrast to the actinide antiferromagnets, in which the distortions are either small or negligible [1, 4]. This difference between the ferro- and antiferromagnets is not understood.

Fig. 3. — Diffraction peak broadening observed in selected reflections from PuP as a function of temperature.

References