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Abstract

The relationship between three probability distributions and their optimal entropy forms is discussed without postulating entropy property as usual. For this purpose, the entropy I is defined as a measure of uncertainty of the probability distribution p(x) of a random variable x by a variational relationship 
[image: image85.bmp], a definition assuring the optimization of entropy for corresponding distribution.
PACS numbers : 05.20.-y; 02.50.-r; 02.50.Tt
1) Introduction

It is well known that entropy and information can be considered as measures of uncertainty of probability distribution. However, the functional relationship between probability distribution and the associated entropy has since long been a question in statistical and informational science. There are many relationships established on the basis of the properties of entropy. In the conventional information theory and some of its extensions, these properties are postulated, such as the additivity and the extensivity in the Shannon information theory. The reader can refer to the references [1] to [8] to see several examples of entropies proposed on the basis of different postulated entropy properties. Among all these entropies, the most famous one is the Shannon informational entropy (
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)[2] which was almost the only one widely used in equilibrium thermodynamics (Boltzmann-Gibbs entropy) and in nonequilibrium dynamics (Kolmogorov-Sinai entropy for example). But the question remains open in the scientific community about whether or not Shannon entropy is the unique measure of statistical uncertainty or information[9]. 
Recently, a nonextensive statistics[6]

 REF _Ref147072410 \h 
 \* MERGEFORMAT [7]

 REF _Ref146393991 \h 
 \* MERGEFORMAT [8] (NES) proposed to use other entropies for thermodynamics and stochastic dynamics of certain nonextensive systems. NES has given rise to a large number of papers in the last decade with very different viewpoints dealing with equilibrium and nonequilibrium systems, which have incited more and more debates[10]

 REF _Ref149001913 \h 
 \* MERGEFORMAT [12] within the statistical physics community. Some of the key questions in the debates are: whether or not it is necessary to replace Boltzmann-Gibbs-Shannon entropy with other ones in different physical situation? what is the useful forms of entropy? It should be remembered that all the known entropy forms have been either postulated directly or derived from some postulated properties of entropy[1-8]. The correctness of these entropies is often verified through their application in the inference and the probability assignment. 
The present work inverts the reasoning and investigates entropy form under a different angle without postulating the properties of entropy. Inspired by a thermodynamic relationship between entropy and energy, we introduce a variational definition of entropy as the measure of probabilistic uncertainty. One of the objectives of this work is to show that, Shannon entropy is not unique as uncertainty measure. Other forms are possible if we change the rules of reasoning and introduce new criterions, as we have done in this work in introducing the variational definition which underlies a criterion for the entropy: the uncertainty measure is optimal for the corresponding stable probability distribution. We indicate that this work is a conceptual one tackling the mathematical form of entropy without considering the detailed physics behind the distribution laws used in the calculations. In what follows, we first talk about three invariant probability distributions and their invariant properties. Their optimal entropy forms are then derived from the variational entropy definition.
2) Three probability laws and their invariance
In this section, by some trivial calculations one can find in textbooks, we want to underline the fact that a probability distribution may be derived uniquely from its invariance. By invariance of a function f(x), we means that the dependence on x is invariant at transformation of x into x’, i.e., f(x’)( f(x). We consider three invariances corresponding to exponential, power law and q-exponential distributions, respectively, which are the most interesting for our work. 

a) Translation invariance and exponential law

Suppose that 
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where 
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 depends on the form of f(x). We have 
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If f(x) gives a probability such as 
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 will make p(x) strictly invariant versus the transformation 
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b) Scale invariance and power law

Now suppose that 
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where b is the scale factor of the transformation. We make following calculation 
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This kind of laws is widely observed in nature for different dynamical systems such as language systems[13] and scale free networks[14] among many others[15]. The well known Levy flight for large x is a good example of power law with 
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c) The q-exponential and its invariance properties

Here we would like to mention a probability which has attracted a lot of attention in the last years: 
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where a and ( are some constants. The Zipf-Mandelbrot law 
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 observed in textual systems and other evolutionary systems[16] can be considered as a kind of q-exponential law. Another example of this law is the equilibrium thermodynamic distribution for finite systems in equilibrium with a finite heat bath, where a can be related to the number of elements N of the heat bath and tends to zero if N is very large[17], which implies 
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This distribution is not a power law in the sense of Eq.(4). It has neither the scale invariance nor the translation invariance mentioned above. The operator on x that keeps f(x) invariant is a generalized addition 
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[18], i.e. 
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3) A definition of entropy as a measure of dynamical uncertainty

Suppose we have a random (discrete) variable xi with a probability distribution 
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 where i is the state index. The average of xi is given by 
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. The uncertainty in this probability distribution of x can be measured by many quantities. For example, the standard deviation ( or the variance 
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 can surely be used if they exist. A disadvantage of (2 is that it may not exist for many probability distributions. Here we propose another measure which seems much general. This is a variational definition of entropy as a measure of uncertainty given by following relationship
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This choice of uncertainty measure has been in a way inspired by the first and second laws of thermodynamics in equilibrium statistical thermodynamics. Considering the definition of internal energy 
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 where Ei is the energy of the state i with probability pi, we can write 
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 is the work done to the system by external forces 
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 where qj is extensive variables such as volume, distance or electrical polarization. According to the first law of thermodynamics, the quantity 
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 for a reversible process, where S is the thermodynamic entropy and T the absolute temperature. Hence the thermodynamic entropy must satisfy the following variational relation
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This relationship is extended in Eq.(6) to arbitrary random variables x. By this definition, it is obvious that if the distribution is not exponential, the entropy functional may not be logarithmic.

The geometrical aspect of the uncertainty measure defined by Eq.(6) can be seen in the examples of Figure 1 which shows that dI and I are related to the width of the distributions on the one hand, and to the form of the distribution on the other. dI is not an increasing function of the distribution width. For example, dI=0 for uniform distribution whatever the width of p(x)=constant. This means that I is a constant. 
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4) Three probability distribution laws and their entropy
In this section, on the basis of the uncertainty measure defined in Eq.(6), we will derive the entropy functionals for the three probability laws discussed in section 2. 

a) Translation invariant probability and Shannon entropy

       The following calculation is trivial. From Eq.(6), for exponential distribution 
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and
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This is Shannon information if the constant c is neglected. Within the conventional statistical mechanics, this is the Gibbs formula for Clausius entropy. Remember that the maximization of this entropy using lagrange multiplier assiciated with expectation of x yields exponential distribution law.  

b) Scale invariant probability and entropy functional

We have in this case power law probability distribution pi :
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where 
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where c is an arbitrary constant. Since we are addressing a given system to find its entropy form, Z can be considered as a constant for the variation in x (the reader will find below that this constant can be given by the Lagrange multiplier in the maximum entropy formalism). Hence we can write
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In order to determine c, we imagine a system with two states i=1 and 2 with 
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i.e.,
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We finally get
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Let 
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Notice that this functional does not yield Shannon entropy for 
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It can be calculated that 
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Its behavior with probability is shown in Figure 2. The maximization of I conditioned with a Lagrange multiplier ( such as 
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c) The entropy for q-exponential probability

We have seen above that the probability 
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 had a special invariant property. Let us express x as a function of pi and put it into Eq.(6) to get
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By the same tricks for determining c in the above section, we get c=-1. So we can write
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Where q=1+a and we have used the normalization 
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5) Concluding remarks

We have derived the entropy functionals for three probability distributions. This was done on the basis of a variational definition of uncertainty measure, or entropy without postulating entropy property (such as additivity) as in the usual information theory. The variational definition 
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 is valid for any probability distributions of x as long as it has finite expectation value. According to the results, the exponential probability has Shannon entropy, the power law distribution has an entropy 
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 where 0<q<1, and the q-exponential distribution has Tsallis entropy 
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It is worth mentioning again that the present definition of entropy as a measure of uncertainty offers the possibility of introducing the maximum entropy principle in a natural way with Lagrange multipliers associated with expectation of the random variables. It is easy to verify, with the above three entropies, that the maximum entropy calculus yields the original probability distributions. This is not an ordinary and fortuitous mutual invertibility, since the probability and the entropy are not reciprocal functions and the maximum entropy calculus is not a usual mathematical operation. As a matter of fact, this invertibility between entropy and probability resides in the variational definition  
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 can be considered as an extended work whatever the nature of x. So to get the “equilibrium state” or stable probability distribution, we can put 
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 if we add the normalization condition. This is the usual maximum entropy principle using Lagrange multipliers ( and (. The entropy I defined by 
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 goes naturally to the conditioned maximum for its corresponding probability distribution. 
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Figure 1, Three geometrical representations of the variation dI defined in Eq.� REF _Ref146386688 \h � \* MERGEFORMAT �(10)� for some distributions. The hatched areas represent the value of the entropy variation � EMBED Equation.3  ��� for each case. It is easily seen that dI=0 if the width (uncertainty) of the distribution is zero or if the distribution is uniform.
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Figure 2, The variation of the scale invariant entropy � EMBED Equation.3  ���  with p1=p and p2=1-p for different q values. It can be shown that if q(0, � EMBED Equation.3  ���, and If q(1, � EMBED Equation.3  ���.








9
3

[image: image82.wmf]å

-

-

-

=

=

-

2

1

1

1

i

q

i

i

q

p

p

I

[image: image83.wmf]0

ln

1

®

å

-

-

=

p

p

q

q

S

[image: image84.wmf]¥

®

å

+

-

å

-

=

p

q

S

ln

1

1

1

_1220811211.unknown

_1236337833.unknown

_1236346638.unknown

_1236372726.unknown

_1243803319.unknown

_1249457325.unknown

_1236372860.unknown

_1236622387.unknown

_1236372771.unknown

_1236347246.unknown

_1236347960.unknown

_1236346720.unknown

_1236339057.unknown

_1236342934.unknown

_1236338199.unknown

_1236338200.unknown

_1236337930.unknown

_1226492413.unknown

_1227211888.unknown

_1236325520.unknown

_1236337731.unknown

_1227211953.unknown

_1227212268.unknown

_1227211984.unknown

_1227211895.unknown

_1227211041.unknown

_1227211862.unknown

_1226494206.unknown

_1226782459.unknown

_1226782516.unknown

_1226494041

_1226439513.unknown

_1226490272.unknown

_1226490909.unknown

_1226491244.unknown

_1226439831.unknown

_1225116259.unknown

_1226413294.unknown

_1226414907.unknown

_1225116043.unknown

_1206411207.unknown

_1220127277.unknown

_1220131374.unknown

_1220132471.unknown

_1220133854.unknown

_1220134536.unknown

_1220134624.unknown

_1220133741.unknown

_1220132191.unknown

_1220132238.unknown

_1220131465.unknown

_1220129771.unknown

_1220129816.unknown

_1220129947.unknown

_1220127743.unknown

_1220128537.unknown

_1212622767.unknown

_1212623503.unknown

_1212624008.unknown

_1220127227.unknown

_1212623633.unknown

_1212623318.unknown

_1206452699.unknown

_1206452875.unknown

_1206453072.unknown

_1212622299.unknown

_1206452924.unknown

_1206452724.unknown

_1206411371.unknown

_1206415010.unknown

_1206410716.unknown

_1206411131.unknown

_1206411157.unknown

_1206411032.unknown

_1205851153.unknown

_1205930963.unknown

_1206410687.unknown

_1205930944.unknown

_1205851065.unknown

_1205851093.unknown

_1084932132.unknown

