An Optimistic Approach for the Specification of more Flexible Roles Behavioural Compatibility Relations in MAS
Nabil Hameurlain

To cite this version:
Nabil Hameurlain. An Optimistic Approach for the Specification of more Flexible Roles Behavioural Compatibility Relations in MAS. ANNALES DU LAMSADE N8. 2007. <hal-00192869>

HAL Id: hal-00192869
https://hal.archives-ouvertes.fr/hal-00192869
Submitted on 29 Nov 2007

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
An Optimistic Approach for the Specification of more Flexible Roles Behavioural Compatibility Relations in MAS

Nabil Hameurlain
nabil.hameurlain@univ-pau.fr

Laboratoire LIUPPA, Université de Pau
Avenue de l’Université 64012 Pau – FRANCE

Résumé :
Dans cet article, nous nous focalisons sur une nouvelle approche de définition d'une compatibilité plus flexible des rôles dans les SMA. Nous proposons une architecture formelle pour la spécification des rôles et leur composition, prenant en compte la préservation de propriétés comme la complétion et la terminaison propre des rôles. Nous mettons en évidence le lien existant entre la compatibilité et la substitutabilité des rôles, et plus particulièrement, nous montrons que les relations de compatibilité ainsi définies sont préservées par la substitutabilité.

Mots-clés : Rôles, interaction, compatibilité optimiste, substitutabilité.

Abstract :
In this paper we focus on a new approach to the definition of more flexible roles compatibility in MAS. We provide a formal framework for modeling roles together with their composition, taking into account the property preservation such as the completion and the proper termination of roles. We show the existing link between roles compatibility and substitutability, namely the preservation of the proposed compatibility relations by substitutability.

Keywords: Roles, interaction, components, optimistic compatibility, substitutability.

1 Introduction
Roles are basic building blocks for defining the organization of multi-agent systems (MAS), together with the behaviour of agents and the requirements on their interactions. Usually, it is valuable to reuse roles previously defined for similar applications, especially when the structure of interaction is complex. To this end, roles must be specified in an appropriate way, since the composition of independently developed roles can lead to the emergence of unexpected interaction among the agents.

Although the concept of role has been exploited in several approaches [2, 3, 9] in the development of agent-based applications, no consensus has been reached about what is a role and how it should be specified and implemented. In our previous work [4], we have shown that the facilities brought by the Component Based Development (CBD) approach [8] fit well the issues raised by the use of roles in MAS. In this context, we have proposed RICO (Role-based Interactions COmponents) model for specifying complex interactions, and study the compatibility semantics of roles. The RICO model is based on the Component-nets formalism which combines Petri nets and the component-based approach.

In this paper, we focus on a new approach to the definition of role-components compatibility, and provide a formal framework for modelling roles and their
composition. The contributions of this paper are: (1) to provide a new approach to the definition of more flexible role-components compatibility and substitutability relations, (2) to show the existing link between compatibility and substitutability relations, namely the preservation of the compatibility by substitutability.

2 Roles modelling

2.1 The Component-nets formalism

Backgrounds on Labelled Petri nets. A marked Petri net $N = (P, T, W, M_N)$ consists of a finite set P of places, a finite set T of transitions where $P \cap T = \emptyset$, a weighting function $W : P \times T \cup T \times P \rightarrow \mathbb{N}$, and $M_N : P \rightarrow \mathbb{N}$ is an initial marking. A transition $t \in T$ is enabled under a marking M, noted $M(t >)$, if $W(p, t) \leq M(p)$, for each place p. In this case t may occur, and its occurrence yields the follower marking M', where $M'(p) = M(p) - W(p, t) + W(t, p)$, noted $M(t >) M'$. The enabling and the occurrence of a sequence of transitions $\sigma \in T^*$ are defined inductively. The preset of a node $x \in P \cup T$ is defined as $x^* = \{y \in P \cup T, W(y, x) \neq 0\}$, and the postset of $x \in P \cup T$ is defined as $x^* = \{y \in P \cup T, W(x, y) \neq 0\}$. We denote as $N = (P, T, W, M_N, l)$ the (marked, labelled) Petri net in which the events represent actions, which can be observable. It consists of a marked Petri net $N = (P, T, W, M_N)$ with a labelling function $l : T \rightarrow A \cup \{\lambda\}$. Let ϵ be the empty sequence of transitions, l is extended to an homomorphism $l^* : T^* \rightarrow A^* \cup \{\lambda\}$ in the following way: $l(\epsilon) = \lambda$, where ϵ is the empty string of T^*, and $l^*(\sigma.t) = l^*(\sigma)$ if $l(t) \in \{\lambda\}$, $l^*(\sigma.t) = l^*(\sigma).l(t)$ if $l(t) \not\in \{\lambda\}$. In the following, we denote l^* by l, L_N by (N, l), and if $L_N = (P, T, W, M_N, l)$ is a Petri net and l' is another labelling function of N, (N, l') denotes the Petri net (P, T, W, M_N, l'), that is N provided with the labelling l'. A sequence of actions $w \in A^* \cup \{\lambda\}$ is enabled under the marking M and its occurrence yields a marking M', noted $M(w >>) M'$, iff either $M = M'$ and $w = \lambda$, or there exists some sequence $\sigma \in T^*$ such that $l(\sigma) = w$ and $M(\sigma >) M'$. The first condition accounts for the fact that λ is the label image of the empty sequence of transitions. For a marking M, $\text{Reach}(N, M) = \{M'; \exists \sigma \in T^*; M(\sigma >) M'\}$ is the set of reachable markings of the net N from the marking M.

Components nets (C-nets). A Component-net involves two special places: the first one is the input place for instance creation of the component, and the second one is the output place for instance completion of the component. A C-net (as a server) makes some services available to the nets and is capable of rendering these services. Each offered service is associated to one or several transitions, which may be requested by C-nets, and the service is available when one of these transitions, called accept-transitions, is enabled. On the other hand it can request (as a client) services from other C-net transitions, called request-transitions, and needs these requests to be fulfilled. These requirements allow focusing either upon the server side of a C-net or its client side.
Definition 2.1 (C-net) Let $CN = (P \cup \{I, O\}, T, W, M_N, l_{Prov}, l_{Req})$ be a labelled Petri net. CN is a Component-net (C-net) if and only if:

1. The labelling of transitions consists of two labelling functions l_{Prov} and l_{Req} such that: $l_{Prov} : T \rightarrow Prov \cup \{\lambda\}$, where $Prov \subseteq A$ is the set of provided services, and $l_{Req} : T \rightarrow Req \cup \{\lambda\}$, where $Req \subseteq A$ is the set of required services.

2. Instance creation: the set of places contains a specific Input place I, such that $I = \emptyset$.

3. Instance completion: the set of places contains a specific Output place O, such that $O^* = \emptyset$.

Notation. We denote by $[I]$ and $[O]$, which are considered as bags, the markings of the Input and the Output place of CN, and by Reach$(CN, [I])$, the set of reachable markings of the component-net CN obtained from its initial marking M_N within one token in its Input place I. Besides, when we deal with the graphical representation of the C-nets, we use $!$ and $?$ keywords for the usual sending (required) and receiving (provided) services together with the labeling function l instead of the two labeling functions l_{Prov} and l_{Req}.

Definition 2.2 (soundness) Let $CN = (P \cup \{I, O\}, T, W, M_N, l_{Prov}, l_{Req})$ be a Component-net (C-net). CN is said to be sound iff the following conditions are satisfied:

1. Completion option: $\forall M \in \text{Reach}(CN, [I]), [O] \in \text{Reach}(CN, M)$.

2. Reliability option: $\forall M \in \text{Reach}(CN, [I]), M \geq [O]$ implies $M = [O]$.

The Completion option states that, if starting from the initial state, i.e. activation of the C-net, it is always possible to reach the marking with one token in the output place O. Reliability option states that the moment a token is put in the output place O corresponds to the termination of a C-net without leaving dangling references.

Composition of C-nets. The parallel composition of C-nets, noted $\oplus : \text{C-net} \times \text{C-net} \rightarrow \text{C-net}$, is made by communication places allowing interaction through observable services in asynchronous way. Given a client C-net and a server C-net, it consists in connecting, through the communication places, the request and the accept transitions having the same service names: for each service name, we add one communication-place for receiving the requests/replies of this service. Then, all the accept-transitions labelled with the same service name are provided with the same communication-place, and the client C-net is connected with the server C-net through these communication places by an arc from each request-transition towards the suitable communication-place and an arc from the suitable communication-place towards each accept-transition.

2.2 Specification of roles

In our RICO model [4], a role component is considered as a component providing a set of interface elements (either attributes or operations, which are provided or required features necessary to accomplish the role’s tasks), a behaviour (interface elements semantics), and properties (proved to be satisfied by the behaviour).
In this paper, we only consider behavioural interface of roles that is their behaviour specified by the C-nets together with the set of (provided and required) services.

Definition 2.3 (Role Component) A Role Component for a role \mathcal{R}, noted RC, is a 2-tuple $\text{RC} = (\text{Behav}, \text{Serv})$, where,
- Behav is a C-net describing the life-cycle of the role \mathcal{R}.
- Serv is an interface, a set of public elements, through which RC interacts with other role components. Serv = (Req, Prov), where Req is a set of required services, and Prov is the set of provided services by RC.

Since the life-cycle of roles is specified by C-nets, we say that a component role satisfies the completion (resp. terminates successfully) if and only if its behaviour that is its underlying C-net satisfies the completion option (resp. terminates successfully). The composition of two role-components is also a role-component, and this composition is associative.

Definition 2.4 (Roles composition) A Role RC = (Behav, Serv) can be composed from a set of (primitive) Roles, $\mathcal{R}_i = (\text{Behav}_i, \text{Serv}_i)$, $i = 1, \ldots, n$, noted $\mathcal{R} = \mathcal{R}_1 \otimes \ldots \otimes \mathcal{R}_n$, as follows:
- Behav = $\text{Behav}_1 \otimes \ldots \otimes \text{Behav}_n$.
- Serv = (Req, Prov), Req = $\cup \text{Req}_i$, and Prov = $\cup \text{Prov}_i$, $i = 1, \ldots, n$.

3 Compatibility of roles

In component-based software engineering, classical approaches for components compatibility deal with components composition together with their property preservation [1]. In our previous work, we have used this approach for role-based interaction components and study some compatibility relations [5]. In this paper, the basic idea behind the optimistic approach for role-components compatibility is to consider explicitly the context of use of roles (environment) in the definition of roles compatibility relations. First, let define the notion of role’s environment.

Definition 3.1 (Environment) Let $\mathcal{R}_1 = (\text{Behav}_1, \text{Serv}_1)$ and $\mathcal{R}_2 = (\text{Behav}_2, \text{Serv}_2)$, be two roles such that $\text{Serv}_1 = (\text{Req}_1, \text{Prov}_1)$, $\text{Serv}_2 = (\text{Req}_2, \text{Prov}_2)$, $i = 1, 2$.

CP$_2$ is called an environment-role (or environment) of CR$_1$, and vice versa, iff Req$_1 = \text{Prov}_2$, Req$_2 = \text{Prov}_1$.

We let ENV(RC), the set of the environments of the role component RC.

The role component RC$_1$ is considered an environment of RC$_2$ iff both their sets of interfaces completely match.

Given a role-component and its environment, it is possible to reason about the completion and the proper termination of their composition. Based on that, we define two notions of usability:

Definition 3.2 (usability)

1. RC is weakly usable iff $\exists \text{ Env } \in \text{ENV(RC)}$, Env \otimes RC satisfies the completion option. We say that Env weakly utilizes RC.

2. RC is strongly usable iff $\exists \text{ Env } \in \text{ENV(RC)}$, Env \otimes RC terminates successfully. We say that Env strongly utilizes RC.
Example 1: Let’s take the example of the ticket service and the customer. Figure 1 shows RC_1 representing the behaviour of the customer, and RC_2 the behaviour of the Ticket-service. The Ticket service initiates the communication by sending (two) Tickets and waits of their payment (Visa and/or eCash). By receiving the Tickets, the customer determines the kind of payment of these two tickets. It is easy to prove that roles RC_1 and RC_2 are weakly usable, since RC_1 weakly utilizes RC_2 and vice versa. The role RC_1 is not strongly usable, since the unique (weakly usable) environment of RC_1 is the role RC_2, and $RC_1 \otimes RC_2$ satisfies the completion option but does not terminate successfully. In figure 2, the ticket service RC_5 initiates de communication by sending one Ticket and waits of the payment (either Visa or eCash). The role components RC_3 and RC_4 are two examples of the customer’s behaviour. By receiving the Ticket, they solve an internal conflict and determine the kind of payment. The roles RC_3 and RC_5 (resp. RC_4 and RC_5) are strongly usable, since for instance RC_3 strongly utilizes RC_5 (resp. RC_4 strongly utilizes RC_4) and vice versa. Last but not least, let us take the ticket service RC' shown in figure 3. RC' is not weakly usable since there is no environment which can weakly utilize it. Indeed, roles RC_3 and RC_4 are the two possible role-environments of RC' (according to the behaviour of RC' described by the language $\{\text{Ticket!}, \text{Visa?}, \text{Ticket!}, \text{eCash?}\}$), nevertheless, for instance the occurrence of the sequence $\{\text{Ticket!}, \text{Ticket?}, \text{eCash!}\}$ in $RC_3 \otimes RC'$ (as well as in $RC_4 \otimes RC'$) yields a

$\text{Fig 1.} RC_1$ weakly utilizes RC_2, where $l(a)=$ Ticket, $l(b)=$ Visa, $l(c)=$ eCash.

$\text{Fig 2.} RC_3$ strongly utilizes RC_5, RC_4 strongly utilizes RC_5.

$\text{Fig 3.} RC'$ is not weakly usable.

1 The names of transitions are drawn into the box.
An optimistic approach for the specification of more flexible roles [...]
utilizes the former role is also able to weakly (resp. strongly) utilize the new role.

Example 3: As an example, consider the roles RC_4 and RC_1. $RC_1 \leq_{WS} RC_4$ holds since the unique environment that weakly utilizes RC_4 is the role RC_5, and $RC_5 \otimes RC_1$ satisfies the completion option. These two roles RC_1 and RC_4 are not related by the strong subtyping relation since $RC_1 \not\leq_{SS} RC_4$ does not hold, since $RC_5 \otimes RC_1$ does not terminate successfully. Last but not least, consider the roles RC_4 and RC_3; $RC_3 \leq_{SS} RC_4$ holds since the role RC_5 (which is the unique environment) that strongly utilizes RC_4 also strongly utilizes RC_3. Indeed $RC_5 \otimes RC_3$ terminates successfully.

Property 4.1 (Hierarchy of subtyping)

The relations \leq_H, $H \in \{WS, SS\}$, are preorder (reflexive and transitive) and form a hierarchy: $\leq_{SS} \Rightarrow \leq_{WS}$.

The following core theorem of this paper states two fundamental properties of roles compatibility and substitutability relations. First, substitutability relations are compositional: in order to check if $Env \otimes RC_2 \leq_H Env \otimes RC_1$, $H \in \{WS, SS\}$, it suffices to check $RC_2 \leq_H RC_1$, since the latter check involves smaller roles and it is more efficient. Second, substitutability and compatibility relations are related as follows: we can always substitute a role CR_1 with a sub-role CR_2, provided that RC_1 and RC_2 are connected to the environment $Env = (Behav, Serv)$ by the same provided services that is: $Req \cap Prov_2 \subseteq Req \cap Prov_1$. This condition is due to the fact that if the environment utilizes services provided by CR_2 that are not provided by CR_1, then it would be possible that new incompatibilities arise in the processing of these provided services.

Theorem 4.1 (compositionality and compatibility preservation) Let $RC_1 = (Behav_1, Serv_1)$, $RC_2 = (Behav_2, Serv_2)$ be two roles where $Serv_i = (Req_i, Prov_i)$, $i = 1, 2$. Let $Env = (Behav, Serv)$ such that $Req \cap Prov_2 \subseteq Req \cap Prov_1$.

1. $Env \approx_{WOC} RC_1$ and $RC_2 \leq_{WS} RC_1 \Rightarrow Env \approx_{WOC} RC_2$ and $Env \otimes RC_2 \leq_{WS} Env \otimes RC_1$.
2. $Env \approx_{SOC} RC_1$ and $RC_2 \leq_{SS} RC_1 \Rightarrow Env \approx_{SOC} RC_2$ and $Env \otimes RC_2 \leq_{SS} Env \otimes RC_1$.

5 Conclusion and related work

The aim of this paper is to present a new and optimistic approach to the definition of role-components behavioural compatibility and substitutability relations. The paper provides a framework for modelling usable role-components together with their composition. This framework is discussed in terms of roles compatibility and substitutability relations. We furthermore investigated the link between compatibility and substitutability relations by showing that substitutability is compositional and the compatibility is preserved by the substitutability.

Related work. The optimistic approach to the definition of components compatibility has been originally introduced in [1] for interface automata. Unlike traditional uses of automata, the authors proposed an optimistic approach
An optimistic approach for the specification of more flexible roles [...]