THE QUADRUPole INTERATION IN ZINC METAL
W. Potzel, A. Forster, G. Kalvius

To cite this version:
W. Potzel, A. Forster, G. Kalvius. THE QUADRUPole INTERATION IN ZINC METAL. Journal de Physique Colloques, 1979, 40 (C2), pp.C2-29-C2-30. <10.1051/jphyscol:1979208>. <jpa-00218466>

HAL Id: jpa-00218466
https://hal.archives-ouvertes.fr/jpa-00218466
Submitted on 1 Jan 1979

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
THE QUADRUPOLE INTERACTION IN ZINC METAL

W. Potzel, A. Forster and G. M. Kalvius

Physik Department, Technische Universität München, D-8046 Garching, Germany

Résumé. — Des spectres Mössbauer du zinc métal ont été obtenus avec la transition 1/2-5/2 (93 keV) de 67Zn. On trouve que le gradient de champ électrique est de symétrie axiale avec une valeur de eq = +(3.02 ± 0.05) \times 10^{17} \text{ V/cm}^2.

Abstract. — Mössbauer experiments have been performed with the 93.3 keV 1/2-5/2 transition in 67Zn metal. The electric field gradient was found to be axially symmetric with a value of eq = +(3.02 ± 0.05) \times 10^{17} \text{ V/cm}^2.

The 93.3 keV resonance in 67Zn possesses an extreme sensitivity for the measurement of hyperfine interactions. The nuclear Zeeman splitting can be observed in magnetic fields of -100 Oe/1. The center shifts of the resonance patterns of various zinc chalcogenides /2,3/ which all contain the zinc atom in the +2 oxidation state are very large compared to the line width. The quadrupole interaction of the spin 5/2 groundstate of 67Zn (the excited state has I = 3/2 and thus shows no quadrupole splitting) has been thoroughly studied in ZnO /4/. Only incomplete data were available for zinc metal /5/. In this note we report on measurements to determine the electric field gradient in zinc metal.

For a source we used 67Ga in Cu. The 67Ga (T1/2 = 78h.) activity was obtained in situ by irradiation of a copper foil with 35 MeV α-particles. The foils were not annealed after irradiation. A single resonance line is emitted.

The absorber consisted of Zn metal powder, enriched to 89.7% in 67Zn, which was annealed at 650 K in argon atmosphere for 12 h. and thereafter slowly (30 K/h.) cooled to room temperature. The absorber thickness was 1.4g 67Zn/cm^2.

To generate Doppler velocities in the range from ~1μm/s to a few 100μm/s a piezoelectric quartz spectrometer /6/ was used, which produced a sinusoidal motion with a frequency of ~500 Hertz. Data were collected in a modified time mode with a PDP8 computer via a fast interface /7,8/, especially designed for high channel advance rates. The γ-rays were detected by a NaI-scintillation counter of 2mm thickness. The spectrometer was calibrated using the known /4/ quadrupole splitting in ZnO.

This work has been supported by the Bundesministerium für Forschung und Technologie and by the Kernforschungszentrum Karlsruhe.

Figure 1 displays a Mössbauer absorption spectrum scanned to a maximum velocity of ±65μm/s. The computer fit gives the following results (only the statistical errors are given):
- center shift S = (15.1 ± 0.2)μm/s
- quadrupole interaction e²qQ = +(165 ± 3)kHz = (12.4 ± 0.2) MHz
- average full width at half maximum W = (2.3 ± 0.2)μm/s
- average absorption area A = (7.6 ± 0.9)\times 10^{-6} W.

Fig. 1 : Mössbauer spectrum at 4.2 K of a 67GaCu source and a polycrystalline 67Zn metal absorber.

Within the accuracy of our experiment the separation between the three resonance lines is 2:1, indicating that the asymmetry parameter η = 0. Using the known /9/ quadrupole moment of Q67(5/2) = 0.17b we find for the electric field gradient in Zn metal, eq = +(3.02 ± 0.05) \times 10^{17} \text{ V/cm}^2. This value is in fair agreement with a recent theoretical calculation /10/, which gave eq = +(4.5 ± 0.60) \times 10^{17} \text{ V/cm}^2.

Using the results of previous /11, 12/ measurements of quadrupole interactions by perturbed angular correlations and nuclear orientation one may derive the following quadrupole moments :
- for the spin-9/2 state in 67Zn : Q67(9/2) = +(0.68 ± 0.03)b
for the spin-9/2 state in 69Zn : $Q^6(9/2) = -(0.38 \pm 0.05)b$

Thermodynamic and inelastic neutron scattering data give evidence for a strong anisotropy of the mean square displacement $\langle x^2 \rangle$ of the Zn atoms in hexagonal metal. This should lead to differences in the intensities of the hyperfine lines due to the Goldanskii-Karyagin effect. Although the data of figure 1 give some indication of such a behaviour a definite conclusion cannot be drawn within the present limits of error.

We have performed additional experiments using a 67GaCu source and an enriched 67ZnO absorber. The transmission spectrum shows a threeline pattern due to the quadrupole interaction in ZnO. Using the known Debye-temperature for ZnO ($\Theta_D = 309$ K) we deduce an effective Debye-temperature for zinc metal of $\Theta_D \approx 240$ K. This value is considerably lower than the results derived from both, calorimetric ($\Theta_D = 322$ K) and elastic data ($\Theta_D = 328$ K). This discrepancy could be due to lattice defects in our absorber of Zn metal powder. Zn atoms on (or close to) strongly distorted lattice sites will most likely produce a much larger and smeared out quadrupole pattern, which either escapes detection within the velocity range of the present experiment or just contributes to the background intensity. For 67ZnCu we find an effective recoilfree fraction of 0.15, which corresponds to a lower limit for the Debye-temperature of $\Theta_D \geq 260$ K. This again is a much lower value than the Debye-temperature of the pure copper matrix ($\Theta_D = 343$ K).

References