Exact convergence rates in the central limit theorem for a class of martingales
Mohamed El Machkouri, Lahcen Ouchti

To cite this version:
Mohamed El Machkouri, Lahcen Ouchti. Exact convergence rates in the central limit theorem for a class of martingales. Bernoulli, Bernoulli Society for Mathematical Statistics and Probability, 2007. hal-00001345

HAL Id: hal-00001345
https://hal.archives-ouvertes.fr/hal-00001345
Submitted on 23 Mar 2004

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Exact convergence rates in the central limit theorem for a class of martingales

M. El Machkouri and L. Ouchti

23rd March 2004

Abstract

We give optimal convergence rates in the central limit theorem for a large class of martingale difference sequences with bounded third moments. The rates depend on the behaviour of the conditional variances and for stationary sequences the rate $n^{-1/2} \log n$ is reached. We give interesting examples of martingales with unbounded increments which belong to the considered class.

AMS Subject Classifications (2000) : 60G42, 60F05
Key words and phrases : central limit theorem, martingale difference sequence, rate of convergence, Lindeberg’s decomposition.
1 Introduction and notations

The optimal rate of convergence in the central limit theorem for independent random variables \((X_i)_{i \in \mathbb{Z}}\) is well known to be of order \(n^{-1/2}\) as soon as the \(X_i\)'s are centered and have uniformly bounded third moments (cf. Berry \[1\] and Esseen \[8\]). For dependent random variables the rate of convergence was also most fully investigated but in many results the rate is not better than \(n^{-1/4}\). For example, Philipp \[18\] obtains a rate of \(n^{-1/4} (\log n)^3\) for uniformly mixing sequences, Landers and Rogge \[14\] obtain a rate of \(n^{-1/4} (\log n)^{1/4}\) for a class of Markov chains and Sunklodas \[20\] obtains a rate of \(n^{-1/4} \log n\) for strong mixing sequences. However, Rio \[19\] has shown that the rate \(n^{-1/2}\) is reached for uniformly mixing sequences of bounded random variables as soon as the sequence \((\phi_p)_{p>0}\) of uniform mixing coefficients satisfies \(\sum_{p>0} p \phi_p < \infty\). Jan \[12\] established also a \(n^{-1/2}\) rate of convergence in the central limit theorem for bounded processes taking values in \(\mathbb{R}^d\) under some mixing conditions and recently, using a modification of the proof in Rio \[19\], Le Borgne and Pène \[15\] obtained the rate \(n^{-1/2}\) for stationary processes satisfying a strong decorrelation hypothesis. For bounded martingale difference sequences, Ibragimov \[14\] has obtained the rate of \(n^{-1/4}\) for some stopping partial sums and Ouchtiti \[17\] has extended Ibragimov’s result to a class of martingales which is related to the one we are going to consider in this paper. Several results in the rate of convergence for the martingale central limit theorem have been obtained for the whole partial sums, one can refer to Hall and Heyde \[10\] (section 3.6.), Chow and Teicher \[5\] (Theorem 9.3.2), Kato \[13\], Bolthausen \[2\] and others. In fact, Kato \[13\] obtains for uniformly bounded variables the rate \(n^{-1/2} (\log n)^3\) under the strong assumption that the conditional variances are almost surely constant. In this paper, we are most interested in results by Bolthausen \[3\] who obtained the better (in fact optimal) rate \(n^{-1/2} \log n\) under somewhat weakened conditions. In this paper, we shall not pursue to improve the rate \(n^{-1/2} \log n\) but rather introduce a large class of martingales which leads to it. Finally, note that El Machkouri and Volný \[7\] have shown that the rate of convergence in the central limit theorem can be arbitrary slow for stationary sequences of bounded (strong mixing) martingale difference random variables.

Let \(n \geq 1\) be a fixed integer. We consider a finite sequence \(X = (X_1, ..., X_n)\) of martingale difference random variables (i.e. \(X_k\) is \(\mathcal{F}_k\)-measurable and \(E(X_k|\mathcal{F}_{k-1}) = 0\) a.s. where \((\mathcal{F}_k)_{0 \leq k \leq n}\) is an increasing filtration and \(\mathcal{F}_0\) is the trivial \(\sigma\)-algebra). In the sequel, we are going to use the following notations

\[
\sigma_k^2(X) = E(X_k^2|\mathcal{F}_{k-1}), \quad \tau_k^2(X) = E(X_k^2), \quad 1 \leq k \leq n,
\]
\[v_n^2(X) = \sum_{k=1}^{n} \tau_k^2(X) \quad \text{and} \quad V_n^2(X) = \frac{1}{v_n^2(X)} \sum_{k=1}^{n} \sigma_k^2(X). \]

We denote also \(S_n(X) = X_1 + X_2 + \ldots + X_n \). The central limit theorem established by Brown \cite{4} and Dvoretzky \cite{6} states that under some Lindeberg type condition

\[\Delta_n(X) = \sup_{t \in \mathbb{R}} \left| \mu \left(\frac{S_n(X)}{v_n(X)} \leq t \right) - \Phi(t) \right| \xrightarrow{n \to +\infty} 0. \]

For more about central limit theorems for martingale difference sequences one can refer to Hall and Heyde \cite{10}. The rate of convergence of \(\Delta_n(X) \) to zero was most fully investigated. Here, we focus on the following result by Bolthausen \cite{2}.

Theorem (Bolthausen, 82) Let \(\gamma > 0 \) be fixed. There exists a constant \(L(\gamma) > 0 \) depending only on \(\gamma \) such that for all finite martingale difference sequence \(X = (X_1, \ldots, X_n) \) satisfying \(V_n^2(X) = 1 \) a.s. and \(\|X_i\|_\infty \leq \gamma \) then

\[\Delta_n(X) \leq L(\gamma) \left(\frac{n \log n}{v_3^3 n} \right). \]

We are going to show that the method used by Bolthausen \cite{2} in the proof of the theorem above can be extended to a large class of unbounded martingale difference sequences. Note that Bolthausen has already given extensions to unbounded martingale difference sequences which conditional variances become asymptotically nonrandom (cf. \cite{2}, Theorems 3 and 4) but his assumptions cannot be compared directly with ours (cf. condition (1) below). So the results are complementary.

2 Main Results

We introduce the following class of martingale difference sequences: a sequence \(X = (X_1, \ldots, X_n) \) belongs to the class \(\mathcal{M}_n(\gamma) \) if \(X \) is a martingale difference sequence with respect to some increasing filtration \((\mathcal{F}_k)_{0 \leq k \leq n} \) such that for any \(1 \leq k \leq n \),

\[E(|X_k|^3|\mathcal{F}_{k-1}) \leq \gamma_k E(X_k^2|\mathcal{F}_{k-1}) \quad \text{a.s.} \quad (1) \]

where \(\gamma = (\gamma_k)_k \) is a sequence of real numbers.

Our first result is the following,
Theorem 1 Let γ be a sequence of real numbers. There exists a constant $L(\gamma) > 0$ (not depending on n) such that for all finite martingale difference sequence $X = (X_1, ..., X_n)$ which belongs to the class $\mathcal{M}_n(\gamma)$ and which satisfies $V_n^2(X) = 1$ a.s. then

$$
\Delta_n(X) \leq L(\gamma) \left(\frac{u_n \log n}{v_n} \right)
$$

where $u_n = \vee_{k=1}^n \gamma_k$.

Remark 1 Note that if the martingale difference sequence X is stationary then we obtain the rate $n^{-1/2} \log n$ which is optimal (cf. Bolthausen [2]).

As in Bolthausen [2], we derive the following result when the restrictive condition $V_n^2(X) = 1$ a.s. is relaxed.

Theorem 2 Let γ be a sequence of real numbers. There exists a constant $L(\gamma) > 0$ (not depending on n) such that for all finite martingale difference sequence $X = (X_1, ..., X_n)$ which belongs to the class $\mathcal{M}_n(\gamma)$ then

$$
\Delta_n(X) \leq L(\gamma) \left(\frac{u_n \log n}{v_n} + \|V_n^2(X) - 1\|^{1/2} \wedge \|V_n^2(X) - 1\|^{1/3} \right)
$$

where u_n is defined in Theorem 1.

Examples. Let $X = (X_1, ..., X_n)$ be a sequence of martingale difference random variables such that $\sup_{1 \leq i \leq n} \|X_i\|_{\infty} \leq M < \infty$ and consider an arbitrary sequence of independent random variables $(\varepsilon_1, ..., \varepsilon_n)$ with zero mean and finite third moments which are also independent of X. One can notice that the sequence $Y = (Y_1, ..., Y_n)$ defined by $Y_k = X_k + \varepsilon_k$ (resp. $Y_k = X_k \varepsilon_k$) belongs to the class $\mathcal{M}_n(\gamma)$ where

$$
\gamma_k = 4 \left(M \vee \frac{E|\varepsilon_k|^3}{E|\varepsilon_k|^2} \right) \left(\text{resp. } \gamma_k = M \times \frac{E|\varepsilon_k|^3}{E|\varepsilon_k|^2} \right)
$$

Moreover if $V_n^2(X) = 1$ a.s. (resp. $V_n^2(Y) = 1$ a.s. and $(\varepsilon_k)_k$ is stationary) then $V_n^2(Y) = 1$ a.s.

In the sequel, we are going to use the following lemma by Bolthausen [3].

Lemma 1 (Bolthausen, 82) Let $k \geq 0$ and $f : \mathbb{R} \to \mathbb{R}$ be a function which has k derivatives $f^{(1)}, ..., f^{(k)}$ which together with f belong to $L^1(\mu)$. Assume that $f^{(k)}$ is of bounded variation $\|f^{(k)}\|_V$, if X is a random variable and if $\alpha_1 \neq 0$ and α_2 are two real numbers then

$$
|Ef^{(k)}(\alpha_1 X + \alpha_2)| \leq \|f^{(k)}\|_V \sup_{t \in \mathbb{R}} |\mu(X \leq t) - \Phi(t)| + |\alpha_1|^{-(k+1)} \|f\|_1 \sup_x |\phi^{(k)}(x)|
$$

where $\phi(x) = (2\pi)^{-1/2} \exp(-x^2/2)$.

For any random variable Z we denote $\delta(Z) = \sup_{t \in \mathbb{R}} |\mu(Z \leq t) - \Phi(t)|$. We need also the following extension of Lemma 1 in Bolthausen [2] which is of particular interest.

Lemma 2 Let X and Y be two real random variables. If there exist real numbers $k > 0$ and $r \geq 1$ such that Y belongs to $L^{kr}(\mu)$ then there exist positive constants c_1 and c_2 such that

$$\delta(X + Y) \leq 2\delta(X) + c_1 \|E(|Y|^k|X)\|_p^{1/r} \wedge \|E(Y^2|X)\|_\infty^{1/2}$$

and

$$\delta(X) \leq 2\delta(X + Y) + c_2 \|E(|Y|^k|X)\|_p^{1/r} \wedge \|E(Y^2|X)\|_\infty^{1/2}.$$

The proofs of various central limit theorems for stationary sequences of random variables are based on approximating the partial sums of the process by martingales (see Gordin [9], Volný [21]). More precisely, if $(f \circ T^k)_k$ is a p-integrable stationary process where $T : \Omega \to \Omega$ is a bijective, bimeasurable and measure-preserving transformation (in fact, each stationary process has such representation) then there exists necessary and sufficient conditions (cf. Volný [21]) for f to be equal to $m + g - g \circ T$ where $(m \circ T^k)_k$ is a p-integrable stationary martingale difference sequence and g is a p-integrable function. In fact, such a decomposition can hold also with m and g in some Orlicz space (see [22]). The term $g - g \circ T$ is called a coboundary.

The following theorem gives the rate of convergence in the central limit theorem for stationary processes obtained from a martingale difference sequence which is perturbed by a coboundary.

Theorem 3 Let $p > 0$ be fixed and let $(f \circ T^k)_k$ be a stationary process. If there exist m and g in $L^p(\mu)$ such that $(m \circ T^k)_k$ is a martingale difference sequence and $f = m + g - g \circ T$ then there exists a positive constant c such that

$$\Delta_n(f) \leq 2\Delta_n(m) + \frac{2c\|g\|_p^{p/(p+1)}}{n^{p/(p+1)}}.$$

If $p = \infty$ then

$$\Delta_n(f) \leq 2\Delta_n(m) + \frac{2c\|g\|_\infty}{n^{1/2}}.$$

Recently, Bosq [3] has shown that the condition $\sum_{j \geq 0} j|\alpha_j| < \infty$ is sufficient to obtain the optimal rate $n^{-1/2}$ for the linear process $X_k = \sum_{j \geq 0} \alpha_{k-j} \epsilon_j$ when $(\epsilon_j)_j$ is a i.i.d. sequence with finite third moment (Bosq established this result in the more general setting of Hilbert spaces). We are going to
give a convergence rate result for linear processes when the \((\varepsilon_j)_j\) are not independent. By
\[
X_k = \sum_{j \in \mathbb{Z}} \alpha_{k-j} \varepsilon_j, \quad k \geq 1,
\]
we denote a stationary linear process, \((\varepsilon_j)_j\) is a stationary martingale difference sequence and \((\alpha_j)_j\) are real numbers with \(\sum_{j \in \mathbb{Z}} \alpha_j^2 < \infty\).

\textbf{Corollary 1} Let \(\gamma\) be a sequence of real numbers. Consider the linear process \((X_k)_k\) defined by (4) where \((\varepsilon_j)_j\) is a stationary martingale difference sequence such that \(E|\varepsilon_0|^p < \infty\) for some \(p \geq 3\). Assume that \(\varepsilon = (\varepsilon_1, \ldots, \varepsilon_n)\) belongs to the class \(M_n(\gamma)\) and \(V_n^2(\varepsilon) = 1\) a.s. If
\[
\sum_{k=1}^{\infty} \left\{ \left| \sum_{j \geq k} \alpha_j \right|^p + \left| \sum_{j \leq k} \alpha_j \right|^p \right\} < \infty
\]
then there exists a constant \(L(\gamma) > 0\) (not depending on \(n\)) such that
\[
\Delta_n(X) \leq L(\gamma) \left(\frac{1}{n^{p/2(p+1)}} \right).
\]
If moreover \(\varepsilon_0\) is a.s. bounded then
\[
\Delta_n(X) \leq L(\gamma) \left(\frac{\log n}{\sqrt{n}} \right).
\]

\textbf{Remark 2} One can see that the condition \(\sum_{j \in \mathbb{Z}} |j| |\alpha_j| < \infty\) is more restrictive than (5).

\textbf{Remark 3} Using Theorem 2, one can obtain a convergence rate result for the linear process \((X_k)_k\) when the condition \(V_n^2(\varepsilon) = 1\) a.s. is relaxed.

\section{Proofs}

\textit{Proof of Theorem 1.} Consider \(u = (u_n)_n\) defined by \(u_n = \vee_{k=1}^{n} \gamma_k\). Clearly the class \(M_n(\gamma)\) is contained in the class \(M_n(u)\). For any \((u, v) \in \mathbb{R}_+^N \times \mathbb{R}_+^*\), we consider the subclass
\[
\mathcal{L}_n(u, v) = \{ X \in M_n(u) \mid V_n^2(X) = 1, \ v_n(X) = v \ \text{a.s.} \}
\]
and we denote
\[
\beta_n(u, v) = \sup \{ \Delta_n(X) \mid X \in \mathcal{L}_n(u, v) \}.
\]
In the sequel, we assume that \(X = (X_1, \ldots, X_n) \) belongs to \(\mathcal{L}_n(u, v) \), hence \(X' = (X_1, \ldots, X_{n-2}, X_{n-1} + X_n) \) belongs to \(\mathcal{L}_{n-1}(4u, v) \) and consequently,

\[
\beta_n(u, v) \leq \beta_{n-1}(4u, v).
\]

Let \(Z_1, Z_2, \ldots, Z_n \) be independent identically distributed standard normal variables independent of the \(\sigma \)-algebra \(\mathcal{F}_n \) (which contains the \(\sigma \)-algebra generated by \(X_1, \ldots, X_n \)) and \(\xi \) be an extra centered normal variable with variance \(\theta^2 > 1 \lor 2u_n^2 \) which is independent of anything else. Noting that \(\sum_{i=1}^n \sigma_i(X)Z_i/v \) is a standard normal random variable and according to Inequality (3) in Lemma 2,

\[
\Delta_n(X) \leq 2 \sup_{t \in \mathbb{R}} |\Gamma_n(t)| + \frac{3\theta}{v}.
\]

where

\[
\Gamma_n(t) \triangleq \mu ((S_n(X) + \xi)/v \leq t) - \mu \left(\left(\sum_{i=1}^n \sigma_i(X)Z_i + \xi \right)/v \leq t \right).
\]

For any integer \(1 \leq k \leq n \), we consider the following random variables

\[
Y_k \triangleq \frac{1}{v} \sum_{i=1}^{k-1} X_i, \quad W_k \triangleq \frac{1}{v} \left(\sum_{i=k+1}^n \sigma_i(X)Z_i + \xi \right), \quad H_k \triangleq \frac{1}{v^2} \left(\sum_{i=k+1}^n \sigma_i^2(X) + \theta^2 \right) \quad \text{and} \quad T_k(t) \triangleq \frac{t - Y_k}{H_k}, \quad t \in \mathbb{R}
\]

with the usual convention \(\sum_{i=n+1}^n \sigma_i^2(X) = \sum_{i=n+1}^n \sigma_i(X)Z_i = 0 \) a.s. Moreover, one can notice that conditioned on \(G_k = \sigma(X_1, \ldots, X_n, Z_k) \), the random variable \(W_k \) is centered normal with variance \(H_k^2 \). According to the well known Lindeberg’s decomposition (cf. [6]), we have

\[
\Gamma_n(t) = \sum_{k=1}^n \mu \left(Y_k + W_k + \frac{X_k}{v} \leq t \right) - \mu \left(Y_k + W_k + \frac{\sigma_k(X)Z_k}{v} \leq t \right)
\]

\[
= \sum_{k=1}^n \mu \left(\frac{W_k}{H_k} \leq T_k(t) - \frac{X_k}{vH_k} \right) - \mu \left(\frac{W_k}{H_k} \leq T_k(t) - \frac{\sigma_k(X)Z_k}{vH_k} \right)
\]

\[
= \sum_{k=1}^n E \left(E \left(\mathbb{I}_{\frac{W_k}{H_k} \leq T_k(t) - \frac{X_k}{vH_k}} \mid G_k \right) \right) - E \left(E \left(\mathbb{I}_{\frac{W_k}{H_k} \leq T_k(t) - \frac{\sigma_k(X)Z_k}{vH_k}} \mid G_k \right) \right)
\]

\[
= \sum_{k=1}^n E \left(\Phi \left(T_k(t) - \frac{X_k}{vH_k} \right) \right) - E \left(\Phi \left(T_k(t) - \frac{\sigma_k(X)Z_k}{vH_k} \right) \right).
\]
Now, for any integer $1 \leq k \leq n$ and any random variable ζ_k, there exists a random variable $|\varepsilon_k| < 1$ a.s. such that

$$\Phi(\nu_k(t) - \zeta_k) = \Phi(\nu_k(t)) - \zeta_k \Phi'(\nu_k(t)) + \frac{\zeta_k^2}{2} \Phi''(\nu_k(t)) - \frac{\zeta_k^3}{6} \Phi'''(\nu_k(t) - \varepsilon_k \zeta_k) \quad \text{a.s.}$$

So, we derive

$$\Gamma_n(t) = \sum_{k=1}^{n} E \left\{ \left(-\frac{X_k}{vH_k} + \frac{\sigma_k(X)Z_k}{vH_k} \right) \Phi'(\nu_k(t)) + \left(\frac{X_k^2}{2v^2H_k^2} - \frac{\sigma_k^2(X)Z_k^2}{2v^2H_k^2} \right) \Phi''(\nu_k(t)) \right. \\
- \left(\frac{X_k^3}{6v^3H_k^3} \right) \Phi''' \left(\nu_k(t) - \frac{\varepsilon_k X_k}{vH_k} \right) + \left(\frac{\sigma_k^3(X)Z_k^3}{6v^3H_k^3} \right) \Phi''' \left(\nu_k(t) - \frac{\varepsilon_k' \sigma_k(X)Z_k}{vH_k} \right) \right\}.$$

Since $V_n^2(X) = 1$ a.s. we derive that H_k and $\nu_k(t)$ are \mathcal{F}_{k-1}-measurable, hence

$$\Gamma_n(t) = \sum_{k=1}^{n} \frac{1}{6v^3} E \left\{ -\frac{X_k^3}{H_k^3} \Phi''' \left(\nu_k(t) - \frac{\varepsilon_k X_k}{vH_k} \right) + \frac{\sigma_k^3(X)Z_k^3}{H_k^3} \Phi''' \left(\nu_k(t) - \frac{\varepsilon_k' \sigma_k(X)Z_k}{vH_k} \right) \right\}$$

and consequently

$$|\Gamma_n(t)| \leq \frac{1}{6v^3} (S_1 + S_2) \quad (7)$$

where

$$S_1 = \sum_{k=1}^{n} E \left\{ \frac{|X_k|^3}{H_k^3} \left| \Phi''' \left(\nu_k(t) - \frac{\varepsilon_k X_k}{vH_k} \right) \right| \right\}$$

and

$$S_2 = \sum_{k=1}^{n} E \left\{ \frac{\sigma_k^3(X)|Z_k|^3}{H_k^3} \left| \Phi''' \left(\nu_k(t) - \frac{\varepsilon_k' \sigma_k(X)Z_k}{vH_k} \right) \right| \right\}.$$

Consider the stopping times $\nu(j)_{j=0,\ldots,n}$ defined by $\nu(0) = 0$, $\nu(n) = n$ and for any $1 \leq j < n$

$$\nu(j) = \inf \left\{ k \geq 1 \mid \sum_{i=1}^{k} \sigma_i^2(X) \geq \frac{jv^2}{n} \quad \text{a.s.} \right\}.$$

Noting that $\{1, \ldots, n\} = \bigcup_{j=1}^{n} \{\nu(j-1) + 1, \ldots, \nu(j)\}$ a.s. we derive

$$S_1 = \sum_{j=1}^{n} E \left\{ \sum_{k=\nu(j-1)+1}^{\nu(j)} \frac{|X_k|^3}{H_k^3} \left| \Phi''' \left(\nu_k(t) - \frac{\varepsilon_k X_k}{vH_k} \right) \right| \right\}.$$
moreover, for any \(\nu(j - 1) < k \leq \nu(j) \) we have

\[
H_k^2 \geq \frac{1}{v^2} \left(\sum_{i=\nu(j)+1}^{n} \sigma_i^2(X) + \theta^2 \right)
= \frac{1}{v^2} \left(\sum_{i=1}^{\nu(j)-1} \sigma_i^2(X) - \sum_{i=1}^{\nu(j)} \sigma_i^2(X) - \sigma_{\nu(j)}^2(X) + \theta^2 \right)
\geq \frac{1}{v^2} \left(v^2 - \frac{jv^2}{n} - u_n^2 + \theta^2 \right)
\triangleq m_j^2 \text{ a.s.}
\]

Similarly,

\[
H_k^2 \leq \frac{1}{v^2} \left(\sum_{i=\nu(j)-1+1}^{n} \sigma_i^2(X) + \theta^2 \right)
= \frac{1}{v^2} \left(\sum_{i=1}^{\nu(j)-1} \sigma_i^2(X) - \sum_{i=1}^{\nu(j)-1} \sigma_i^2(X) + \theta^2 \right)
\leq \frac{1}{v^2} \left(v^2 - \frac{(j-1)v^2}{n} + \theta^2 \right)
\triangleq M_j^2 \text{ a.s.}
\]

Now, for any \(\nu(j - 1) < k \leq \nu(j) \) put

\[
R_k \triangleq \frac{1}{v} \sum_{i=\nu(j-1)+1}^{k-1} X_i, \quad A_k \triangleq \left\{ \frac{|R_k|}{m_j} \leq \frac{|t - Y_{\nu(j-1)+1}|}{2M_j} \right\}
\]

and for any positive integer \(q \) consider the real function \(\psi_q \) defined for any real \(x \) by \(\psi_q(x) \triangleq \sup \{ \Phi'''(y) \mid y \geq \frac{|x|}{2} - q \} \). In the other hand, on the set \(A_k \cap \{|X_k| \leq q\} \) we have

\[
|T_k(t) - \frac{\varepsilon_kX_k}{vH_k}| = \left| \frac{t - Y_{\nu(j-1)+1}}{H_k} \right| - \frac{R_k}{H_k} - \frac{\varepsilon_kX_k}{vH_k}
\geq \frac{|t - Y_{\nu(j-1)+1}|}{H_k} - \frac{|R_k|}{H_k} - \frac{|X_k|}{vH_k}
\geq \frac{|t - Y_{\nu(j-1)+1}|}{M_j} - \frac{|R_k|}{m_j} - \frac{q}{\theta}
\geq \frac{|t - Y_{\nu(j-1)+1}|}{2M_j} - q \text{ a.s. (since } \theta \geq 1).}
\]
Thus
\[
\left| \Phi'' \left(T_k(t) - \frac{\varepsilon_k X_k}{vH_k} \right) \right| 1_{A_k \cap |X_k| \leq q} \leq \psi_q \left(t - \frac{Y_{\nu(j-1)+1}}{M_j} \right) 1_{A_k \cap |X_k| \leq q}.
\]

So, for any \(1 \leq j \leq n \) we have
\[
E \left\{ \sum_{k=\nu(j-1)+1}^{\nu(j)} \frac{|X_k|^3}{H^3_k} \Phi'' \left(T_k(t) - \frac{\varepsilon_k X_k}{vH_k} \right) 1_{A_k \cap |X_k| \leq q} \right\} \leq E \left\{ \sum_{k=\nu(j-1)+1}^{\nu(j)} \frac{|X_k|^3}{H^3_k} \left| \psi_q \left(t - \frac{Y_{\nu(j-1)+1}}{M_j} \right) \right| \right\} = E \left\{ \sum_{k=\nu(j-1)+1}^{\nu(j)} \frac{|X_k|^3}{H^3_k} |F_{\nu(j-1)}| \psi_q \left(t - \frac{Y_{\nu(j-1)+1}}{M_j} \right) \right\} \leq \frac{\mu_n}{m_j^3} E \left\{ \sum_{k=\nu(j-1)+1}^{\nu(j)} \frac{\sigma^2_k(X)}{H^3_k} |F_{\nu(j-1)}| \psi_q \left(t - \frac{Y_{\nu(j-1)+1}}{M_j} \right) \right\}.
\]

Moreover, note that
\[
\sum_{k=\nu(j-1)+1}^{\nu(j)} \sigma^2_k(X) = \sum_{k=1}^{\nu(j)} \sigma^2_k(X) - \sum_{k=1}^{\nu(j-1)} \sigma^2_k(X) \leq \frac{(j+1)v^2}{n} - \frac{(j-1)v^2}{n} = \frac{2v^2}{n} \text{ a.s.}
\]

Using Lemma III noting that \(\|\psi\|_\infty \leq 1 \) and keeping in mind the notation \(\delta(Z) \triangleq \sup_{t \in \mathbb{R}} |\mu(Z \leq t) - \Phi(t)| \) there exists a positive constant \(c_3 \) such that
\[
E \left\{ \psi_q \left(t - \frac{Y_{\nu(j-1)+1}}{M_j} \right) \right\} \leq \delta(Y_{\nu(j-1)+1}) + c_3 M_j.
\]

Now, using Lemma II and the inequality
\[
E \left\{ \left(\sum_{k=\nu(j-1)+1}^{n} X_k \right)^2 |F_{\nu(j-1)}| \right\} \leq v^2 \left(1 - \frac{j-1}{n} \right) \text{ a.s.}
\]
we obtain
\[\delta(Y_{\nu(j-1)+1}) \leq 2 \delta(S_n(X)/v) + c_1 \left\| \mathbb{E}\left\{ \frac{1}{v^2} \left(\sum_{k=\nu(j-1)+1}^{n} X_k \right)^2 \right\} \right\|_\infty^{1/2} \]
\[= 2 \Delta_n(X) + c_1 \left\| \mathbb{E}\left\{ \frac{1}{v^2} \left(\sum_{k=\nu(j-1)+1}^{n} X_k \right)^2 \right\} Y_{\nu(j-1)+1} \right\|_\infty^{1/2} \]
\[\leq 2 \beta_{n-1}(4u, v) + c_1 \left(1 - \frac{j-1}{n} \right)^{1/2} \]
and so
\[\mathbb{E}\left\{ \psi_q \left(\frac{t - Y_{\nu(j-1)+1}}{M_j} \right) \right\} \leq 2 \beta_{n-1}(4u, v) + c_1 \left(1 - \frac{j-1}{n} \right)^{1/2} + c_3 M_j. \]

Using this estimate and the dominated convergence theorem, we derive for any integer \(1 \leq j \leq n\),
\[(*) = \mathbb{E}\left\{ \sum_{k=\nu(j-1)+1}^{\nu(j)} \frac{|X_k|^3}{H_k} \Phi''(T_k(t) - \frac{\varepsilon_k X_k}{vH_k}) \right\}_{A_k} \]
\[\leq \frac{c_4 u_n}{m_j^2} \times \frac{v^2}{n} \times \left(\beta_{n-1}(4u, v) + \left(1 - \frac{j-1}{n} \right)^{1/2} + M_j \right). \]

In the other hand, for any integer \(\nu(j-1) < k \leq \nu(j)\)
\[A_k^c \subset B_j \triangleq \left\{ \max_{\nu(j-1) < i \leq \nu(j)} \frac{|R_i|}{m_j} > \frac{|t - Y_{\nu(j-1)+1}|}{2M_j} \right\}. \]

Since the set \(A_k\) is \(\mathcal{F}_k \vee \mathcal{F}_{\nu(j-1)}\), we have
\[(**) = \mathbb{E}\left\{ \sum_{k=\nu(j-1)+1}^{\nu(j)} \frac{|X_k|^3}{H_k^3} \Phi''(T_k(t) - \frac{\varepsilon_k X_k}{vH_k}) \right\}_{A_k^c} \]
\[\leq \|\Phi''\|_\infty \mathbb{E}\left\{ \sum_{k=\nu(j-1)+1}^{\nu(j)} \frac{|X_k|^3}{H_k^3} \right\}_{A_k^c} \]
\[\leq u_n \mathbb{E}\left\{ \sum_{k=\nu(j-1)+1}^{\nu(j)} \frac{\sigma_k^2(X)}{H_k^3} \right\}_{A_k^c} \]
\[\leq u_n \mathbb{E}\left\{ \sum_{k=\nu(j-1)+1}^{\nu(j)} \frac{\sigma_k^2(X)}{H_k^3} \right\}_{B_j}. \]
Finally, we obtain the following estimate
\[
\sum_{k=\nu(j)\to 1} \sigma_k^2(X) \leq \frac{2v^2}{n} \text{ a.s.} \quad (8)
\]
we derive
\[
(**) \leq \frac{2u_m}{m_j^3} \times \frac{v^2}{n} \times \mu(B_j)
\]
\[
\leq \frac{2u_m}{m_j^3} \times \frac{v^2}{n} \times \mu \left(\max_{\nu(j-1)<t<\nu(j)} |R_t| > \frac{m_j|t - Y_{\nu(j-1)+1}|}{2M_j} \right)
\]
\[
\leq \frac{2u_m}{m_j^3} \times \frac{v^2}{n} \times E \left(\min \left\{ 1, \frac{4M_j^2}{m_j^2|t - Y_{\nu(j-1)+1}|^2} \right\} E \left(\max_{\nu(j-1)<t<\nu(j)} |R_t|^2 |F_{\nu(j-1)} \} \right) \right)
\]
\[
\leq \frac{2u_m}{m_j^3} \times \frac{v^2}{n} \times E \left(\min \left\{ 1, \frac{8M_j^2}{m_j^2|t - Y_{\nu(j-1)+1}|^2} \right\} \right) \quad (using \ (8))
\]
\[
\leq \frac{2u_m}{m_j^3} \times \frac{v^2}{n} \times \left(\beta_{n-1}(4u,v) + \left(1 - \frac{j-1}{n} \right)^{1/2} + M_j \right) \quad (using \ Lemma \ [\text{I}]).
\]
Thus there exists a positive constant c_5 such that
\[
(*) + (**) \leq \frac{c_5u_m}{m_j^3} \times \frac{v^2}{n} \times \left(\beta_{n-1}(4u,v) + \left(1 - \frac{j-1}{n} \right)^{1/2} + M_j \right).
\]
Finally, we obtain the following estimate
\[
S_1 \triangleq \sum_{k=1}^n E \left\{ \frac{|X_k|^3}{H_k^3} \left| \Phi'' \left(T_k(t) - \frac{\varepsilon_k \theta_k}{\sigma H_k} \right) \right| \right\}
\]
\[
\leq c_5u_m \times \frac{v^2}{n} \times \left(\beta_{n-1}(4u,v) \sum_{j=1}^n \frac{1}{m_j^2} + \sum_{j=1}^n \frac{1}{m_j^3} \left(1 - \frac{j-1}{n} \right)^{1/2} + \sum_{j=1}^n \frac{M_j}{m_j^3} \right)
\]
\[
\leq \frac{c_5u_m}{v^2} \times \frac{v^2}{n} \times \left(\beta_{n-1}(4u,v) \frac{nv}{\sqrt{\sigma^2 - 2u_n^2} + n \log n} \right).
\]
Note that to obtain the above estimates of S_1, we have only use the fact that the martingale difference sequence X belongs to the class $\mathcal{L}_n(u,v)$. Since the sequence $\sigma Z \triangleq (\sigma(X)_1Z_1, \ldots, \sigma(X)_nZ_n)$ belongs to $\mathcal{L}_n(4u/\sqrt{2\pi}, v)$ (with respect to the filtration $\mathcal{F}_k \triangleq \sigma(X_1, \ldots, X_k, Z_1, \ldots, Z_k)$), we are able to reach
a similar estimate for S_2:

$$S_2 \leq c_6 u_n \times \frac{v^2}{n} \times \left(\beta_{n-1} \left(\frac{16u}{\sqrt{2\pi}}, v \right) \frac{nv}{\sqrt{\theta^2 - 2u_n^2}} + n \log n \right)$$

where c_6 is a positive constant. Using (3) and (4), there exist a positive constant c such that

$$\beta_n(u, v) \leq c u_n \left(\frac{\beta_{n-1} \left(\frac{16u}{\sqrt{2\pi}}, v \right)}{\sqrt{\theta^2 - 2u_n^2}} + \frac{\log n}{v} \right) + \frac{3\theta}{v}.$$

Putting

$$D_n \triangleq \sup \left\{ \frac{v \beta_n(u, v)}{u_n \log n} : u \in \mathbb{R}_+^N, v > 0 \right\}$$

and $\theta^2 \triangleq (2 + 4c^2)u_n^2$, we derive

$$D_n \leq \frac{D_{n-1}}{2} + C$$

where C is a positive constant which does not depend on n. Finally, we conclude that

$$\limsup_{n \to +\infty} D_n \leq 2C.$$

The proof of Theorem 1 is complete.

Proof of Theorem 2. Let $X = (X_1, ..., X_n)$ in $\mathcal{M}_n(u)$. Following an idea by Bolthausen, we are going to define a new martingale difference sequence \tilde{X} which satisfies $\hat{V}_n^2(\tilde{X}) = 1$ a.s. Denote $d_1 = \|v_n^2 V_n^2(X) - v_n^2\|_1$ and $d_\infty = \|v_n^2 V_n^2(X) - v_n^2\|_\infty$. The letter d will denote either d_1 or d_∞. Consider the random variables $X_{n+1}, ..., X_{n+\lfloor 2d/u_n^2 \rfloor + 1}$ defined as follows: Let $k = \lfloor (v_n^2 + d - v_n^2 V_n^2)/u_n^2 \rfloor$, conditioned on \mathcal{F}_{n+k}, we assume

$$X_{n+j} = \begin{cases}
\pm u_n & \text{w.p. } 1/2 \\
\pm (v_n^2 + d - v_n^2 V_n^2 - k u_n^2)^{1/2} & \text{w.p. } 1/2 \\
0 & \text{else}
\end{cases}$$

for $j \leq k$ and $j = k + 1$.

where $\lfloor . \rfloor$ denotes the integer part function and w.p. is the abbreviation of with probability. In the sequel, $\hat{n}, \hat{v}^2, \hat{V}^2$ and \hat{S} denote respectively $n + \lfloor 2d/u_n^2 \rfloor$, $v_n^2(X)$, $V_n^2(X)$ and $S_n(\hat{X})$. One can easily check that $\hat{X} \triangleq (X_1, ..., X_{n+1})$ belongs to $\mathcal{M}_n(u)$ and $\hat{V}^2 = 1$ a.s. We have

$$\Delta_n(X) \leq \sup_{t \in \mathbb{R}} |\mu(S_n/\hat{v} \leq t) - \Phi(t)| + \sup_{t \in \mathbb{R}} |\Phi \left(\frac{v_n t}{\hat{v}} \right) - \Phi(t)|.$$
Noting that $\hat{v}^2 - v_n^2 = d$ and using Lemma 2 with $k = 2$ and $r = 1$, if $d \triangleq d_1$ there exist a positive constant c such that

$$\Delta_n(X) \leq 2 \sup_{t \in \mathbb{R}} |\mu(\hat{S}/\hat{v} \leq t) - \Phi(t)| + \frac{cd_1^{1/3}}{\hat{v}^{2/3}} + c \left(\frac{\hat{v} - v_n}{\hat{v}} \right)$$

$$\leq 2 \sup_{t \in \mathbb{R}} |\mu(\hat{S}/\hat{v} \leq t) - \Phi(t)| + \frac{2cd_1^{1/3}}{v_{2/3}^n}.$$

Similarly if $d \triangleq d_{\infty}$ then

$$\Delta_n(X) \leq 2 \sup_{t \in \mathbb{R}} |\mu(\hat{S}/\hat{v} \leq t) - \Phi(t)| + \frac{cd_{\infty}^{1/2}}{\hat{v}} + c \left(\frac{\hat{v} - v_n}{\hat{v}} \right)$$

$$\leq 2 \sup_{t \in \mathbb{R}} |\mu(\hat{S}/\hat{v} \leq t) - \Phi(t)| + \frac{2cd_{\infty}^{1/2}}{v_n}.$$

Finally, applying Theorem 1 we derive

$$\Delta_n(X) \leq 2 \sup_{t \in \mathbb{R}} |\mu(\hat{S}/\hat{v} \leq t) - \Phi(t)| + 2c \min \left\{ \frac{d_1^{1/3}}{v_n^{2/3}}, \frac{d_{\infty}^{1/2}}{v_n} \right\}$$

$$\leq 2L(u) \left(\frac{u_n \log \hat{n}}{\hat{v}} \right) + 2c \min \left\{ \frac{d_1^{1/3}}{v_n^{2/3}}, \frac{d_{\infty}^{1/2}}{v_n} \right\}$$

$$\leq 2L(u) \left(\frac{u_n \log n}{v} \right) + 2c \min \left\{ \frac{d_1^{1/3}}{v_n^{2/3}}, \frac{d_{\infty}^{1/2}}{v_n} \right\} \text{ if } n \text{ is sufficiently large.}$$

The proof of Theorem 2 is complete.

Proof of Lemma 2. Let $k > 0$ and $r \geq 1$, denote $\beta = \|E (|Y|^k |X)\|_r$ and consider $q \in \mathbb{R} \cup \{\infty\}$ such that $1/r + 1/q = 1$. Let $\lambda > 0$ and t be two real numbers we have

$$\mu(X + Y \leq t) \geq \mu(X \leq t - \lambda, Y \leq t - X)$$

$$= \mu(X \leq t - \lambda) - \mu(X \leq t - \lambda, Y \geq |t - X|)$$

$$\geq \mu(X \leq t - \lambda) - E \left\{ \mathbb{I}_{X \leq t - \lambda} \mu(|Y| > |t - X| |X) \right\}.$$

Since

$$E \left\{ \mathbb{I}_{X \leq t - \lambda} \mu(|Y| > |t - X| |X) \right\} \leq E \left\{ |t - X|^{-k} E(|Y|^k |X) \mathbb{I}_{X \leq t - \lambda} \right\}$$

$$\leq \beta \|E \left\{ \mathbb{I}_{X \leq t - \lambda} |t - X|^{-k} \right\|_q$$

$$\leq \beta \lambda^{-k},$$
we obtain
\[\mu(X + Y \leq t) \geq \mu(X \leq t - \lambda) - \beta \lambda^{-k}. \]

Consequently
\[\mu(X + Y \leq t) - \Phi(t) \geq \mu(X \leq t - \lambda) - \Phi(t - \lambda) - \frac{\lambda}{\sqrt{2\pi}} - \beta \lambda^{-k} \]
and taking \(\lambda = \left(\beta \sqrt{2\pi} \right)^{1/(k+1)} \), there exists a positive constant \(c \) such that
\[\delta(X + Y) \geq \delta(X) - c \beta^{1/(k+1)}. \]

In the other hand
\[\mu(X + Y \leq t) \leq \mu(X \leq t + \lambda) + \mu(X \geq t + \lambda, |Y| \geq |t - X|) \]
\[= \mu(X \leq t + \lambda) + E \{ \mathbb{1}_{X > t + \lambda} \mu(|Y| \geq |t - X| |X) \} \]
and
\[E \{ \mathbb{1}_{X > t + \lambda} \mu(|Y| \leq |t - X| |X) \} \leq E \{ \mathbb{1}_{X > t + \lambda} E(|Y|^k |X) |t - X|^{-k} \} \]
\[\leq \beta \| E(\mathbb{1}_{X > t + \lambda} |t - X|^{-k}) \|_q \]
\[\leq \beta \lambda^{-k}. \]

Consequently
\[\mu(X + Y \leq t) \leq \mu(X \leq t + \lambda) + \beta \lambda^{-k} \]
and
\[\mu(X + Y \leq t) - \Phi(t) \leq \mu(X \leq t + \lambda) - \Phi(t + \lambda) + \frac{\lambda}{\sqrt{2\pi}} + \beta \lambda^{-k}. \]

Taking \(\lambda = \left(\beta \sqrt{2\pi} \right)^{1/(k+1)} \), there exists a positive constant \(c' \) such that
\[\delta(X + Y) \leq \delta(X) + c' \beta^{1/(k+1)}. \]

Combining (9) and (10) with Lemma 1 in Bolthausen [2] complete the proof of Lemma 2.

Proof of Theorem 3. It suffice to apply Inequality (2) of Lemma 2 with \(k = p, r = 1 \) and \(Y = n^{-1/2} (g - g \circ T^n) \). The proof of Theorem 3 is complete.

Proof of Corollary 1. Since \((\varepsilon_j)_j \) is stationary, there exists a measure preserving transformation \(T \) such that \(\varepsilon_j = \varepsilon_0 \circ T^j \). By Theorem 2 in [21], the condition (9) is necessary and sufficient to the existence of a function \(g \) in \(L^p(\mu) \) such that
\[X_0 = m + g - g \circ T \]
where \(m \triangleq \varepsilon_0 \sum_{k \in \mathbb{Z}} a_k \). Since \(m \) satisfies the assumptions of Theorem 1, it suffice to apply Theorem 3. The proof of Corollary 1 is complete.
References

[22] D. VOLNÝ, Personal communication.

Mohamed EL MACHKOURI, Lahcen OUCHTI
Laboratoire de Mathématiques Raphaël Salem
UMR 6085, Université de Rouen
Site Colbert
76821 Mont-Saint-Aignan, France
mohamed.elmachkouri@univ-rouen.fr
lahcen.ouchti@univ-rouen.fr