LUMINESCENCE AND TRAPPING CENTRES IN PURE AND Cd DOPED SILVER CHLORIDE CRYSTALS

W. Polzin, W. Assmus, F. Granzer

To cite this version:

HAL Id: jpa-00216899
https://hal.archives-ouvertes.fr/jpa-00216899
Submitted on 1 Jan 1976

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
LUMINESCENCE AND TRAPPING CENTRES IN PURE AND Cd DOPED SILVER CHLORIDE CRYSTALS (*)

W. POLZIN, W. ASSMUS (**), F. GRANZER
Institut für Angewandte Physik D-6000 Frankfurt/Main, Robert-Mayer-Straße 2-4, FRG

Résumé. — Nous avons étudié par luminescence, thermoluminescence et RPE la nature du centre de la luminescence dans les monocristaux de chlorure d’argent purs et dopés avec Cd²⁺. Les résultats montrent, que le centre Ag²⁺ (trou autopiégé) est un centre efficace de luminescence seulement au-dessous de \(T = 60 \) K. Aux températures au-dessus de \(T = 60 \) K la formation du spectre de la luminescence dépend fortement du traitement thermique des échantillons. Dans les cristaux dopés avec Cd²⁺ la bande de luminescence est décalée vers les grandes longueurs d’onde, peut-être par la présence de précipitations d’une phase enrichie de cadmium. En outre nos expériences ont mis en évidence, que les pièges les plus efficaces sont de petits agrégats d’argent.

Abstract. — Luminescence spectra and glow curves of differently treated pure and Cd doped AgCl crystals at different temperatures were compared with ESR measurements to determine the nature of the luminescence centres. It is shown that above 60 K the Ag²⁺ centre can probably not act as a radiant recombination centre. At \(T > 60 \) K the formation of the luminescence bands is greatly influenced by the thermal treatment of the samples. On doped crystals a Cd-rich precipitation may be responsible for a shift in the luminescence maximum. Silver specks are supposed to be the predominant traps in AgCl crystals.

1. Introduction. — The luminescence spectra of pure AgCl consist of one or two bands, a blue or blue-green and in some cases a red one. The latter is referred to the existence of Ag centres. The blue-green emission at LNT peaks at values ranging from 485 to 530 nm as reported by several workers [1, 2, 3], the red one between 610 and 650 nm [1, 4, 5]. The maximum of luminescence at LHeT or LHT is found at 510 (± 5) nm [6, 7].

While up to the end of the sixties, but also in a newer publication [8] a so-called V centre (a hole trapped at a negative Ag⁺ vacancy) has been favoured as a recombination centre responsible for the blue-green band [1, 2], in most of the recent papers (a summary is found in [9]) the luminescence is attributed to a recombination at a Ag²⁺ centre (self-trapped hole) or to a localized exciton, respectively. The Ag²⁺ centre is assumed to be stable only during UV irradiation at \(T \leq 50 \) K [9] or up to 77 K [10] and 120 K [11], respectively, if doped with electron traps e. g. Cu²⁺. On the other hand luminescence of AgCl crystals has still been observed up to 200 K [2, 11], where the Ag²⁺ should no longer exist. Therefore it seems to be worthwhile to get more information about the nature of the centres. This can be done by comparing ESR and luminescence measurements. To facilitate the interpretation of the luminescence spectra of pure crystals, additional luminescence spectra and glow curves of differently thermal treated doped and pure crystals have been recorded.

2. Experimental procedure. — 2.1 Crystal preparation. — The crystals used in the ESR and partly in the luminescence measurements were grown from AgCl powder (specpure 99.999 % from Johnson Matthey and Co, London) by means of the Bridgman method in chlorine atmosphere. The samples required for the ESR measurements were heat-treated at about 400 °C for about two days in chlorine or argon atmosphere for some hours or days at 400 °C, and cooled down by different rates (100°/min to 10°/h). Most of the luminescence experiments were carried out with sheet crystals, individually doped up to 5 000 ppm Cd²⁺. These crystals were grown by a modified sandwich method, described elsewhere [12, 13, 14].

If necessary the samples used for the luminescence measurements were annealed in chlorine or argon atmosphere for some hours or days at 400 °C, and cooled down by different rates (100°/min to 10°/h). To exclude the influence of uncontrolled residual impurities, some measurements were performed with sheet crystals made of the purest available material. This AgCl was prepared by direct synthesis of silver
C7-184 W. POLZIN, W. ASSMUS, F. GRANZER

and chlorine in vacuum with a guaranteed impurity
of 0.1 ppm (1).

2.2 APPARATUS. — The ESR measurements were
performed in the X band with a Varian EPR spec-
trometer. The variable temperature cryostat (14 K
up to room temperature) has been developed in our
laboratory. For optical excitation the crystals were
illuminated by a monochromatic light (368 nm)
filtered from a 150 W xenon lamp.

For luminescence studies the sample were excited
with steady UV radiation from a 45 W high pressure
mercury lamp with stabilized lightarc. The light with
an intensity of \(1.6 \times 10^{15}\) quanta/cm\(^2\).s, was filtered
to isolate the 365 nm emission line.

The luminescence is passed through a Zeiss mono-
chromator M 4 Q III to a photomultiplier tube
-HTV R 500) sensitive from 180 to 750 nm. To
prevent entry of excitation radiation into the detecting
system, UV absorption filters have been placed
between the cryostat and the monochromator.

All luminescence measurements were performed
with the optical Oxford continuous flow cryostat
system CF 104 in a temperature range from 10 to
200 K.

The luminescence spectra are corrected with respect
to the spectral sensitivity of the photomultiplier.
By reason of the low intensity the glow curves were
normally recorded integrally or using only some
colour filters.

3. Results. — 3.1 ESR MEASUREMENTS. — The
crystals to be measured were mounted in the cryostat
with one of the \(< 100>\) orientations parallel to the
external magnetic field. Without irradiation no ESR
spectrum at \(T = 20\) K was observed. When the samples
were irradiated with UV light, the ESR spectrum
shown in figure 1 is obtained. It is the characteristic
spectrum of the \(\text{Ag}^{2+}\) centre. If the UV light is
switched off, the \(\text{Ag}^{2+}\) further remains stable at a
temperature ranging from 20 to 37 K (Fig. 2, curve 1).

![Fig. 1 — ESR spectrum of the \(\text{Ag}^{2+}\) centre in \(\text{AgCl}\) with \(H/100\).](image)

Above 37 K the intensity of the ESR lines and there-
fore the number of the \(\text{Ag}^{2+}\) centres quickly decreased.
Above 45 K they disappeared completely. If the
sample was continuously UV irradiated once more
the ESR spectrum of the \(\text{Ag}^{2+}\) centre was observed
again up to 60 K.

If the crystal is slowly warmed up from 20 K during
the UV irradiation (Fig. 2, curve 2) the concentration
of the \(\text{Ag}^{2+}\) centres at first strongly increases, peaks
at 40 K and decreases again. Above 60 K the ESR
signal has disappeared. The strong increase in intensity
during the warming up can only be attributed to an
increase of the concentration of the \(\text{Ag}^{2+}\) centres by
the simultaneous UV irradiation. It cannot be caused
by saturation effects at low temperatures, for these
ought to result in a corresponding increase of curve 1
in figure 2 (not irradiated sample 1).

The ESR signal at \(T > 60\) K disappears either by
the transition of the \(\text{Ag}^{2+}\) in a state not observable
with ESR measurements (e. g. a dynamic Jahn-Teller
effect) or by electron-hole recombination. To decide
whether the first or the second process takes place,
two further measurements were carried out. The second
process must be preferred, because after cooling the crystal from 60 K to 20 K within 3 min
without UV-irradiation it was not possible to reproduce
the spectrum of the \(\text{Ag}^{2+}\) centre, and furthermore
by investigations of crystals containing copper.
Without UV irradiation the spectrum of the \(\text{Cu}^{2+}\)
centre was observed at \(T = 20\) K. When the crystals
were excited with UV light, the Cu$^{2+}$ centres, being effective electron traps, were destroyed and the typical spectrum of the Ag$^{2+}$ centre appeared. Above \(T = 60 \) K the spectrum of the Cu$^{2+}$ centre could be observed again, while the spectrum of the Ag$^{2+}$ centre disappeared.

These results point to the fact that Ag$^{2+}$ centres are not stable above 60 K. Further UV irradiation and warming up give rise to a strong ESR signal above 130 K that might be caused by the formation of photolytic silver.

3.2 LUMINESCENCE SPECTRA. — 3.2.1 Pure crystals. — In the temperature range where the Ag$^{2+}$ centre is stable, i.e. \(T \leq 60 \) K, and independent of the thermal treatment of the crystals the luminescence maxima were found at 514 ± 3 nm, the largest corresponding to \(T = 45 \) K (see Fig. 3). Above 60 K the luminescence phenomena markedly depend on the thermal history of the crystals. The position of the luminescence maximum of AgCl crystals varies in the range from 485 to 530 nm at LNT. As shown in figure 4 it is possible to cover the whole range by only varying the annealing conditions. Annealing in argon always favoured the formation of the band at 485 nm and sometimes of a more or less weak band in the red (620 nm) above LNT (Fig. 5). With crystals annealed in chlorine the 485 nm band appears only at elevated temperatures (about 130 K).
The luminescence intensity of chlorine annealed crystals is always substantially larger than the intensity of samples which had been treated in argon. A higher concentration of negatively charged vacancies (Ag−) and consequently V centres could in principle be received by annealing and subsequent quenching pure crystals. But the great influence of the annealing treatment on luminescence properties doesn’t permit a decision if V centres really participate in the luminescence process [15].

3.2.2 Cd doped crystals. — Doping with divalent cations, like Cd2+, always increases the concentration of negatively charged vacancies in the Ag+ sublattice of AgCl. Depending on the amount of doping and the temperature, these vacancies are either isolated or associated with Cd2+-ions forming a neutral [Cd2+Ag−]-complex. Regardless if either a V centre or the [Cd2+Ag−] associate is assumed to serve as a luminescence centre [16], in both cases the addition of Cd must result in an increase of the luminescence yield. The same argument holds for a model, developed by Kanazaki [6] who proposed an exciton localized at a cation vacancy to be responsible for the luminescence.

Our observations and results however are in strong contradiction to these expectations (see also [17]) for the following 3 reasons:

1. With increasing Cd-doping from 0 to 200 ppm the luminescence intensity decreases and substantially increases after exceeding the solubility limit which is reported to be about 300 ppm [18] (Fig. 6).

![Fig. 6. — Luminescence intensity at different temperatures with respect to Cd-doping.](image)

2. If crystals heavily doped with 5 000 ppm Cd and annealed in chlorine were quenched from 400 °C to LNT (in order to suppress precipitation!) they give less luminescence intensity than the same crystals when cooled down slowly (in order to facilitate precipitation!).

3. Doping shifts the luminescence maximum from 514 to 523 nm at LHT and from 520 to 540 nm at LNT, respectively (compare [6, 16, 19]).

These results indicate that the precipitation of a Cd-rich phase in the AgCl matrix seems to be responsible for the luminescence phenomena in Cd-doped crystals.

3.3 Glow curves. — The lifetime of the Ag2+ is very much influenced by the existence of electron traps and, as already mentioned in 3.1, the ESR signal at \(T \leq 40\) K remains stable for some minutes without continuing the UV irradiation.

Therefore it seems worthwhile to get more information about the nature of such electron traps and their energetic levels in the forbidden bandgap of AgCl. Thermoluminescence. i.e. the recording of glow curves, is one of the mostly used methods in order to reveal the spectrum of electron traps in crystals and has been applied to AgCl by several workers [7, 8, 20].

This paper is only involved with the important findings necessary to be able to discuss the nature of the luminescence centres or electron traps. More details will be published elsewhere.

In our thermoluminescence experiments with AgCl crystals, having the same properties as those used in ESR and luminescence measurements, glow curves were obtained by at first irradiating the samples at \(T = 10\) K or in several cases at LNT with UV light until all traps have been filled. i.e., when the luminescence has reached its saturation value. After a short dark period the crystals were warmed up at the constant heating rate of 4 K/min and the luminescence generated during the warming up was recorded.

A typical glow curve of a pure as grown crystal is shown in figure 7. These glow curves generally exhibit 12 to 15 glow peaks in the range from 25 to 160 K. Some of these peaks have been found in the literature. Immediately after switching off the UV excitation a very pronounced decay of the luminescence intensity was observed which was followed by a weak afterglow of at least several minutes (compare [6, 21]). Such a behaviour is always observed when electrons were thermally released from traps in an energy range corresponding to a temperature of 10 K. The afterglow phenomena were similar if the sample was irradiated at LNT. With some samples the afterglow could be observed over a period of more than one hour. Figure 7 shows a glow peak at 77 K. Therefore the strong phosphorescence at LNT must be closely connected with the recombination of electrons, released from traps corresponding to a temperature of 77 K, with luminescence centres which evidently are stable more than one hour. In a similar way Fatuzzo [21] explains the formation of the glow peak on AgBr crystals at 77 K.
The thermal treatment of the crystals also strongly affects the intensity and number of glow peaks. In figure 8a and b glow curves of chlorine, annealed (a, curve 1) and argon annealed (b, curve 1) crystals are plotted for comparison. Both samples were at first heat-treated for the same time in chlorine atmosphere before annealing them again. The peak about 37 K could be detected with all samples, while the additional maxima at higher temperatures were found especially on argon annealed crystals. If the samples were not heat-treated in chlorine after their production, their glow curves have more than the tenfold intensity and at higher temperatures new glow peaks arise (see Fig. 7). A short annealing process in argon increases this effect, but an extended annealing period, favouring the formation of the 485 nm luminescence band, causes a strong decrease (Fig. 8b, curve 3) of the glow intensity.

From these results it may be concluded that the measured glow curves can certainly not be due to electrons released from traps which are connected with dislocations or grain boundaries, for the number of these defects must be independent of the annealing atmosphere. This was confirmed by further measurements on annealed and quenched or deformed crystals. Residual impurities also have no influence: a sample with 0.1 ppm impurity can have more intense glow peaks than a sample with 10 ppm.

From these results it becomes evident, that traps, which are responsible for the glow peaks are of intrinsic nature. According to their strong dependence on the annealing conditions, Ag aggregates seem to be the prevailing electron traps.

This statement is further supported by the following observations:

1. If after the irradiation at LHT or LNT the sample is warmed up to 70 K and 140 K, respectively and then cooled down and if this procedure is repeated once or twice (this is called a second or third measurement), the luminescence intensity of the principal maxima is always less than after a first measurement. (Fig. 8a, curve 2 and 3.)

A similar result was mentioned by Jeltsch [22] in thermo stimulated currents (TSC) measurements. Sometimes the glow peaks at the high temperature side are altogether more intense in comparison with the first measurement. (Fig. 8b, curve 2.)

This behaviour could be referred to a redistribution or enlargement of the Ag centres, caused by the UV irradiation and thermal release of electrons during the warming up period.

Results reported by Michrina and Cooper [23] on AgBr (I) crystals were interpreted in the same way.

2. The influence of Cd additions only results in a modified Ag distribution, possibly according to a
heterogenous nucleation of the Ag$_n$ centres at the precipitations of a Cd-rich phase. This has no influence on the position of the glow peaks.

In order to clear up the nature of the luminescence centres one has to answer the following question: are the luminescence centres, responsible for the formation of the glow curve the same as the centres causing the luminescence spectra? Analysing of the glow curves by suitable filters shows that at least at temperatures ranging from 20-100 K the wavelength of the glow light equals that of the steady-state luminescence light.

To get the energetic spectrum of the electron traps, glow curves were evaluated using the method proposed by Rao [24] and — if possible — by the initial rise method [25]. The single glow peaks between 20 and 160 K correspond to energy values lying in the energy range of 0.015 to 0.4 eV or 0.03 to 0.8 eV, by assuming first or second order kinetics, respectively.

4. Discussion. — The ESR studies at $T < 37 \, \text{K}$ point to a Ag$^{2+}$ centre which is stable even after stopping the UV excitation. On the other hand the luminescence intensity immediately decreases by several tenth of powers (compare [6, 10]) after switching off the UV light. Assuming the Ag$^{2+}$ as a luminescence centre, the number of the centres therefore must decrease in the same way after stopping the UV excitation. A weak afterglow however still remains over a period of several minutes. From these results it follows that only these Ag$^{2+}$ centres contribute to the ESR spectrum where the recombination of electrons and holes is prevented by the capture of electrons in stable traps. The number of luminescence centres, responsible for the slow decay of the luminescence is therefore negligible with respect to the number of Ag$^{2+}$ centres, stabilized by electron traps. This is in good agreement with the comparative small glow intensity at $T < 35 \, \text{K}$. At $T > 37 \, \text{K}$ the Ag$^{2+}$ centre disappears if the sample is not excited simultaneously with UV-light. This may be due to a release of electrons from their traps and their subsequent recombination with the Ag$^{2+}$ centre, or their transition in a state not observable with ESR measurements. As already stated, the second possibility could be ruled out, because a new cooling does not regenerate the ESR spectrum without simultaneous UV irradiation. This result is further in good agreement with the occurrence of strong glow peaks at $T \approx 40 \, \text{K}$. Therefore it is safe to assume that the electron traps responsible for the glow curves — namely Ag$_n$ centres — at least contribute to the stabilization of the Ag$^{2+}$ centres. M. Hohne and M. Stasiw [26] also mentioned a possible participation of Ag$_n$ centres as electron traps in ESR measurements. Moreover the lack of Ag$_n$ centres could be the reason for the fact that some workers could detect the Ag$^{2+}$ centres on pure crystal only by optical absorption and not by ESR measurement.

With continuous UV irradiation the Ag$^{2+}$ centre could be observed up to 60 K in the ESR spectrum. The results on copper doped crystals indicate an increasing mobility of the holes at this temperature which causes the spectrum to disappear [9]. Owing to the measuring method the lifetime of the Ag$^{2+}$ cannot exceed $\approx 100 \, \text{ms}$. On the other hand some samples showed a strong afterglow lasting more than 60 min at LNT. Moreover during the subsequent warming up period further electrons released from the traps were able to recombine radiationally with the luminescence centres (glow curves!) and finally the wavelength of the steady-state luminescence agrees well with that of the glow light: thus all these results indicate that above 60 K luminescence is not caused by a recombination of electrons with Ag$^{2+}$ centres. Only in the temperature range $T < 60 \, \text{K}$ the Ag$^{2+}$ centre could act as a luminescence centre.

Another centre observed by Ulrici [27] with optical absorption measurements may be responsible for the luminescence at $10 < T < 120 \, \text{K}$ as well. This centre is not detectable with ESR, can be destroyed by irradiation with red light and is stable up to 120 K. It is not characterized in more detail.

At $T > 130 \, \text{K}$ both the shape of the ESR signal and the formation of the luminescence bands at 485 or 620 nm seem to indicate that the Ag$_n$ aggregates act as luminescence centres at these temperatures. This is further supported by our observations on argon annealed crystals and by S. I. Golub [28] and K. W. Schalimowa [4] who observed the same bands when heating up the crystals in air or doping the samples with silver. Thus the different luminescence maxima at LNT can be caused by a superposition of a silver band and another band produced by the yet unknown centre observed by Ulrici.

The shift of the luminescence maximum from 514 nm (pure crystals) to 523 nm (Cd doped samples) at LHT indicates the formation of a new luminescence centre. As already proved in 3.2.2 the [Cd$^{2+}$Ag$_n$] associates cannot work as a radiative recombination centre. The decrease of intensity with increasing Cd additions up to the solubility limit could be attributed to both the [Cd$^{2+}$Ag$_n$] associate and the isolated Ag$_n$ operating as competing radiationless recombination centre for electrons and holes.

Further increasing the doping concentration of Cd starts the precipitation of a Cd-rich phase in the AgCl matrix. At the same time (see 3.2.2) the luminescence intensity markedly increases. Thus it may be assumed that the precipitation itself or the boundaries (interfaces) between the precipitations and the surrounding AgCl matrix act as luminescence centres.

This conception however seems to be in contradiction to the findings that the new luminescence maximum rises already at concentrations of $\approx 100 \, \text{ppm} \, \text{Cd}$ at LNT where the solubility limit of AgCl probably is not yet exceeded. On the other hand all crystals...
LUMINESCENCE AND TRAPPING IN PURE AND Cd DOPED AgCl

examined so far have a high density of dislocation (about 10^9/cm^2). Thus, even at low Cd concentration, precipitation may be facilitated by heterogeneous nucleation along the dislocation lines. This mechanism is supported by studies of the small angle X-ray scattering performed on the same crystals which point at a cylindric shape of the precipitation.

If one assumes the Ag^2+ to be the luminescence centre in doped crystals too, then, from he experimental results, at T < 60 K the formation of the Ag^2+ may be favoured by the precipitation. If the Ag^2+ is located near a phase boundary or near a Ag^+ vacancy the crystal field of the Ag^2+ centre may be disturbed and so could possibly change the corresponding energy level. This would result in the shift of the luminescence maximum as observed in the spectra.

At T > 60 K, where the Ag^2+ seems to be unstable another centre influenced by the precipitation — perhaps that proposed by Ulrici — must be responsible for the luminescence. But one cannot rule out the possibility that the phase boundary itself acts as a recombination centre in the whole temperature range.

Acknowledgment. — This work has been supported by the Deutsche Forschungsgemeinschaft and partly by the German Ministerium f. Bildung und Wissenschaft (St. Sch. 504). The authors would like to thank Mr. Th. Wendnagel for furnishing most of the samples used for the luminescence measurements.

References

DISCUSSION

M. GEORGEV. — Do your results agree with those of Hohne and Stasiw on the ESR of the Ag^2+-center in AgCl? Have you observed a corresponding signal from a AgBr crystal?

W. POLZIN. — Our results are in agreement with those of Stasiw and Hohne. Unfortunately we have not performed any measurements on AgBr.

C. L. MARQUARDT. — 1) We have observed hole self trapping (Ag^+) at temperatures as high as 80 K in transient optical experiments. This would not be in disagreement with your thermal stability measurements with excitation light on and off if the thermal instability around 50 K actually corresponds to the onset of mobility of the self trapped hole.

2) Is not the role of Ag metal in stabilizing Ag^++ merely that of providing deep electron traps which prevents recombination?

W. POLZIN. — 1) I agree, that there must be no contradiction between your and our result concerning the temperature range of the thermal stability of the Ag^2+-centre.

2) In our paper it was explicitly assumed, that the stabilization of Ag^2+-centres is due to the presence of silver aggregates acting as electron traps of a deepness between 0.015 and 0.8 eV.