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Abstract: In this paper, we show how the so-called diffusive representation can be used in
order to identify nonlinear Volterra models of the form H(∂t)X = f(u,X)+ v. Several methods
are described, all being based on a suitable parameterization of H(∂t) by means of its γ-
symbol. Following this idea, the complex dynamic nature of H(∂t) can be summarized by a
few parameters on which the identification of the dynamic part of the model will focus. For
illustration, we implement the methods on a concrete numerical example.
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1. INTRODUCTION

Numerous models of physics involve dynamic convolution
operators of the form:

u 7→ H(∂t)u, [H(∂t)u](t) =

∫ t

0

h(t− s)u(s) ds, (1)

where h is the impulse response of H(∂t). Identifying such
an operator means identifying one of its characteristic
quantities. As the operator to be identified is linear, a
convenient and rather general approach consists in working
in the frequency domain where any causal operator can
be well-defined by its symbol H(iω), that is the Fourier
transform of its impulse response. Then, the problem of
identifying H(iω) can be classically solved from physical
measurements by means of Fourier techniques. Note how-
ever that purely frequency identification presents some
well-known shortcomings. In particular, the so-identified
symbol H(iω) is in general ill adapted to the construction
of efficient time-realizations. This is partly due to exces-
sive numerical cost of quadrature approximations resulting
from the intrinsic convolution nature of the associated
operator, sometimes with long memory (Rumeau et al.
[2006]) or even delay-like behaviors (Montseny [2007]).
Another shortcoming is that frequency methods are incom-
patible with real-time identification (and so with pursuit
when the symbol has the ability to evolve slowly). But
above all, the number of unknown parameters is excessive,
what makes the problem excessively sensitive to measure-
ment noises.

In opposite, time domain identification techniques do not
present such drawbacks. However, their scope is in general
not so wide. See for example (Monin and Salut [1996]) for
an interesting optimal method based on ARMA lattices.

By means of diffusive representation, it is possible to use
the notion of symbol in the time-domain to identify a
small number of unknown parameters, sufficient to get a
good accuracy. Indeed, the diffusive representation theory

is devoted to state realizations of causal integral operators
which can be characterized by a suitable distribution called
the γ-symbol. Instead of identifying the symbol H(iω) of
the operator, we then identify its γ-symbol µ, which is
linearly involved.

Identifying the γ-symbol of a convolution operator presents
numerous advantages:

• an input-output stable differential formulation;
• recursive identification algorithms, compatible with
real-time identification or even pursuit, can be build;

• as for frequency methods, the rational and non ratio-
nal operators are considered without distinction and
can be identified by the same identification process.

The paper is organized as follows. In section 2, we present a
simplified version of the diffusive representation. In section
3, we describe the method of identification of a dynamic
operator by means of its γ-symbol. Then in section 4, we
present two methods of identification of Volterra models.
Finally, in section 5, we implement the methods described
on a concrete example.

2. DIFFUSIVE FORMULATION OF CAUSAL
CONVOLUTION OPERATORS

A complete statement of diffusive representation will be
found in (Montseny [2005]). Various applications and
questions relating to this approach will be found for ex-
ample in (Audounet et al. [1998], Carmona and Coutin
[1998], Degerli et al. [Ap. 1999], Garcia and Bernus-
sou [1998], Lenczner and Montseny [2005], Levadoux and
Montseny [2003], Montseny [2007], Mouyon and Imbert
[2002], Rumeau et al. [2006]).

2.1 Mathematical framework

We consider a causal convolution operator defined, on any
continuous function u : R+ → R, by:



u 7→
(
t 7→

∫ t

0

k(t− s)u(s) ds

)
. (2)

We denote K the Laplace transform of k and K(∂t) the
convolution operator defined by (2).

Let ut(s) = 1]−∞,t](s)u(s) be the restriction of u to its
past and ut(s) = ut(t − s) the so-called ”history” of u.
From causality of K(∂t), we deduce:

[K(∂t)(u− ut)](t) = 0 for all t; (3)

then, we have for any continuous function u:

[K(∂t)u](t)=
[
L−1 (K Lu)

]
(t)=

[
L−1

(
K Lut

)]
(t). (4)

We define Ψu(t, p) := ep t (Lut) (p) = (Lut) (−p); by
computing ∂tLut, Laplace inversion and use of (4):

Lemma 1. Ψu is solution of the differential equation:

∂tΨ(t, p) = pΨ(t, p) + u, t > 0, Ψ(0, p) = 0, (5)

and for any b > 0:

[K(∂t)u] (t) =
1

2iπ

∫ b+i∞

b−i∞
K(p)Ψu(t, p) dp. (6)

Let γ be a closed 1 simple arc in C−; we denote Ω+
γ the

exterior domain defined by γ, and Ω−
γ the complementary

of Ω+
γ . Assume there exists αγ ∈]π2 , π[ and a ∈ R such

that:
ei[−αγ , αγ ]R+ + a ⊂ Ω+

γ . (7)

By use of standard techniques (Cauchy theorem, Jordan
lemma), it can be shown:

Lemma 2. For γ such that K is holomorphic in Ω+
γ , if

K(p) → 0 when p→ ∞ in Ω+
γ , then:

[K(∂t)u] (t) =
1

2iπ

∫
γ̃

K(p)Ψu(t, p) dp, (8)

where γ̃ is any closed simple arc in Ω+
γ such that γ ⊂ Ω−

γ̃ .

We now suppose that γ, γ̃ are defined by functions of
the Sobolev space 2 W 1,∞

loc (R;C), also denoted γ, γ̃ and
such that γ(0) = 0. We use the convenient notation
⟨µ, ψ⟩ =

∫
µψ dξ; in particular, when µ is atomic that

is µ =
∑

k ak δξk , we have: ⟨µ, ψ⟩ =
∑

k ak ψ(ξk).

Under hypothesis of lemma 2, we have (Montseny [2005]):

Theorem 3. If the possible singularities of K on γ are
simple poles or branching points such that |K ◦ γ| is locally
integrable in their neighborhood, then:

1. with µ̃ = γ̃′

2iπ K ◦ γ̃ and ψ̃(t, .) = Ψu(t, .) ◦ γ̃:

[K(∂t)u] (t) =
⟨
µ̃, ψ̃(t, .)

⟩
; (9)

2. with 3 γ̃n → γ in W 1,∞
loc and µ = γ̃′

2iπ limK ◦ γ̃n in the
sense of measures:

[K(∂t)u] (t) = ⟨µ, ψ(t, .)⟩ , (10)

where ψ(t, ξ) is solution of the following evolution problem
on (t, ξ) ∈ R∗+×R (of diffusive type):

∂tψ(t, ξ) = γ(ξ)ψ(t, ξ) + u(t), ψ(0, ξ) = 0. (11)

1 Possibly at infinity
2 W 1,∞

loc
(R;C) is the topological space of measurable functions f :

R → C such that f, f ′ ∈ L∞
loc (that is f and f ′ are locally bounded

in the almost everywhere sense).
3 This convergence mode means that on any bounded set P , γ̃n|P −
γ|P → 0 and γ̃′n|P

− γ′|P → 0 uniformly.

Definition 4. The measure µ defined in theorem 3 is called
γ-symbol of operator K(∂t). The function ψ solution of
(11) is called the γ-representation of u.

Remark 1. Note in particular that thanks to (10), the
Dirac measure δ is clearly a γ-symbol of the operator

u 7→
∫ t

0
u(s) ds, denoted ∂−1

t . We indeed have (∂−1
t u)(t) =

⟨δ, ψ(t, .)⟩ = ψ(t, 0), with ∂tψ(t, 0) = u, ψ(0, 0) = 0.

Beyond the measure framework, the general space of γ-
symbols is a quotient space of distributions, denoted ∆′

γ ; it
is the topological dual of the space ∆γ ∋ ψ(t, .) (Montseny
[2005]). The composition product of operators has an
equivalent in ∆′

γ , denoted ♯γ or simply ♯: if µ and ν are
respective γ-symbols of H(∂t) and K(∂t), then µ♯γν is
a γ-symbol of H(∂t) ◦K(∂t). Note that the product ♯γ is
inner, commutative and continuous 4 in ∆′

γ and so (∆′
γ , ♯γ)

is an algebra (of γ-symbols) isomorphic to a commutative
algebra of causal convolution operators.

Formulation (11,10) can be extended to operators H(∂t)
of the form H(∂t) = K(∂t) ◦ ∂nt where K(∂t) admits a γ-
symbol in ∆′

γ ; such operators are said to be γ-diffusive of
degree n. Formally we have:

[K(∂t) ◦ ∂nt u](t) = ⟨µ, ∂nt ψ(t, .)⟩ , (12)

with ψ(t, ξ) solution of (11) and µ the γ-symbol of K(∂t).
In the same way, ∆′

γ can be extended to an algebra,
denoted Σγ , composed of the γ-symbols of operators γ-
diffusive of degree n ∈ N, the γ-symbols ν of K(∂t) ◦ ∂nt
being characterized by the relation:

µ = ν♯δn (13)

where δn = δ♯δ♯...♯δ︸ ︷︷ ︸
n times

∈ ∆′
γ is a γ-symbol of ∂−n

t .

The inversion of γ-symbols cannot be defined in ∆′
γ

because this algebra is not unitary; this operation is
nevertheless well-defined in Σγ . If µ ∈ Σγ is a γ-symbol of
K(∂t) such that K(∂t)

−1 ◦ ∂−n
t has a γ-symbol ν ∈ ∆′

γ ,

then ν = µ−1♯δn and we have:

[K(∂t)
−1u](t) =

⟨
µ−1♯δn, ∂nt ψ(t, .)

⟩
, (14)

with ψ solution of (11). Note in particular that operator
∂−1
t defined above is the unique inverse of the derivative

operator ∂t. See (Casenave [2009]) for details about the
inversion of γ-symbols.

2.2 Summary

Let γ be a closed simple arc in C− verifying the property
(7). An operator H(∂t) γ-diffusive of degree n admits the
following state-realization:

∂tψ(t, ξ) = γ(ξ)ψ(t, ξ) + u(t), ψ(0, .) = 0, (15)

(H(∂t)u)(t) = < µ, ∂nt ψ(t, .) >∆′
γ ,∆γ , (16)

where µ ∈ ∆′
γ is the γ-symbol of K(∂t) := H(∂t) ◦ ∂−n

t ;
the essential conditions the operator has to satisfy to admit
such a representation are:

• K holomorphic in Ω+
γ , (17)

• K(p) → 0 when |p| → +∞ in Ω+
γ , (18)

4 In the sense of the strong topology of ∆′
γ .



K being the Laplace-symbol of K(∂t) given by:

K(p) =
H(p)

pn
. (19)

Thanks to the sector condition (7) verified by γ, the
state realization is of diffusive type: so, cheap and precise
numerical approximations of (15,16) can be easily built.

2.3 About numerical approximations

The state equation (11) is infinite-dimensional. To get nu-
merical approximations, we consider ML a sequence of L-
dimensional spaces of atomic measures on suitable meshes
{ξLl }l=1:L on the variable ξ; L-dimensional approximations
µL of the γ-symbol µ ∈ ∆′

γ are then defined in the sense
of atomic measures, that is:

µL =
∑L

l=1
µL
l δξL

l
, µL

l ∈ C. (20)

If ∪LML is dense in the topological space ∆′
γ (that is,

concretely, if ∪L{ξLl } is dense in R), then we can have
(Montseny [2005]):⟨

µL, ψ
⟩

−→
L→+∞

⟨µ, ψ⟩ ∀ψ ∈ ∆γ ; (21)

so, we have the following L-dimensional approximate state
formulation of K(∂t) (with γ-symbol µ): ∂tψ(t, ξ

L
l ) = γ(ξLl )ψ(t, ξ

L
l ) + u(t), l = 1 : L, ψ(0, ξLl ) = 0

[K(∂t)u](t) ≃
∑L

l=1
µL
l ψ(t, ξ

L
l ).

(22)

One of the properties of the approach presented above
is that most of non rational operators encountered in
practice can be closely approximate with small L (see
for example (Montseny [Nov. 2004])). In the context of
identification of dynamic operators, this will be a great
advantage because only a few numerical parameters µL

l
will have to be identified from experimental data, while
the property (21) will ensure the well-posedness and the
robustness of the problem as soon as the operator to be
identified admits a γ-symbol in Σγ .

3. IDENTIFICATION OF AN OPERATOR BY
MEANS OF ITS γ-SYMBOL

We consider here the problem of identification of an
integral operator H(∂t) :

X 7−→ v = H(∂t)X. (23)

Let vm and Xm be some (direct or indirect and possibly
noisy) measurements of the output v and the associated
input X; the problem consists then in identifying the γ-
symbol of H(∂t) from these data.

3.1 Principle

Assume that H(∂t) is γ-diffusive of degree n and let µ be
the γ-symbol of K(∂t) = H(∂t) ◦ ∂−n

t . We then have (see
section 2):

v = H(∂t)X = ⟨µ, ∂nt ψX⟩ =
⟨
µ, ψ∂n

t X

⟩
. (24)

By denoting A∂n
t X the operator defined by:

A∂n
t X : µ 7−→

⟨
µ, ψ∂n

t X

⟩
, (25)

we get a new formulation, linear with respect to µ:

v = A∂n
t X µ, (26)

and which can also be written:

vm = A∂n
t Xm

µ+ ϵ(µ), (27)

where ϵ(µ) is the error equation. The least squares estima-
tor µ̂ of µ is then given by:

µ̂ = argmin
µ∈E

∥ϵ(µ)∥2F , (28)

where E is an Hilbert subspace of ∆′
γ and F another

Hilbert space chosen a priori. The solution of (28) is
formally obtained by:

µ̂ = A†
∂n
t Xm

vm, (29)

where A†
∂n
t Xm

designates the pseudo-inverse of A∂n
t Xm

(Ben-Israel and Greville [2003]).
In the sense of the hilbertian norm of F , the estimator
µ̂ is optimal. When the measurement Xm is noisy, the

estimator µ̂ is also biased because A†
∂n
t Xm

depends on the

measurement noise. To mitigate this problem, it can be in-
teresting to consider some classical bias reduction methods
as the ones used in time-continuous system identification.

By denoting K̂(∂t) the operator of γ-symbol µ̂ and

Ĥ(∂t) = K̂(∂t) ◦ ∂nt , the identified model is then written

v = Ĥ(∂t)X, or, under diffusive formulation:{
∂tψ = γ ψ + ∂nt X, ψ(0, .) = 0

v =
⟨
µ̂, ψ∂n

t X

⟩
.

(30)

Remark 2. Note that in the case where vm = v (no output
measurement noise), we can get an unbiased estimation by
identifying the operator H(∂t)

−1 of input v and output
X instead of H(∂t). We suppose H(∂t)

−1 is γ-diffusive
of degree n′ and we denote ν ∈ ∆′

γ the γ-symbol of

K(∂t) = H(∂t)
−1 ◦ ∂−n′

t . We then have:

X = H(∂t)
−1v = A∂n′

t vν, (31)

and so get, after identification:

ν̂ = A†
∂n′
t v
Xm. (32)

The identified model then writes v = K̂(∂t)
−1 ◦ ∂−n′

t X,
that is, under diffusive formulation:{

∂tψ = γ ψ + ∂nt X, ψ(0, .) = 0

v =
⟨
(ν̂)−1♯δn

′+n, ψ∂n
t X

⟩
.

(33)

The computation of (ν̂)−1♯δn
′+n can be numerically per-

formed as shown in (Casenave [2009]).

More information about this identification method will be
found in (Casenave and Montseny [2009b, 2010]).

3.2 Prefiltering with an invertible convolution operator

The identification model (26) can be equivalently trans-
formed by composition with any invertible causal convo-
lution operator Q(∂t):

Q(∂t)v = Q(∂t) ◦H(∂t)X = H(∂t) ◦Q(∂t)X. (34)

By denoting ṽ = Q(∂t)v and X̃ = Q(∂t)X, the model is
then written:

ṽ = H(∂t)X̃. (35)



When applying the identification method to model (35),
the estimator of µ is written:

µ̂ = A†
∂n
t X̃m

ṽm, (36)

with X̃m = Q(∂t)Xm and ṽm = Q(∂t)vm.

When n ̸= 0, this transformation is necessary to make the
identification process possible, otherwise, the amplification
of the noise measurement of the term ∂nt Xm in (28) and
(29) would make the identification impossible. So, the
operator Q(∂t) has to be chosen so that the measurement

noise is not amplified by the term ∂nt X̃m. It has to suf-
ficiently attenuate high frequencies (i.e. |Q(iω)| ∼

H.F

1
ωn ),

without amplifying low and middle ones (i.e. |Q(iω)| ∼
L.F

1). Basically, it behaves like a nth order low-pass filter; here
we simply consider the filter Q(∂t) with transfer function:

Q(p) =
σn

(p+ σ)n
, (37)

where σ > 0 (the cutoff frequency) will be chosen in such

a way that ∥ϵ(µ)∥2F is as ”small” as possible.

Remark 3. The transfer function Q(p) could also be opti-
mized in order to minimize the estimation error.

3.3 Case of multiple trajectories

Consider a set of input trajectories Xj , j = 1 : J and the
associated output trajectories vj = H(∂t)X

j . Let vjm and
Xj

m be some measurements of vj and Xj . Then, without
any change of notations, model (26) can be extended to the
general case of multiple trajectories simply by defining:

v = (v1, ..., vJ)T , X = (X1, ..., XJ)T ,

vm = (v1m, ..., v
J
m)

T , Xm = (X1
m, ..., X

J
m)

T ,

and A∂n
t X : µ 7−→

 < µ,ψ∂n
t X1 >
...

< µ,ψ∂n
t XJ >

 . (38)

3.4 Recursive formulations

Recursive formulations of (29) can be established under
the form (Garcia and Bernussou [1998]):

µ̂t = µ̂t−∆t +Kt−∆t(vm −A∂n
t Xm µ̂t−∆t)|[0,t]; (39)

such formulations allow real-time identification (or even
the pursuit of µ in case of slowly varying operators
H(t, ∂t)).

3.5 In the numerical point of view

Let (v,X) be such that v = H(∂t)X. We consider a
discrete data set {vkm, Xk

m}k=0:K where vkm and Xk
m are

the respective measurements of v and X at time instant
tk. We also denote vm and Xm the continuous measured
trajectories such that vm(tk) = vkm and Xm(tk) = Xk

m.
The time instants tk are given by:

t0 = 0, tk = tk−1 +∆tk, k = 1 : K. (40)

We consider a discretization {ξLl }l=1:L of the variable ξ
and the associated L-dimensional approximation µL of µ

given by (20). At time instant tk, we consider the following
identification model of finite dimension:

vkm = φT
m(tk)µ+ ϵ(tk, µ), (41)

where :

• µ = (µL
1 , ..., µ

L
L)

T ,

• φT
m(tk) = [Ψk

1 , ...,Ψ
k
L] with Ψk

l = ψ∂n
t Xm(tk, ξ

L
l ),

• and ϵ(tk, µ) is the error equation at time tk.

The least squares estimator µ̂ is then given by:

µ̂ = arg min
µ∈CL

K∑
k=1

ϵ2(tk, µ)∆tk, (42)

that is:

µ̂ =

[
K∑

k=1

φm(tk)φ
T
m(tk)∆tk

]−1 K∑
k=1

φm(tk) v
k
m∆tk. (43)

3.6 On the choice of γ

To choose the contour γ on which depends the problem
(28), recall first that γ has to verify the sector condition
(7), and then that the transfer function K of K(∂t) =
H(∂t) ◦ ∂−n

t has to be analytic in Ω+
γ (see(17)). So all

the singularities of K have to be inside the domain

Ω−
γ delimited by γ. However, as the operator H(∂t) is

unknown, so is the position of the singularities of K. As
a consequence the contour γ will be chosen in such a way

that the domain Ω−
γ is sufficiently big to contain all the

singularities of K. In practice, we often take a contour of
sector type:

γ(ξ) = |ξ| ei sign(ξ)(π
2 +α), (44)

with α ∈]0, π2 ] a sufficiently ”small” angle.
Note that, however, the more γ is close to the axis iR
(stability limit axis), the finer (and so the more expensive
numerically) the discretization in ξ has to be in order to
get a good approximation of the model. So in practice, we
first identify the system with a small value of angle α and
a great value L. Then, if the identification results are good
with these values, we can iterate the process with a greater
angle α (α 6 π

2 ) and a smaller L.

Note that in practice, the available information about the
operator H(∂t) can help us in the choice of γ.

Some indications about the choice of the discretization
points ξLl can be found in Montseny [2005]. Note however
that, from the discrete data {vkm, Xk

m}, we can identify
the impulse response H(iω) only in the frequency band
[ 2πtK ; 2π

2∆t ], where ∆t = max(∆tk). Consequently, the band

[ξL1 ; ξ
L
L ] covered by the discretization in ξ will be chosen in

such a way that 5 [ 2πtK ; 2π
2∆t ] ⊂

∣∣γ([ξL1 ; ξLL ])∣∣.
4. IDENTIFICATION OF VOLTERRA MODELS

Now we consider a nonlinear Volterra model of the form:

H(∂t)X = f(u,X) + v, (45)

where H(∂t) is a causal convolution operator and f is
a nonlinear function. The problem under consideration
5 The quantity |γ(ξ)| is comparable to a frequency. In the case of a
contour of sector type we have |γ(ξ)| = |ξ|.



consists in identifying both operator H(∂t) and function
f from some measurements um, vm and Xm of u, v
and X. We will describe two identification methods: with
the first one, H(∂t) and f are identified simultaneously,
whereas with the second one, H(∂t) is first identified alone
after cancellation of the non linear term f in the model.
Only the theoretical principles of these two methods are
described; the numerical implementation is similar to the
one described in section 3.5.

Suppose H(∂t) is γ-diffusive of degree n and let µ be the
γ symbol of K(∂t) = H(∂t) ◦ ∂−n

t . Then, (45) can be
rewritten:

A∂n
t Xµ = f(u,X) + v. (46)

4.1 Simultaneous identification of H(∂t) and f

We consider a topological basis {gp ⊗ kq}p,q=1:+∞ of a
tensorial product of Hilbert spaces to which f belongs.
We so have:

f =
∑
p,q

gp ⊗ kq apq, with a := (apq)p,q ∈ ℓ2. (47)

The Volterra model (45) can then equivalently be ex-
pressed under the linear form:

Gu,X(µ, a) = v, (48)

with Gu,X the operator defined by:

Gu,X : (µ, a) 7→ A∂n
t X µ−

∑
p,q

gp(u)kq(X) apq. (49)

The least squares estimator (µ̂, â) of (µ, a) is defined by:

(µ̂, â) = arg min
(µ,a)∈E×ℓ2

∥ϵ(µ, a)∥2F , (50)

where ϵ(µ, a) = Gum,Xm(µ, a) − vm is the error equation.
Formally we so get:

(µ̂, â) = G†
um,Xm

vm. (51)

When n ̸= 0, a prefiltering with a convolution operator (see
section 3.2) is necessary so that the noise is not amplified.
For complementary details about this method, we will refer
to (Casenave and Montseny [2008]).

4.2 Identification of H(∂t) after cancellation of f

For simplicity, we here suppose that f(u,X) = f(X).
Let also assume that n < 2 (note that in other cases,
the identification method presented here-after can not
be applied due to the amplification of the measurement
noise 6 by operator ∂nt : a prefiltering with a convolution
operator cannot mitigate the problem because the method
is based on the fact that f is a function, which is not the
case of Q(∂t) ◦ f).

Let ε ∈ R+ and (x, y) ∈
(
C0([0, T ];X)

)n×(C0([0, T ];Y)
)n

with X,Y two Banach spaces; we denote:

Ωx,ε :=
∪

i,j=1:n
{(i, j)} × Ωi,j

x,ε, (52)

where Ωi,j
x,ε :=

{
(t, τ) ∈ [0, T ]2;

∥∥xi(t)− xj(τ)
∥∥ 6 ε

}
(see

figure 1 for some examples).

6 In the case where n = 1, we have ψ∂tX = ∂tψX = γψX + X; so
the measurement noise is not amplified by the computation of ψ∂tX .

Fig. 1. Examples of (t, τ) in Ωi,i
x,ε (top) and in Ωi,j

x,ε

(bottom)

Definition 5. The ε-cancellation operator Dε is defined by:

(x, y) 7→ Dε (x, y) : Ωx,ε → Y
(i, j, t, τ) 7→ yi(t)− yj(τ).

(53)

Proposition 4. (1) Dε is continuous.
(2) For any continuous function f : X0 ⊂ X → Y, we have
the cancellation property :

D0 (x, f ◦ x) = 0. (54)

Thanks to proposition 4 and by application of operator
D0(X, .) to both members of the equation, model (45) is
rewritten: { ⟨

µ,D0

(
X,ψ∂n

t X

)⟩
= D0 (X, v)⟨

µ, ψ∂n
t X(0, .)

⟩
− f(X(0)) = v(0).

(55)

The interest of this new formulation is that, on the one
hand, up to the quantity f0 := f(X(0)), the model is
independent of f , and on the other hand, both µ and f0
are linearly involved. Formally, these unknowns can then
be determined by means of the pseudo-inverse of operator:

Y0 : (µ, f0) 7→

( ⟨
µ,D0(Xm, ψ∂n

t Xm)
⟩⟨

µ, ψ∂n
t Xm(0, .)

⟩
−f0

)
. (56)

In general however, on the one hand the set ΩXm,0 may
be too poor to get the strict equivalence of (45) and (55)
and, on the other hand, the available data Xm and vm are
noisy. In practice, we so consider the weakened problem:

min
(µ,f0)

∥ϵ(µ, f0)∥2 , (57)

where the equation error ϵ(µ, f0) is given by:

ϵ(µ, f0) = Yϵ(µ, f0)−
(
Dε(Xm, vm)

v(0)

)
, (58)

with:

Yϵ : (µ, f0) 7→

( ⟨
µ,Dε(Xm, ψ∂n

t Xm)
⟩⟨

µ, ψ∂n
t Xm(0, .)

⟩
−f0

)
. (59)



The estimator (µ̂, f̂0) of (µ, f0) is then defined by:

(µ̂, f̂0) = Y†
ε

(
Dε (Xm, vm)

vm(0)

)
. (60)

By means of standard regression methods, the function f
can then be easily estimated from its ”pseudo graph”:

Pf =
∪
k

{(
Xk

m,
⟨
µ̂, ψ∂n

t Xm(tk, .)
⟩
− vkm

)}
. (61)

The hypothesis made on f and n are more restrictive than
those made for the method of simultaneous identification
of f and H(∂t). Nevertheless, this method presents some
interesting advantages. First, as the identification of f is
uncoupled from the one of H(∂t), it is possible to adapt
the choice of basis functions to the behavior of function f
given by its pseudo-graph. Second, this method can also
be used when the function f changes from one data set to
the other. This identification method is still under study:
more information about it will be found in (Casenave and
Montseny [2009a]).

4.3 Iterative method

The identified quantities µ̂ and f̂ can be used as initial
values for an iterative identification method in order to
improve the estimation quality. For example, let’s assume
that the estimated operator Ĥ(∂t) is exact; we can identify
the function f again, this time independently from H(∂t).

From the so-identified function denoted f̂1, we identify
H(∂t), and we then reiterate until the quality of the
estimation becomes sufficient. Note that the convergence
of such a method is still under study.

4.4 Identified model

The physical system under consideration can be de-

scribed by the model Ĥ(∂t)X = f̂(u,X) + v where

Ĥ and f̂ are deduced from the identified parameters.
Furthermore, by assuming that Ĥ(∂t)

−1 is γ-diffusive
of degree n′, we deduce from the equivalent expression

X = Ĥ(∂t)
−1
(
f̂(u,X) + v

)
the following input-output

state realization : ∂tψ = γ ψ + f̂
(
u,
⟨
(µ̂)−1♯δn+n′

, ψ
⟩)

+ v, ψ(0, .) = 0,

X =
⟨
(µ̂)−1♯δn+n′

, ∂n
′

t ψ
⟩
,

(62)

which is available up to the computation of (µ̂)−1♯δn+n′

which can be numerically performed as shown in (Casenave
[2009]).

5. APPLICATION TO A MODEL OF FLAME

In this section, we illustrate the identification methods
presented above by implementing them on data elabo-
rated from numerical simulations of a complex dynamic
phenomenon (Joulin [1985]).

5.1 The model under consideration

In (Joulin [1985]), Joulin elaborated a Volterra model
to describe, in suitable thermodynamic conditions, the
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(a) Source (- - -) and radius of the flame (—) with E = 1.7390.
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Fig. 2.

evolution of a spherical flame initiated by a source at point
0 in a mixture of reactive species. Under some reasonable
physical hypothesis, such a phenomenon can be described
by a system of two partial differential equations relating
to the temperature and the mass density of the mixture.
By considering the reactive zone as a thin sheet located
on a sphere with radius X(t), Joulin has established that
when the flame is developing in free space, X is solution of
the following nonlinear singular Abel-Volterra equation 7

(e(t) designates the source strength at time t):

X(t)∂
1
2
t = 2X(t) lnX(t) + 2 e(t) ∀t > 0, (63)

with the additional conditions: X(0) = 0, e > 0, X > 0
(whose physical interpretation is obvious). By denoting

H(∂t) =
1
2∂

1
2
t , f(u,X) := lnX = f(X) and u = e

X , (63)
can be formally rewritten under the form (45). We have:

7 Here adimensional for simplicity.



• H(p)
p = 1

2p
− 1

2 holomorphic in Cr R−,

• and H(p)
p → 0 when |p| → 0 in Cr R−;

so H(∂t) is γ-diffusive of degree 1 for any γ of the sector
form (44).

As shown in (Audounet et al. [1998]), the evolution prob-
lem (63) is well-posed, that is the solution X exists, is
unique and depends continuously on e. It has also been
shown that there exists a threshold relating to the power of
the source e, beyond which the flame is developing whereas
a quenching occurs below, as it is highlighted in Fig 2a and
2b, the source function used for the simulation being given
as in (Audounet et al. [1998] by:

e(t) = E t0.3(1− t)1[0,1](t). (64)

In real conditions, various perturbations are involved in
the evolution of X (due for example to the loss of spatial
symmetries), and both the convolution operatorH(∂t) and
the function f will be more or less far from the ideal ones.
So, an identification process can be justified if accuracy of
the model is required.

5.2 Numerical identification results and comments

We consider in the sequel the problem of identification of
H(∂t) and/or f from data (em, Xm) obtained from highly
accurate numerical simulations of (63) (Montseny [2010]).

The data are composed of 9 discrete simulated trajectories
(ej,km , Xj,k

m )k=0:K , j = 1 : 9 (see figure 2c), associated
with 9 different sources ej of the form 8 (64) with E =
1.5, 1.6, 1.7, 1.73, 1.74, 1.75, 2.0, 3.0 and 5.0 respectively.
The time step ∆t is constant and equals to 10−5 and the
final time is given by tK = 6 (K = 6× 105).
The inputs are supposed to be known:

ej,km = ej(tk), (65)

and the outputs are corrupted by additive measurement
noise:

Xj,k
m = Xj(tk) + vj,k, (66)

where {vj,k} is a numerical white noise with zero mean
and of standard deviation s = 10−1.

To identify H(∂t), we use L = 80 values ξLl geometrically
spaced to cover 5 decades from 100 to 105, and we consider
a contour γ of the form (44) with α = π

4 . To identify f ,
we use 30 basis functions kq, q = 1 : 30, of hat type and
one function basis g1 = 1.

The frequency response of the identified operator Ĥ(∂t)

and the curve of the identified function f̂ are given in
figure 3 when f is supposed to be known (see section
3), when f and H(∂t) are simultaneously identified (see
section 4.1) and when H(∂t) is first identified alone after
cancellation of f (see section 4.2). For the 3 methods,
the identification of H(∂t) is good in the frequency band
[100, 102] ⊂ [ 2π

K ∆t ,
2π
2∆t ] = [1.05, 3.14 105] (in the free

noise case, this frequency band covers 4 decades). The
identification of f is also good, even around the singularity
of the function f at X = 0. Note however that the greater

8 Note that the source function is physically realistic but rather poor
from the point of view of information, which strengthen the difficulty
of the problem.
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Fig. 3. Identification results.

the value of X is, the larger the difference between f(X)

and its estimate f̂(X) is; this is partly due to the fact that
there are more data Xj,k

m with value near from zero than
others.

6. CONCLUSION

In this paper, we have shown how to use the diffusive
representation in order to identify the dynamic part of
a system. Thanks of the linearity of the γ-symbol in the
state realization of the operator H(∂t), we can identify
it by means of classical least squares methods. Several
questions must yet be studied in order to improve the
results. For example, among the most significant, the
involved hilbertian norms should be judiciously chosen
and adapted to the specific properties of the class of
models under consideration; indeed, this choice is crucial
in terms of sensitivity with respect to perturbations of
any nature. The estimation bias could also be reduced.
All these questions are currently under study.
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