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Maximum path information and the principle

of least action for chaotic system

Q.A. Wang
Institut Supérieur des Matériaux et Mécaniques Avancés,

44, Avenue F.A. Bartholdi, 72000 Le Mans, France

Abstract

A path information is defined in connection with the different pos-

sible paths of chaotic system moving in its phase space between two

cells. On the basis of the assumption that the paths are differenti-

ated by their actions, we show that the maximum path information

leads to a path probability distribution as a function of action from

which the well known transition probability of Brownian motion can

be easily derived. An interesting result is that the most probable paths

are just the paths of least action. This suggests that the principle of

least action, in a probabilistic situation, is equivalent to the princi-

ple of maximization of information or uncertainty associated with the

probability distribution.

PACS number : 05.45.-a;05.70.Ln;02.50.-r;05.45.-a

1 Introduction

The aim of this work is to investigate the probability distributions attributed
to the different paths (path probability distribution) of chaotic system mov-
ing between two points in the phase space Γ. As usual, the phase space Γ of a
system is defined such that a point in it represents a state of the system. For
a N -body system moving in three dimensional ordinary configuration space,
the Γ-space is of 6N dimension (3N positions and 3N momenta) if it can be
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smoothly occupied. A system at equilibrium state is represented by a fixed
point in Γ space.

Now we look at a nonequilibrium system moving in the Γ-space between
two points, a and b, which are in two elementary cells of a given partition of
the phase space (Figure 1). We will use the concept of trajectory or path of
classical mechanics. If the motion of the system is regular, there will be only
one possible trajectory between the two points, or, in other words, there will
be only a fine bundle of paths which track each other between the initial and
the final cells. These trajectories must be the path of least action according
to the principle of Maupertuis[1] and have unitary probability. Any other
path must have zero probability.

For a system in chaotic motion, the things can be different. Two points
indistinguishable in the initial cell will separate from each other exponen-
tially. Normally, these two points, after their departure from the initial cell,
will never meet each other in a final cell in the phase space. However, it is
possible that they pass through a same cell at two different times. So be-
tween two given phase cells represented in Figure 1 by a and b, respectively,
there may be many possible paths labelled by k (k=1,2,...w) with different
travelling time tab(k) of the system and different probability pab(k) for the
system to take the path k (path probability distribution).

The path probability distribution is defined as follows. Suppose an en-
semble of a large number L of identical systems all moving in the phase space
from cell a to cell b with w possible paths. We observe Lk systems travel-
ling on the path k (k = 1, 2...w). The probability pab(k) that the system
take the path k is thus defined as usual by pab(k) = Lk

L
. We naturally have

∑w
k=1 pab(k) = 1. By definition, pab(k) is a transition probability from state

a to state b.
In this paper, the path probability distribution will be studied in connec-

tion with information theory and the principle of least action[1]. Inspired by
this universal principle from which almost all the physics (classical mechan-
ics, quantum mechanics, Maxwell equations, optics ...) can be derived, we
suppose that the different paths between a and b are differentiated by their
action defined by

Aab(k) =
∫

tab(k)
Lk(t)dt (1)

where Lk(t) is the Lagrangian of the system at time t along the path k and
is defined by Lk(t) = Uk(t) − Vk(t) where Uk(t) is the total kinetic energy
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Figure 1: Possible phase space paths (k = 1, 2...w) for a chaotic system to
go from the points in the phase cell a to the points in the phase cell b during
the time tab(k) (along the path k).

and Vk(t) the total potential energy of the system. The integral is carried
out along a path k during tab(k), the travelling time of the system along
the path. This is an essential assumption of this work. If the paths can
be identified only by their actions, then it will be possible to study their
probability distributions with the information concept and the method of
maximum information of Jaynes[2] in connection with our knowledge about
action. This approach will leads us to a probabilistic interpretation of the
mechanical principle of Maupertuis and a probability distribution depending
on action. As an application, the obtained path probability distribution will
be used to derive the transition probability of Brownian motion.
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2 A path information

The information we address here is our ignorance about the system under
consideration. More we know about the system, less there is information.
According to Shannon[3], this information can be measured by the formula
S = −

∑

i pi ln pi where pi is certain probability attributed to the situation i.
We usually ask

∑

i pi = 1 with a summation over all the possible situations.
Now for our ensemble of w possible paths in Figure 1, a Shannon infor-

mation can be defined as follows :

H(a, b) = −

w
∑

k=1

pab(k) ln pab(k). (2)

H(a, b) is a path information and should be interpreted as the missing infor-
mation necessary for predicting which path a system of the ensemble takes
from a to b.

According to our starting assumption, the quantity that differentiates the
paths and their probability of occurrence is the Lagrangian action. In what
follows, a statistics is developed on the basis of this assumption.

3 Probability distribution of maximum infor-

mation

We consider the ensemble containing a large number of the studied system
moving from a to b. These systems are distributed over the w paths according
to pab(k) in connection with the action Aab(k). An expectation of the action
over all the possible paths can then be calculated by

Aab =
w

∑

k=1

pab(k)Aab(k). (3)

On the other hand, the path information H(a, b) in Eq.(2) is concave as
a function of normalized probability pab(k). According to the principle of
Jaynes, in order to get the optimal distribution, H(a, b) can be maximized
under the constraints associated with our knowledge about the system and
the relevant random variables, i.e., with the normalization of pab(k) and the
expectation Aab :

δ

[

−H(a, b) + α
w

∑

k=1

pab(k) + η
w

∑

k=1

pab(k)Aab(k)

]

= 0 (4)
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This leads to the following distribution

pab(k) =
1

Q
exp[−ηAab(k)] (5)

Putting this distribution into H(a, b) of Eq.(2), we get

H(a, b) = ln Q + ηAab (6)

where Q is given by Q =
∑w

k=1 exp[−ηAab(k)].

4 Stability of the path probability distribu-

tion

Now we shall show that the above distribution is stable with respect to the
fluctuation of action. Suppose that each path is cut into two parts 1 (the
segments on the side of the cell a) and 2 (the segments on the side of b). All
the segments 1 are contained in the group 1, and all the segments 2 in the
group 2. Each group has a path information H1 = H2 = H and an average
action A1 = A2 = A. The total information is then H(a, b) = H1 +H2 = 2H
and total average action is A(a, b) = A1 + A2 = 2A. If now we consider a
small variation of the division of the paths with virtual changes in the two
groups such that δA1 = δA = −δA2, the total information will be changed
and can be written as

H ′(a, b) = H(A + δA) + H(A − δA) (7)

In view of the fact that the distribution Eq.(5) and the relationship Eq.(6)
are consequence of maximum information, the stability condition requires
that the information does not increase with the virtual changes of the two
groups. We must have

δH = H ′(a, b) − H(a, b) ≤ 0, (8)

i.e.,

H(A + δA) + H(A − δA) − 2H(A) ≤ 0 (9)

which means

∂2H

∂A2
≤ 0. (10)
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Now let us see if this stability condition is always fulfilled. From Eq.(6), one
gets ∂2H

∂A2 = ∂η
∂A

. Then considering the definition of average action Eq.(3), we
straightforwardly calculate

∂A

∂η
= −σ2, (11)

which implies

∂2H

∂A2
= −

1

σ2
≤ 0 (12)

where the variance σ2 = A2 − A
2
≥ 0 characterizes the fluctuation of the

action A. This proves the stability of the maximum information distribution
Eq.(5) with respect to the action fluctuation of the paths.

5 Application to Brownian motion

What is the parameter η in the path probability distribution Eq.(5)? A pos-
sible physical meaning of η can be found with a special example : Brownian
motion. Suppose a certain path in Figure 1 along which a Brownian particle
moves from a to b via an intermediate point or cell k. Between the three cells
a, k, and b, the particle is free. The action Aab(k) of the particle from a to b
can be calculated to be[5]

Aab(k) =
m(xk − xa)

2

2(tk − ta)
+

m(xb − xk)
2

2(tb − tk)
. (13)

Then from Eq.(5), we have

pab(k) =
1

Q
exp

[

−mη
(xk − xa)

2

2(tk − ta)

]

exp

[

−mη
(xb − xk)

2

2(tb − tk)

]

(14)

On the other hand, it is known[4] that, as a solution of the diffusion equation,
the transition probability for the particle to go from a to b via k is

pab(k) = pakpkb (15)

=
1

[4πD(tk − ta)]d/2
exp

[

−
(xk − xa)

2

4D(tk − ta)

]

×
1

[4πD(tb − tk)]d/2
exp

[

−
(xb − xk)

2

4D(tb − tk)

]
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where D is the diffusion coefficient supposed constant everywhere in the phase
space, ta, tk and tb are the time and xa, xk and xb the position coordinates
of the particle at a k and b, respectively, d is the dimension of the ordinary
configuration space, pak and pkb are the transition probabilities of the particle
from a to k and from k to b, respectively. A comparison of Eq.(14) and
Eq.(15) leads to

η =
1

2mD
(16)

where m is the mass of the particle. We see that the parameter η is related
to the diffusion coefficient D.

For a system containing a large number of Brownian particles, the above
result is still valid. The only difference is that, in this case, there are just more
intermediate points and the total action will be calculated over all particles
each having a large number of intermediate points. The above result can be
used for many thermodynamic systems modelled with Brownian particles.

If we suppose that the self diffusion coefficient can be approximated by
Stokes-Einstein relation D = kBT

6πη0R
of a self-diffusion of the Brownian parti-

cles in a dilute medium, we get

η =
6πη0R

2mkBT
(17)

where η0 is the viscosity of the medium, R is the radius of the Brownian par-
ticles, kB is the Boltzmann constant and T the temperature of the medium.
In this case, the path probability distribution Eq.(5) becomes

pab(k) =
1

Q
exp[−

Λab(k)

kBT
]. (18)

where Λab(k) = 6πη0R
2m

Aab(k). This shows a temperature dependence of path
probability distribution.

6 The principle of maximum information and

the principle of least action

Now we turn our attention to the connection between maximum path in-
formation and least action. It can be shown (see below) that the paths of
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least action are the most probable paths provided η = ∂H(a,b)

∂Aab

> 0. In fact,

from Eq.(5), positive η obviously implies that the paths of smaller action
are statistically more probable than the paths of larger action. So the most
probable paths must minimize the action.

This property of the distribution Eq.(5) can be mathematically discussed
in the same manner as the stability of the distribution proved in section 4. We
still consider the two groups 1 and 2 of path segments with H1 = H2 = H
and A1 = A2 = A. The total information is then H(a, b) = 2H and the
total average action is A(a, b) = 2A. Now suppose that the two groups are
deformed such that δH1 = δH = −δH2. The total average action after the
group deformation can be written as

A′(a, b) = A1(H1 + δH1) + A2(H2 + δH2) (19)

= A(H + δH) + A(H − δH).

If the distribution Eq.(5) and the relationship Eq.(6) correspond to least
action, the total average action after the group deformation can not decrease:
δA = A′(a, b) − A(a, b) ≥ 0, i.e.,

A(H + δH) + A(H − δH) − 2A(H) ≥ 0 (20)

which means

∂2A

∂H2
≥ 0. (21)

On the other hand, with the help of Eq.(6), we can prove:

∂2A

∂H2
= −

1

η2

∂η

∂H
= −

1

η3

∂η

∂A
. (22)

Now considering ∂η
∂A

= −
1
σ2 , we get

∂2A

∂H2
=

1

σ2η3
. (23)

We see that if Eq.(21) is true, we have

η ≥ 0. (24)

In other words, the positivity of η implies that the principle of maximum
path information is intrinsically connected with the principle of least action:
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the most probable paths given by the distribution of maximum information

are just the paths of least action.

In view of the relationship Eq.(16), the positivity of η is ensured by the
positivity of diffusion coefficient D. We can also invert this statement: if
the most probable paths derived from the probability distribution Eq.(5)
minimize the action, then the diffusion coefficient must be positive.

7 Concluding remarks

It is hoped that this work may contribute to the study of the behaviors of
chaotic systems. If there is no chaos, the path information will vanish and
there will be between two phase cells only a fine bundle of parallel paths
which are the paths of least action with an unitary probability of occurrence.
More the system under consideration is chaotic, more there are possible
paths with different actions, and larger the information is. So we conjec-
ture that the path information H(a, b) may be used as a measure of chaos,
like Kolmogorov-Sinai entropy (KSE)[6]. It should be noted that there is
an important difference between H(a, b) and KSE. H(a, b) is an information
associated with different paths relating two phase cells but having arbitrarily
different travelling time. In the language of discrete time iteration, the differ-
ent paths have arbitrarily different number of step of iteration. On the other
hand, KSE can be defined as an information associated with different paths
that leave the initial cell with arbitrary destination but same travelling time,
i.e., same number of step of iteration[6]. Further investigation is necessary
in order to clarify the relationship between these two information measures
for chaotic systems.

Summarizing, a path information is defined for an ensemble of possible
paths of chaotic systems moving between two cells in phase space. It is shown
that, if we suppose that the different paths are identified by their actions, the
maximization of the path information leads to a path probability distribution
as a function of the action. As a special example, the transition probability of
Brownian particles is derived. In this case, we show that the most probable
paths derived from maximum information minimize the action. This suggests
that the principle of least action, in probabilistic situation, is equivalent to
the principle of maximization of information or uncertainty associated with
the probability distribution. This result may be considered as an argument
supporting this method of “unbiased guess”[2] for nonequilibrium systems.
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