Ultra-low coupling loss fully-etched apodized grating coupler with bonded metal mirror
Yunhong Ding, Christophe Peucheret, Haiyan Ou

To cite this version:

HAL Id: hal-01061965
https://hal.archives-ouvertes.fr/hal-01061965
Submitted on 8 Sep 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Abstract—A fully etched apodized grating coupler with bonded metal mirror is designed and demonstrated on the silicon-on-insulator platform, showing an ultra-low coupling loss of only 1.25 dB with 3 dB bandwidth of 69 nm.

I. INTRODUCTION

Efficiently coupling light between standard single mode fibers (SSMFs) and nano-waveguides has been one of the most challenging problems for photonic integrated circuits. The use of grating couplers is one of the most efficient means to overcome this difficulty. By properly designing the scattering strength and period of the scattering units, light can be efficiently output at a specific angle from the normal to the circuit and directly coupled to an SSMF with high efficiency. The biggest advantage of grating couplers is that neither chip cleaving nor lensed fibers are required, making wafer-scale testing possible. Traditional shallowly etched uniform grating couplers [1, 2] have the drawback that extra fabrication steps are required and the coupling efficiency is sensitive to the etching depth. In addition, two factors limit the coupling efficiency of this type of grating. One is the loss due to power leakage to the substrate. It can be reduced by introducing a metal mirror [3, 4] beneath the grating area. However, one cannot overcome the second type of loss due to the intrinsic mode mismatch between the exponentially decaying field profile of light diffracted from those uniform gratings and the Gaussian-like field profiles of SSMFs. In order to simplify the fabrication process, as well as to achieve low coupling loss, a fully etched apodized grating coupler is preferred. A number of fully etched grating coupler designs have been reported [5, 6]. However, their coupling efficiency is still limited, either by the mode mismatch or by power leakage to the substrate.

Previously, we have proposed and demonstrated an apodized etched grating coupler based on fully etched photonic crystals (PhCs) with air as upper cladding [7]. Based on the same design method, we design and demonstrate a fully-etched apodized grating coupler using PhCs on the silicon-on-insulator (SOI) platform with SiO2 as upper cladding and with a bonded mirror. Thanks to both apodizing the grating coupler and the bonded mirror, both mode mismatch and power leakage loss are minimized, resulting in an ultra-low coupling loss of 1.25 dB, which is, to the best of our knowledge, the lowest coupling loss ever reported for fully etched grating couplers.

II. DESIGN AND OPTIMIZATION

The proposed grating coupler is schematically depicted in Fig. 1. Its design is based on flip-chip bonding of a silica-clad fully etched silicon PhC grating coupler on a silicon carrier wafer. The thickness of the top silicon device layer is 250 nm. Along the grating, an artificial material is introduced for the scattering units with refractive index n_i changed, and length of scattering unit l_i is also changed. SiO2 is used as upper and lower cladding material with thicknesses of h_u and h_d, respectively. A metal mirror is introduced below the lower cladding and is bonded to the silicon carrier wafer.

The coupling angle θ is designed to be 15º. The mirror metal is titanium (Ti) with thickness of 100 nm. In the design, the artificial material slot width is fixed to be 345 nm, and the scattering strength is tuned by changing n_i and l_i. The distributions of n_i and l_i of the grating coupler are designed as shown in Fig. 2(a). The detailed design method can be found in [7].

Fig. 2(b) shows the coupling efficiency as a function of wavelength, as shown in Fig. 2(c). A peak coupling efficiency of 81% (corresponding to 0.91 dB coupling loss) is predicted at 1560 nm with a 3 dB bandwidth of 74 nm. The
1600 nm thick layer of SiO₂ was then deposited on top of the silicon nano-waveguide simultaneously (see Fig. 3(a)). A etching was first used to fabricate the grating coupler and e-beam lithography and inductively coupled plasma (ICP) process. A single step of standard SOI processing, including silicon dioxide (BOX) of 3 μm. Fig. 3 shows the fabrication process. A single step of standard SOI processing, including e-beam lithography and inductively coupled plasma (ICP) etching was first used to fabricate the grating coupler and silicon nano-waveguide simultaneously (see Fig. 3(a)). A 1600 nm thick layer of SiO₂ was then deposited on top of the grating coupler (see Fig. 3(b)), followed by deposition of 100 nm Ti (see Fig. 3(c)). Afterwards, about 2 μm benzocyclobutene (BCB) was spined on both the sample and silicon carrier wafer (see Fig. 3(d)). The sample was then flip-bonded on the silicon carrier wafer (see Fig. 3(e)) and thermally cured in a BCB oven. Finally the substrate of the chip was removed by ICP fast etching (see Fig. 3(f)).

III. DEVICE FABRICATION AND CHARACTERIZATION

The device was designed and fabricated on a commercial SOI sample with top silicon thickness of 250 nm and buried silicon dioxide (BOX) of 3 μm. Fig. 3 shows the fabrication process. A single step of standard SOI processing, including e-beam lithography and inductively coupled plasma (ICP) etching was first used to fabricate the grating coupler and silicon nano-waveguide simultaneously (see Fig. 3(a)). A 1600 nm thick layer of SiO₂ was then deposited on top of the grating coupler (see Fig. 3(b)), followed by deposition of 100 nm Ti (see Fig. 3(c)). Afterwards, about 2 μm benzocyclobutene (BCB) was spined on both the sample and silicon carrier wafer (see Fig. 3(d)). The sample was then flip-bonded on the silicon carrier wafer (see Fig. 3(e)) and thermally cured in a BCB oven. Finally the substrate of the chip was removed by ICP fast etching (see Fig. 3(f)).

The propagation loss of the single mode silicon waveguide was measured to be 4 dB/cm. The fiber-to-fiber transmission was measured, and the coupling loss was calculated as half of the fiber-to-fiber transmission minus the propagation loss in the straight waveguide. An ultra-low coupling loss of 1.25 dB (corresponding to 74% coupling efficiency) was obtained at 1560 nm with a 3 dB coupling bandwidth of 69 nm, as shown in Fig. 4(c), in good agreement with the numerical predictions. In order to test the fabrication tolerance, the size of the holes was increased by dhole 8 nm, resulting in a peak coupling wavelength shift of 20 nm without peak coupling efficiency degradation. To the best of our knowledge, this is the lowest coupling loss ever reported for fully etched grating couplers.

IV. CONCLUSION

We have designed and demonstrated a fully etched apodized grating coupler using PhCs with bonded mirror. A record low coupling loss of only 1.25 dB was measured with 3 dB coupling bandwidth of 69 nm.

V. ACKNOWLEDGEMENT

This work is supported by the Danish Council for Independent Research (project 1337-00152).

REFERENCES