Numerical simulation and experimental study of thrust air bearings with multiple orifices
Abderafi Charki, Khadim Diop, Stéphane Champmartin, Abdelhak Ambari

To cite this version:

HAL Id: hal-01061923
https://hal.archives-ouvertes.fr/hal-01061923
Submitted on 8 Sep 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Numerical simulation and experimental study of thrust air bearings with multiple orifices

A. Charki a,⁎, K. Diop a, S. Champmartin b, A. Ambari b

a University of Angers, ISTIA-LASQUO, 62 av. Notre Dame du Lac, 49000 Angers, France
b ENSAM Angers, LAMPA, 2 bd. du Ronceray, 49035 Angers, France

A R T I C L E I N F O

Keywords:
Thrust air bearing
Finite element method
Experimental study
Dynamic analysis

A B S T R A C T

The objective of this paper is to provide a numerical simulation and an experimental study in order to assess stiffness and damping characteristics of thrust air bearings with multiple orifices. Finite element modeling is used to solve the non-linear Reynolds equation while taking into account the movement equation for the bearing. The numerical results obtained show that performance characteristics are related to bearing design type. An experimental investigation allows us to analyze the behavior of thrust air bearings with several orifices as well as that of groove or porous material bearings. Frequency response measurements have been realized in order to compare the dynamic properties of the different bearings. The frequency responses obtained demonstrate that air bearings with multiple orifices have a damping higher than the other types in certain conditions. Air bearings with multiple orifices offer many advantages from a dynamic point of view. Their performance may be characterized not only by flow conditions but also by the number or diameter of the orifices in the bearing surface.

1. Introduction

The usual approach to the design of thrust air bearings is based on static characteristics. However, when integrated into a system, for instance a spindle or a metrology stage, bearings are subject to load variations, pressure fluctuations or gap variations induced by surface flaws in the slideways. These effects induce excitations of the bearing dynamic response, which can eventually lead to bearing instability. Consequently, the prediction of dynamic characteristics in working conditions is necessary for the applications requiring high precision movements or positioning with micrometer to nanometer repeatability.

Several approximate analytical approaches to the dynamic behavior of thrust air bearings have been presented in the literature. Licht et al. [1] and Bassani et al. [2] developed analytical models to examine the influence of geometric parameters on the stability of aerostatic bearings with recesses. Their common conclusion is to minimize the depth of the pockets in order to avoid the effect of pneumatic hammer. Stiffler [3] conducted a theoretical analysis of a thrust bearing with inherently compensated orifices by using a small perturbation of the Reynolds equation, and found that an unstable range occurs when stiffness is at maximum.

Few authors studied numerically the dynamic characteristics of thrust air bearings. Lin et al. [4] proposed a finite element modeling to calculate the static and dynamic characteristics of air bearings using the Gross form of the Reynolds equation [5]. They employed the Runge–Kutta method to solve the coupled dynamic equation of a journal bearing with shaft, and simulate a thrust pocket bearing to analyze the stable and unstable states for different pocket depths. Fourka et al. [6] established a comparison of the stability map of pocket bearings obtained by finite element modeling. Their findings demonstrated that the analytical method underestimates the critical threshold, giving a wider margin. The same conclusion established by [1,2] is arrived at in [4,6] using FEM to examine the influence of the volume of bearing recess.

Aguirre et al. [7] proposed a new theoretical approach for analyzing the behavior of aerostatic bearings to avoid a self-excited vibration known as pneumatic hammer. They developed a system with the active compensation using air bearings in order to control its position and to reduce the influence of disturbance forces.

Nishio et al. [8] studied numerically and experimentally aerostatic annular thrust bearings with feedholes of less than 0.05 mm in diameter. It was confirmed that aerostatic thrust bearings with small feedholes have a larger stiffness and a higher damping coefficient than bearings with compound restrictors.

Bhat et al. [9] analyzed the static and dynamic characteristics of inherently compensated orifice based flat pad air bearing system. The steady state characteristics are studied theoretically and experimentally for a single orifice air bearing. They found that

http://dx.doi.org/10.1016/j.ijmecsci.2013.03.006
pneumatic hammer instability tends to occur at low perturbation frequencies at small orifice diameters (less than 0.25 mm), large gap heights (greater than 20 \(\mu m \)) and large supply pressures.

Boffey [10–14] tested and analyzed the static and dynamic characteristics of thrust bearings with a pocketed orifice and inherent orifice compensation. The effect of geometric parameters on stability has been shown for pocketed thrust bearings. The same tendencies as those described by [6,10–18] have been deduced from experimental investigations. Nevertheless, few experimental results report the dynamic behavior of thrust air bearings with multiple inherent orifices.

The numerical study using the finite element method presented in this paper allows the analysis of the damping of thrust air bearings fed with multiple orifices. Simulations have been performed in order to describe the influence of geometrical parameters and static equilibrium conditions. The numerical results show that an optimum position may be achieved. The same approach is used by Charki et al. [19] for studying the dynamic behavior of hemispherical air bearings.

An experimental setup is also proposed in this paper. Experimental tests have been conducted to compare thrust air bearings with different types of inlet by exciting the bearing system with a variable force around its static equilibrium position. The aim of these experiments is to establish a comparison between porous thrust bearings. The effects of geometrical parameters and of air flow conditions have been investigated.

2. Modeling

2.1. Finite element modeling of a thrust air bearing

In this section, a finite element model is developed for thrust air bearings in order to study the effect of several design and working parameters on fluid film gap characteristics, such as discharge coefficient, supply pressure, number and diameter of orifices and position of orifice rows, and external load.

After introducing the dimensionless variables

\[
\begin{align*}
\bar{p} &= \frac{p}{p_0}, & \bar{x} &= \frac{x}{R_0}, & \bar{y} &= \frac{y}{R_0}, & \bar{h} &= \frac{h}{h_0}, & \bar{\tau} &= \frac{\tau}{\omega t},
\end{align*}
\]

\(p_0 \) is the atmospheric pressure, \(\omega \) is the frequency, \(R_0 \) is the outer radius of the bearing, \(h \) is the film gap, \(h_0 \) is the reference film gap—with the isothermal perfect gas assumption, the Reynolds equation of compressible flow becomes [5,19–21]

\[
\nabla \cdot (\rho \frac{\partial \bar{h}}{\partial \bar{\tau}}) = \sigma \frac{\partial \bar{h}}{\partial \bar{\tau}},
\]

where \(\Lambda \) is the compressibility vector and \(\sigma \) is the squeeze parameter [5,19–21]. The components of the compressibility vector in each directions and the squeeze parameter are respectively expressed as

\[
\begin{align*}
\Lambda_x &= \frac{\mu_0 R_2}{h^2 p_0}, & \Lambda_y &= \frac{\mu_0 R_2}{h^2 p_0}, & \Lambda_z &= \frac{\mu_0 R_2}{h^2 p_0}, & \sigma &= \frac{12 \mu_0 R_2}{k^2 h_0 p_0},
\end{align*}
\]

\(u_x \) and \(u_y \) are the components of the velocity vector of the film flow.

The problem consists in determining the pressure field \(\bar{p}(\bar{x},\bar{z}) \) satisfying the dimensionless Reynolds equation (1) and the mass flow rate conservation.

The film flow is developed along a 2-dimensional surface \(S \) as it is shown in Fig. 1. The solution is defined over a surface \(S \) on which the boundary conditions are given by the pressure along the external boundary \(\Gamma_p \) of the bearing and the mass flow rate \(q_n \) in the film along \(\Gamma_n \). The mass flow rate \(q_n \) in the film is defined by

\[
q_n = \rho h \left(U - \frac{h^2}{12 \mu} \nabla p \right) \mathbf{n}
\]

where \(U \) is the velocity vector of the film flow in each axis directions, and \(\mathbf{n} \) is the normal unit vector of the \(\Gamma_n \).

By applying the Galerkin weighted residual method [19] to (1), the following integral formulation is obtained as

\[
I(\nabla) = -\int_S (\nabla \bar{p} \bar{n} \cdot \nabla \bar{p} + \nabla \bar{p} \cdot (\bar{p} \Lambda) \bar{n} - \frac{\partial \bar{p} \bar{n}}{\partial \bar{\tau}}) dS - \int_{\Gamma_n} \bar{p} \bar{n} \cdot d\mathbf{l}
\]

where \(\bar{p} \bar{n} \) is deduced from (2).

In order to have a matrix formulation, the domain \(S \) (see Fig. 1) is discretized with the linear triangular element T3. Thus, the pressure functions are

\[
\bar{p}(\bar{x},\bar{z},\bar{\tau}) = \sum_{i=1}^n N_i(\bar{x},\bar{z}) \bar{p}_i(\bar{\tau})
\]

where \(N_i \) is the shape function for which its coefficients are determined with the nodes coordinates. Then, Eq. (3) becomes

\[
I(\nabla) = (\partial \bar{p} \bar{n})^T \left(\sum_{i=1}^n (K(\bar{p}_i)) \bar{n} + [C]\bar{p} + (F) \right) = 0
\]

where

\[
K(\bar{p}_i) = \int_S \bar{N}^T \bar{N} dS' + \int_{\Gamma_n} \bar{N} \bar{N} dS' + \int_{\Gamma_f} \bar{N} \bar{N} dS'
\]

\[
C = \int_S \bar{N} \bar{N} dS' \quad \text{and} \quad (F) = -\int_{\Gamma_n} \bar{n} \bar{N} d\mathbf{l}
\]

Finally, taking into account all elements \(n_e \) of the discretized surface, the non-linear algebraic non-stationary equations constitutes a matrix relation as

\[
[K(\bar{p}_e)](\bar{p}_e) + [C]\bar{p}_e + (F) = 0
\]

2.2. Static calculation

The non-linear algebraic equation (4) is first solved using the Newton–Raphson method in order to find the static characteristics. The calculation procedure is performed as follows:

1. Perform surface meshing.
2. Provide input parameters and boundary conditions. Input feeding parameters: supply pressure, inlet diameter, discharge.
coefficient, number of inlets; boundary conditions: initial feeding pressure of fluid film and atmospheric pressure, squeeze and compressibility parameters.

3. Perform static calculations and analyze results: flow rate, pressure distribution, load capacity and stiffness.

The pressure distribution is calculated in taking into account the mass conservation in the flow [6,19]. The solution is determined over a surface on which the boundary conditions are given by the pressure along the external boundary of the bearing (see Fig. 1) and the mass flow rate (2).

In the bearing with orifices, the dimensionless pressure \(P_r = P_r/P_{at} \) (where \(P_r \) is orifice outlet pressure) at the exit determines the flow rate through the orifice [20], which in turn allows us to examine the influence of feeding parameters on pressure in the fluid film.

From the compressible flow theory through [19,22] a nozzle, under isentropic assumption, the dimensionless air mass flow through each one of the feeding holes is expressed as

\[
q = \frac{12\omega \pi T}{h_{\text{stair}}^2 \mu} q_0 = \frac{2}{\gamma - 1} \left[\left(\frac{P_r}{P_s} \right)^{2/\gamma} - \left(\frac{P_r}{P_s} \right)^{(\gamma+1)/(\gamma-1)} \right]^{1/2}
\]

if \(P_r/P_s \leq \frac{2}{\gamma + 1} \)

and

\[
q = \pi C_d \left(\frac{2}{\gamma + 1} \right)^{((\gamma+1)/(\gamma-1))} \left(\frac{P_r}{P_s} \right)^{(\gamma+1)/(\gamma-1)}
\]

where \(P_r \) is the feed supply pressure, and \(C_d \) is the feeding parameter expressed as

\[
C_d = \frac{12 \omega \pi d C_p}{h_{\text{stair}}^2 P_{stair}} \sqrt{\gamma R T},
\]

where \(T \) is the atmospheric temperature at supply conditions, \(C_p \) is the discharge coefficient, \(d \) is the orifice diameter, \(\mu \) is the dynamic viscosity of the fluid, \(\gamma \) is the isentropic index and \(R \) is the gas constant.

Powel [23] published that \(C_d \) is a variable, which expresses a function of the pressure ratio \(P_r/P_s \).

As normally considered by many authors, the orifice discharge coefficient is equal around to 0.8 for all flow conditions [22].

The gap and pressure steps chosen are equal to 0.05 \(\mu \)m and 0.0001 bar in order to achieve a very small ratio error and to maintain the conservation of mass flow rate through the orifices and in the air film gap. This aspect is particularly important for a very small gap, i.e. at approximately zero.

The work of the designer consists in determining a compromise between the load capacity and the stiffness of the final choice of bearing.

The dimensionless load capacity and stiffness are calculated respectively using the following expressions:

\[
W = \frac{W}{P_{at} R^2} = \int_{S} (p - 1) \, dS
\]

\[
K = \frac{h_0 K}{P_{at} R^2} = -\frac{dW}{dh}
\]

2.3. Dynamic calculation

The dynamic calculation derives from the need to solve the Reynolds equation simultaneously with the equation of motion [19,20], written as

\[
\Delta F(t) = M h(t)
\]

where

\[
M = \frac{m \omega^2 h_0}{P_{at} R^2}.
\]

\(m \) is the mass supported by the bearing, \(P_{at} \) is the atmospheric pressure, \(\omega \) is the frequency, \(R_2 \) is the outer radius of the bearing, \(h_0 \) is the reference film gap. \(\Delta F \) is the variation of the resultant pressure force: from this may be deduced, firstly, the wall acceleration, and secondly the velocity and variation of air film gap relative to the equilibrium position, using a variable step Euler scheme:

2. Input of initial step displacements and velocities for step by step method.
3. Dynamic calculation of the movement (acceleration, velocity, displacement, pressure and load capacity, etc.).

3. Numerical application

3.1. Test case

In this section, a test case is proposed for comparing results obtained with previous works in the literature. Frêne [24] studied the bearing design presented in Figs. 2 and 3. The bearing for which the load capacity has been calculated is shown with another view in Fig. 3, where \(R_1, R_2 \) and \(r \) respectively show the position of the orifices and the outer and inner radii.

Numerical calculations are performed with a regular mesh, where the feeding orifices are located at the nodes of the fluid film geometry meshing, as shown in Fig. 4. Fig. 5 shows the pressure distribution obtained by the FEM developed in Section 2. As shown in Fig. 5, the pressure is distributed from the feeding parameters on pressure in the fluid film.

The load capacity is calculated with an analytical approach proposed by Frêne [14] in assuming a simple stational case. The load capacity is also obtained experimentally and numerically using FEM. Fig. 6 shows that results are different for each case for a film thickness lower than 15 \(\mu \)m, and are very close for numerical and experimental approaches for a film thickness higher than 15 \(\mu \)m.

3.2. Analysis of the equilibrium position

In this paper, the FEM proposed allows us to study the influence of several design and working parameters on air film gap characteristics, such as discharge coefficient, supply pressure, number and diameter, of orifices and position of orifice rows, and external load.

For this section, the bearing configuration considered is presented in Fig. 7 and its fixed parameters are listed in Table 2.

The dimensionless load capacity and stiffness calculated versus the dimensionless air film gap are respectively presented in Figs. 8–10. Results are obtained for \(P_{at} = 5.10^5 \) Pa, \(C_d = 0.7, R_1/R_2 = 0.8, h_0 = 20 \mu \)m, \(R_2 = 32 \) mm and \(\omega = 1400 \) rpm.

![Fig. 2. Bearing design of Frêne [24].](image-url)
Table 1
Thrust bearing parameters of Frêne [24].

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outer radius (R_1) (mm)</td>
<td>75</td>
</tr>
<tr>
<td>Inner radius (r) (mm)</td>
<td>30</td>
</tr>
<tr>
<td>Reference gap (h_0) ((\mu)m)</td>
<td>20</td>
</tr>
<tr>
<td>Radius of orifice row (R_1) (mm)</td>
<td>48</td>
</tr>
<tr>
<td>Diameter of the feeding orifice (d) (mm)</td>
<td>0.15</td>
</tr>
<tr>
<td>Number of the orifices (n_o)</td>
<td>12</td>
</tr>
<tr>
<td>Supply pressure (P_s) (Pa)</td>
<td>(3 \times 10^5)</td>
</tr>
<tr>
<td>Atmospheric pressure (P_a) (Pa)</td>
<td>(1 \times 10^5)</td>
</tr>
<tr>
<td>Coefficient of discharge (C_d)</td>
<td>0.7</td>
</tr>
<tr>
<td>Isentropic index (\gamma)</td>
<td>1.4</td>
</tr>
<tr>
<td>Gas constant (R) (J kg(^{-1}) K(^{-1}))</td>
<td>287</td>
</tr>
<tr>
<td>Dynamic viscosity (\mu) (Pa s)</td>
<td>(18.38 \times 10^{-9})</td>
</tr>
<tr>
<td>Temperature at supply conditions (T) (°C)</td>
<td>293</td>
</tr>
<tr>
<td>Rotational speed (\omega) (rpm)</td>
<td>0</td>
</tr>
</tbody>
</table>

As the figures show, the best working conditions lie within a very small gap range. These are obtained for an air film gap of less than 10 \(\mu\)m for all configurations.

Certain parameters are more sensitive than others. The influence of diameter and the number of orifices is very accentuated. Load capacity increases significantly for a very small air film gap as the number of orifices and orifice diameter increases. The load capacity increase drops off severely when there are 24 orifices. The optimum stiffness is found when the film gap diminishes as the orifice diameter is reduced.

3.3. Analysis of dynamic responses

Figs. 11–14 give the dynamic step responses of the bearing studied above. The results also make it possible to analyze the sensitivity of the parameters vis-à-vis the dynamic behavior of the bearing around an equilibrium position. The step responses are calculated with the Euler scheme as described in Section 2.3, with the same initial conditions: \(h^0 = 0.5 \) and \(h^0 = 0.0 \).

The dynamic simulations take into consideration two external loads: \(W = 2.0 \) and \(W = 0.5 \). The dynamic dimensionless air film gap and the load capacity versus dimensionless time are obtained for \(P_s = 5.10^5 \) Pa, \(C_d = 0.7 \), \(R_1/R_2 = 0.8 \), \(h_0 = 20 \) \(\mu\)m, \(R_o = 32 \) mm and \(\omega = 1400 \) rpm. The gap and the pressure step chosen for numerical calculations must be as small as possible for optimal accuracy of results.

For the highest external load \(W = 2.0 \), the step responses are not damped for a number of orifices equal to 12 whatever the diameter of orifices as shown Fig. 11. The step responses give a higher damped oscillation frequency for a number of orifices equal to 8 or 24.

With an external load equal to 0.5, the damping is increased when the orifice diameter decreases and the number of orifices is equal to 8 or 12 as shown in Figs. 13 and 14. The oscillation amplitude increases considerably for an orifice diameter of 0.6 mm, tending towards a configuration close to an instability range.

Other results obtained by the numerical approach show the same tendency found in the literature [20]. For instance, the influence of the discharge coefficient and of the row position is not significant.

4. Experimentation

4.1. Experimental setup

The experimental setup is presented in Fig. 15. The thrust air bearings to be tested are placed on a stable granite base. The block under which the bearing is fixed is supported by a journal air bearing that prevents friction. The static value of the air film gap is measured using a fiber optic sensor with nanometric resolution.

The force exerted is measured by a force sensor. The dynamic response of the bearings is analyzed by a small white noise perturbation generated by a shaker controlled by an electrical signal. The frequency response of the bearing is obtained from an accelerometer, using a modal analyzer.

The load is applied at the center of the bearing in order to avoid a parallelism error between bearing surface and support surface. The air flow is filtered by a regulation system to eliminate humidity and solid particles.

4.2. Description of bearings tested

Fig. 16 gives the geometry type of bearings taken into consideration in testing, where \(R_2 \), \(R_1 \), \(h \), \(P_s \), \(d \), and \(n_o \) respectively are the outer radius, position of orifice row, reference gap, supply pressure, orifice diameter and number of orifices. Table 3 presents the different geometric parameters of all bearings. The groove
width of bearing configurations of cases 4 and 5 are respectively equal to 0.2 mm and 0.6 mm. All results shown in following sections are obtained for $P_s = 5 \times 10^5$ Pa, $\omega = 0$ rpm and $n_o = 8$. Fig. 17 shows another view of the different feeding types of the bearings studied.

Bearing characteristics are dependent on the surface quality obtained from finish diamond machining. For high precision machines or systems, it is very important that the flatness, straightness and roughness of bearing surfaces fall within tight limits. For our purposes, the reference surface flatness is within 1 μm, having been machined by diamond turning. Similarly, the pad surface has been achieved by diamond cutting on the high precision lathe. Furthermore, in order to ensure good parallelism between the surfaces, the holes are drilled to the same diameter and with good roundness. All orifices must be equally spaced

Table 2

<table>
<thead>
<tr>
<th>Thrust bearing parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outer radius R_2 (mm)</td>
<td>32</td>
</tr>
<tr>
<td>Reference gap h_0 (µm)</td>
<td>20</td>
</tr>
<tr>
<td>Radius of orifice row R_1 (mm)</td>
<td>25.6</td>
</tr>
<tr>
<td>Supply pressure P_s (Pa)</td>
<td>5×10^5</td>
</tr>
<tr>
<td>Atmospheric pressure P_{at} (Pa)</td>
<td>1×10^5</td>
</tr>
<tr>
<td>Coefficient of discharge C_d</td>
<td>0.7</td>
</tr>
<tr>
<td>Isentropic index γ</td>
<td>1.4</td>
</tr>
<tr>
<td>Gas constant \mathcal{R} (J kg$^{-1}$ K$^{-1}$)</td>
<td>287</td>
</tr>
<tr>
<td>Dynamic viscosity μ (Pa s)</td>
<td>18.38×10^{-6}</td>
</tr>
<tr>
<td>Temperature at supply conditions T (K)</td>
<td>293</td>
</tr>
<tr>
<td>Rotational speed $\omega = 2\pi \nu$ (rpm)</td>
<td>1400</td>
</tr>
</tbody>
</table>
along the circumference. The shape of an orifice outlet can be observed in Fig. 18.

The roughness and form error measurements are made with an interferential microscope and a profilometer comprising a linear stage and an optical fiber sensor, giving a repeatability of less than 0.2 μm for the straightness measurement. Fig. 19 shows a roughness measurement on the surface of the pad. In order to obtain a high stiffness, the bearings need to work at a very low air film gap, which means that the surface must be free of significant form error waviness.

5. Experimental results

5.1. Testing validity of numerical results

Fig. 20 shows that the load capacity W obtained via both the experimental method and a numerical method developed by Bonis and Charki [20] are in good agreement. The experimental results are obtained using the equipment described in Section 4.1. A bearing with multiple orifices as shown in Fig. 16 is tested.

Experimental results of W and h shown in Fig. 20 are based on a mean of six measurements and a respectively standard deviation equal to 10 N and 2 μm. For a very small film gap less than 2 μm, it is difficult to know exactly the maximum load capacity supported by the bearing in order to avoid a solid contact between surfaces of reference support and bearing.

As shown in Fig. 20, two discharge coefficients have been used in our calculations for the purpose of comparison. The difference in the load capacity relative to the discharge coefficient is very small.

5.2. Dynamic results

The following results serve to investigate the influence of the feeding design on dynamic properties. The frequency responses obtained correspond to the dynamic behavior at the first modal frequency of each bearing. A single supply pressure (5 bar) is considered in order to compare the frequency responses of all the bearing types presented in Fig. 17 and Table 3.

Fig. 21 illustrates the influence of a groove on the natural frequency and on the amplitude of the frequency response for $W=35$ N and two different diameters ($d=0.2$ mm and $d=0.6$ mm). The natural frequency is higher in the presence of a groove; the
The difference in natural frequency between a bearing with and a bearing without a groove diminishes as the diameter increases, and the amplitude of the responses decreases as the orifice diameter is decreased.

Furthermore, Fig. 22 shows that the amplitude of the frequency response diminishes as the load is increased. This aspect is due to the fact that the air film gap decreases, and the acceleration after an excitation reduces. The natural frequency remains almost the same for each load.

The damping ratio ζ_{exp} is deduced by means of an empirical procedure that looks at the amplitude of the frequency response at

Fig. 14. Dimensionless step response of load capacity versus dimensionless time for $W = 0.5$ and $d = 0.2$ mm.

Table 3

<table>
<thead>
<tr>
<th>Geometric parameters</th>
<th>Type of feeding</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Orifices without groove</td>
</tr>
<tr>
<td>R_2 (mm)</td>
<td>Case 1</td>
</tr>
<tr>
<td></td>
<td>32</td>
</tr>
<tr>
<td>R_1 (mm)</td>
<td>25.6</td>
</tr>
<tr>
<td>d (mm)</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Fig. 15. Test rig.

Fig. 16. Geometry bearing tested with multiple orifice.

Fig. 17. Bearings configurations tested.
The damping ratio ζ_{exp} is calculated by using the following expression:

$$
\zeta_{\text{exp}} = \frac{f_2 - f_1}{f_n^{\exp}}
$$

where f_n^{\exp} is the natural frequency corresponding to the top peak of the frequency response function, f_1^{\exp} and f_2^{\exp} are frequencies deduced by the half-power bandwidth method [25,26]. The uncertainty of measurement on ζ_{exp} is estimated as

$$
\Delta \zeta_{\text{exp}} = \frac{1}{\frac{\partial \zeta_{\text{exp}}}{\partial f_n}} \Delta f_n^{\exp} + \frac{1}{\frac{\partial \zeta_{\text{exp}}}{\partial f_1}} \Delta f_1^{\exp} + \frac{1}{\frac{\partial \zeta_{\text{exp}}}{\partial f_2}} \Delta f_2^{\exp}
$$

where Δf_i^{\exp} are the measurement uncertainties of each frequency. The estimation of Δf_i^{\exp} is equal to 3 Hz. This value of frequency uncertainty takes only into account the experimental standard deviation [27,28] of measurement data samples obtained for all bearings tested.

For each case tested, the natural frequency of the bearing is found to occur at about 100 Hz. As seen in Figs. 22 and 23, structural modes of the test rig are observed at high loads but correspond to a much higher frequency, which is easy to distinguish.

Figs. 23 and 24 show the frequency responses of the three bearings, for two loads ($W = 135$ N and $W = 35$ N) and an oriﬁce diameter of 0.6 mm. The frequency observed is the same for both loads on each of the bearings and falls within the experimental error range. The amplitude of the frequency responses decreases with an increase in load, demonstrating that the increase in film damping that is generated by an increase of the squeezing effect and of viscous dissipation when the gap height is reduced.

A comparison of the frequency responses of the three types of feeding – oriﬁce, groove, and porous wall with a low permeability (Sika B8) – makes it possible to distinguish clearly between their respective dynamic performances.

In Fig. 23, for the load capacity of 135 N, the acceleration amplitude of the bearing with oriﬁces is lower than for the other bearings, indicating higher damping ratio ζ_{exp} at high load, i.e. at small gap. In Fig. 24, the trend changes at the lower load of 35 N. In this instance, the bearing with porous material has the lowest acceleration, together with a higher natural frequency (f_n^{\exp}), and consequently a higher stiffness, giving it the most preferable dynamic performance among the three types of bearings. The acceleration amplitude of the bearing with groove remains the highest at both loads.

Table 4 presents natural frequencies and damping ratios with uncertainties measurement for two loads ($W = 135$ N and $W = 35$ N).
$W = 35\text{ N}$ and all different bearings tested as shown in Figs. 23 and 24.

It has been clearly demonstrated that for a very small air film gap, bearings with oriﬁces offer advantages due to their dynamic responses. Bearings may be less subject to perturbations if the oriﬁce diameter chosen is optimal in order to avoid pneumatic hammer. Experiments show that it is possible to improve the dynamic behavior by changing the type of bearing feed.

Fig. 25 gives the numerical results of the bearing with oriﬁces tested Case 3. In Table 4, the damping ratio ζ and the natural frequency f_n have been calculated with the logarithmic decrement method [25,26]. Numerical results show the same tendencies found in the experimental investigation concerning the natural frequency whereas the damping ratios found are relatively higher.

Table 4
Experimental natural frequencies and damping ratios.

<table>
<thead>
<tr>
<th>Load capacity W (N)</th>
<th>Inlets type</th>
<th>f_n (Hz)</th>
<th>ζ_{exp} ± $\Delta \zeta_{\text{exp}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>135</td>
<td>Orifices with groove (Case 5)</td>
<td>100</td>
<td>0.130 ± 0.064</td>
</tr>
<tr>
<td>Porous (Case 6)</td>
<td></td>
<td>123</td>
<td>0.081 ± 0.051</td>
</tr>
<tr>
<td>35</td>
<td>Orifices without groove (Case 3)</td>
<td>99</td>
<td>0.172 ± 0.066</td>
</tr>
<tr>
<td>Porous (Case 6)</td>
<td></td>
<td>125</td>
<td>0.240 ± 0.006</td>
</tr>
<tr>
<td>Orifices without groove (Case 3)</td>
<td>79</td>
<td>0.152 ± 0.082</td>
<td></td>
</tr>
</tbody>
</table>

6. Conclusion

This paper proposes a numerical and experimental approach for analyzing the dynamic response around an equilibrium position of a bearing with multiple oriﬁces. Calculations based on finite element modeling are a means of optimizing the design of a bearing for high precision machines or systems, and take into account different geometrical conﬁgurations.

Numerical results obtained show that dynamic characteristics change with feeding conditions. Decreasing the orifice diameter and the air film gap improves the damping of air bearings with a number of oriﬁces equal to 8. With a small load capacity, the oscillation amplitude increases considerably in increasing the orifice diameter, tending towards a conﬁguration close to an instability range.

A comparison between a bearing with oriﬁces and bearings either with a groove or made from porous material is carried out using frequency response measurements. Experimental results show that the bearing with oriﬁces is better damped than the other types for the highest load capacity.

Designers have to pay attention for optimizing the number and the diameter of oriﬁces in accordance to their needs in terms of static and dynamic characteristics. Air bearings with multiple oriﬁces have a good stability but this analysis is correct in certain conditions.
The numerical approach developed in this paper allows designers to optimize suitably air bearings with multiple orifices.

List of symbols

\[\begin{align*}
& \rho(x,y) \quad \text{pressure field} \\
& P_a \quad \text{atmospheric pressure} \\
& P_s \quad \text{supply pressure} \\
& P_r \quad \text{orifice outlet pressure} \\
& R_2 \quad \text{outer radius of the bearing} \\
& R_1 \quad \text{position radius of the orifices} \\
& r \quad \text{inner radius} \\
& d \quad \text{orifice diameter} \\
& h \quad \text{film gap} \\
& h_0 \quad \text{reference film gap} \\
& \sigma \quad \text{squeeze parameter} \\
& \Lambda \quad \text{compressibility vector} \\
& \omega \quad \text{rotational speed} \\
& q \quad \text{mass flow rate at the bearing inlet} \\
& S \quad \text{surface of the fluid film} \\
& \Gamma_{q} \quad \text{boundary of the fluid film} \\
& \mathbf{u} \quad \text{normal vector of the film fluid} \\
& N \quad \text{shape function} \\
& C_s \quad \text{feeding parameter} \\
& C_T \quad \text{atmospheric at supply conditions} \\
& C_d \quad \text{discharge coefficient} \\
& n_o \quad \text{number of orifices} \\
& \mu \quad \text{dynamic viscosity of the fluid} \\
& \gamma \quad \text{isentropic index} \\
& R \quad \text{gas constant} \\
& m \quad \text{mass supported by the bearing} \\
& W \quad \text{load capacity} \\
& K \quad \text{stiffness} \\
& \tau \quad \text{dimensionless time} \\
& \zeta_{\text{exp}} \quad \text{damping ratio obtained experimentally} \\
& f_n \quad \text{natural frequency obtained experimentally} \\
& \zeta \quad \text{damping ratio obtained numerically} \\
& f_n \quad \text{natural frequency obtained numerically}
\end{align*} \]

Fig. 25. Numerical step responses for the bearing tested case 3.

Table 5

<table>
<thead>
<tr>
<th>Load capacity (W) (N)</th>
<th>Inlets type</th>
<th>(f_n) (Hz)</th>
<th>(\zeta \pm \Delta \zeta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>135</td>
<td>Orifices without groove</td>
<td>105</td>
<td>0.101 ± 0.041</td>
</tr>
<tr>
<td>35</td>
<td>Orifices without groove</td>
<td>79</td>
<td>0.084 ± 0.022</td>
</tr>
</tbody>
</table>

References

[26] [http://www.xyobalancer.com/_blog/XYO_Balancer_Blog/post/Material_Damping_Ratio_Measurement/].
