Arithmetic on Abelian and Kummer Varieties
David Lubicz, Damien Robert

To cite this version:
David Lubicz, Damien Robert. Arithmetic on Abelian and Kummer Varieties. 2014. <hal-01057467v1>

HAL Id: hal-01057467
https://hal.archives-ouvertes.fr/hal-01057467v1
Submitted on 22 Aug 2014 (v1), last revised 14 Oct 2015 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Arithmetic on Abelian and Kummer Varieties

DAVID LUBICZ AND DAMIEN ROBERT

Abstract. A Kummer variety is the quotient of an abelian variety by the automorphism \((-1)\) acting on it. Kummer varieties can be seen as a higher dimensional generalisation of the \(x\)-coordinate representation of a point of an elliptic curve given by its Weierstrass model. Although there is no group law on the set of points of a Kummer variety, there remains enough arithmetic to enable the computation of exponentiations via a Montgomery ladder based on differential additions. In this paper, we explain that the arithmetic of a Kummer variety is much richer than usually thought. We describe a set of composition laws which exhaust this arithmetic and show that these laws may turn out to be useful in order to improve certain algorithms. We explain how to compute efficiently these laws in the model of Kummer varieties provided by level 2 theta functions. We also explain how to recover the full group law of the abelian variety with a representation almost as compact and in many cases as efficient as the level 2 theta functions model of Kummer varieties.

1. Introduction

Efficient group law for abelian varieties have many applications in algebraic number theory and cryptography. Let \(k\) be a finite field, the problem consists in representing the set of rational points \(A(k)\) of an abelian variety defined over \(k\) and compute natural composition laws on this set of points such as addition or Weil and Tate pairings. For cryptographic applications, we would like, for a level of security roughly given by the cardinality of \(A(k)\), to have a representation as compact as possible and be able to compute quickly all the composition laws.

If the case of elliptic curves has been widely studied for years, the literature about the higher dimensional cases is less developed. For instance, it is known that all absolutely simple principally polarized abelian surfaces are isomorphic to the jacobian \(\text{Jac}(H)\) of an hyperelliptic curve \(H\) of genus 2. The points on the jacobian of \(H\) can be represented by their Mumford coordinates \((u, v)\). The addition law can then be computed using Cantor’s algorithm [Can87] and these formulas have been optimized in [Lan05]. Unfortunately, even with these formulas, genus 2 curves do not provide the same efficiency as elliptic curves for a similar level of security.

To obtain a more compact representation and improved arithmetic, an idea is to lose information and consider the Kummer variety \(K_A = A/(-1)\) associated to the abelian variety \(A\). In terms of Mumford coordinates, this means working with coordinates \((u, v^2)\). For an elliptic curve in Weierstrass coordinates \(E : y^2 = x^3 + ax + b\), a geometric point \(P\) on the Kummer line \(K_E\) is simply represented by its \(x\)-coordinate \(x(P)\). On a Kummer variety, since we can’t distinguish between a geometric point \(P \in A(\overline{k})\) (where \(\overline{k}\) is an algebraic closure of \(k\)) and its opposite \(-P\), the addition law is only defined up to an ambiguity; more precisely from the points \(\pm P\) and \(\pm Q\) one can recover two possible additions: \(\pm (P + Q)\) and \(\pm (P - Q)\) (in the following we will often denote by \(\pm P\) the projection of a geometric point \(P \in A(\overline{k})\) to \(K_A\)). Nevertheless, one can still compute differential additions; from the data of \(\pm P\), \(\pm Q\) and \(\pm (P - Q)\) the point \(\pm (P + Q)\) is uniquely determined.

By using differential additions in a Montgomery ladder [Mon92; Mon87], it is then still possible to compute scalar multiplications on Kummer varieties. As this is sufficient for some cryptographic protocols based on the discrete logarithm problem, it makes sense to use Kummer varieties in cryptography. In the dimension 2 case, since the publication of fast formulas for Kummer surfaces [Gau07; GL09], using Kummer surfaces for cryptography has been somewhat competitive with elliptic curves. Recently the duel has even been tipping in favor of Kummer surfaces [BCH+13; BCL+14]. We note that the fast formulas in [Gau07] do not use Mumford coordinates but instead are based on a model of the Kummer surfaces provided by theta functions of level 2 [Mum66; Mum67a; Mum67b] (so in particular the 2-torsion
is rational in this model). On a Kummer surface, a point will be represented by 4 projective coordinates (the four level 2 theta functions) while on a Kummer line we just need two projective coordinates. This is somewhat assuaged by the fact that on a Kummer surface we can work with fields of half the size for an equivalent security.

Nonetheless, it should be remarked that the arithmetic provided differential addition does not allow to implement all cryptographic primitives. For instance the verification of a ECDSA signature requires the computation of the addition law. While in the case of the Kummer line it is easy to go back to the elliptic curve (at the cost of one square root), in dimension 2 it is harder to go back from the Kummer surface to the abelian surface. One way would be to go to level 4 theta functions from the level 2 theta functions, but there is a lack of explicit formulas in the literature explaining how to do this step. The other way would be to go from the level 2 theta coordinates to the Mumford coordinates \((u,v^2)\) on the Kummer surface using the formulas from [CR13; Cos11]; and then compute a square root to find the Mumford coordinates \((u,v)\) on \(A\). But converting theta coordinates to Mumford coordinates is pretty slow.

Moreover, while elliptic curves have an efficient addition law (especially on Montgomery curves because they are birationally equivalent to twisted Edwards curves [BBJ+08]), this is not the case for abelian surfaces (the level 4 theta model is even worse than Mumford coordinates since it requires 16 projective coordinates; the cost of the addition law is described in [Rob10]). Hence the incentive to do as much arithmetic operations as possible on the Kummer variety. The aim of this paper is threefold:

- give a comprehensive picture of the arithmetic of Kummer varieties using tools that we have developed for computing isogenies and optimal pairings on abelian varieties [LR12; LR13];
- provide an efficient algorithm to compute the fiber of the natural projection from an abelian variety onto its associated Kummer variety;
- deduce a compact while still efficient representation of abelian varieties based on theta functions.

More precisely, we point out that what can be computed on a Kummer variety goes well beyond differential additions. We introduce the so called compatible addition law which is well defined on a Kummer variety. We give example of useful computations which can be carried out with compatible addition though out of reach of differential additions. We given an algorithm to compute the compatible addition in the model of Kummer varieties provided by level 2 theta functions and we explain that by using differential and compatible additions it is possible to compute the fiber of the natural projection \(A \rightarrow K_A\) up to one choice of sign. This shows that compatible and differential additions exhaust all the arithmetic of Kummer varieties. Then we explain how we can use the idea of hybrid level \((2,\ldots,2,4)\) theta functions combined with the arithmetic tools developed for Kummer varieties to obtain a more efficient and compact representation of abelian varieties.

While, in view of cryptographic applications, we mainly consider the case of dimensions 1 and 2, the algorithms we develop in this paper are valid in any dimension. The paper is organized as follows: In Section 2, we describe the arithmetic on an abstract Kummer variety. Then, Section 3 explain how to compute efficiently this arithmetic with the model provided by level 2 theta functions. Section 4, deals with change of level formulas. Finally, Section 5 is devoted to efficient representation and arithmetic in abelian varieties.

2. Arithmetic on Kummer varieties

In this section, we introduce the compatible addition on the set of points of Kummer varieties. We give two examples of useful computations which can be carried out on a Kummer variety with compatible additions. First, a multiway addition which allows to compute the sum \(P_0 + \ldots + P_n\) from the knowledge of \(P_0,\ldots,P_n\) and the sums \((P_0 + P_1),\ldots,(P_0 + P_n)\). Then we explain how to compute a multi-dimensional Montgomery ladder while keeping only 2 points in memory at each steps.

Let \(A\) be an abelian variety and denote by \(K_A\) its associated Kummer variety. Let \(\pi : A \rightarrow K_A\) be the canonical projection. In this section, we adopt the following convenient convention: for \(x \in A(\overline{k})\), we denote by \(\pm x \in K_A(\overline{k})\) the point of \(K_A\). So, the notation \(\pm x \in K_A(\overline{k})\) means that \(x \in A(\overline{k})\) and that \(\pi(x) = \pm x\). We suppose that we have a model of \(K_A\) also defined over the field \(k\) where we can compute doubling and differential additions. We also suppose that we have an algorithm which, provided
with two points \(\pm P, \pm Q \in \mathcal{K}_A(\mathbb{F}) \), outputs equations defining the dimension 0 scheme of degree two \(\{ \pm(P + Q), \pm(P - Q) \} \). We will call this operation the \textit{schematic addition} on the Kummer. We note that if \(\pm Q \) is a point of 2-torsion, \(\pm(P + Q) = \pm(P - Q) \) so that by the hypothesis we can compute the action of translation by points of 2-torsion.

The following very simple idea show that we can compute \textit{some} additions on \(\mathcal{K}_A \).

Proposition 2.1. Let \(x, y, z, t \in \mathbb{A}(\mathbb{F}) \) be such that \(x + y = z + t \) and \(x - y \neq z - t \). Then one can compute \(\pm(x + y) = \pm(z + t) \) on \(\mathcal{K}_A \) from the knowledge of \(\pm x, \pm y, \pm z, \pm t \). We will call this the \textit{compatible addition} of \(x \) and \(y \) with respect to \(z \) and \(t \).

We note that an equivalent reformulation of the condition of the Proposition is that there is no point of 2-torsion \(u \in \mathbb{A}(\mathbb{F}) \) such that \((x = z + u \text{ and } y = t + u) \) or \((x = t + u \text{ and } y = z + u) \).

Proof. From the hypothesis about \(\mathcal{K}_A \), one can compute the two schemes \(\{ \pm(x + y), \pm(x - y) \} \) and \(\{ \pm(z + t), \pm(z - t) \} \) in \(\mathcal{K}_A \). By the discussion above, we may assume that none of the point is of 2-torsion. From the hypothesis of the Proposition their intersection is of degree 1 and is equal to \(\{ \pm(x + y) \} \). Hence we have an algorithm to recover \(\pm(x + y) \in \mathcal{K}_A(\mathbb{F}) \).

Remark 2.2. In practice, the two schemes \(\{ \pm(x + y), \pm(x - y) \} \) and \(\{ \pm(z + t), \pm(z - t) \} \) will be defined by two polynomials \(P_1 = X^2 + aX + b \) and \(P_2 = X^2 + cX + d \) in \(\mathbb{F}[X] \). Then \(P_1 \) and \(P_2 \) have a common root if and only if \((ad - bc)(c - a) = (d - b)/a - c \). This gives a simple algorithm to compute the intersection; for explicit formulas for Kummer surfaces we refer to Section 7.

Remark 2.3. By looking at the proof of Proposition 2.1, we expect a compatible addition to cost roughly two schematic additions. Actually, once we have computed the scheme \(\{ \pm(x + y), \pm(x - y) \} \) we just need to recover enough information about \(\{ \pm(z + t), \pm(z - t) \} \) to distinguish between \(\pm(x + y) \) and \(\pm(x - y) \). So we don’t need the full schematic addition on \(\pm z \) and \(\pm t \) (see Section 7 for more details).

Nonetheless, since schematic additions are in general much more expensive than differential additions on a Kummer variety, a compatible addition is an arithmetic operation that should not be used too often.

This simple idea of doing compatible additions is surprisingly powerful.

Proposition 2.4 (Multiway additions). Let \(\pm P_0 \in \mathcal{K}_A(\mathbb{F}) \) be a point not of 2-torsion. Then from \(\pm P_1, \ldots, \pm P_n \in \mathcal{K}_A(\mathbb{F}) \) and \(\pm(P_0 + P_1), \ldots, \pm(P_0 + P_n) \in \mathcal{K}_A(\mathbb{F}) \), one can compute \(\pm(P_1 + \cdots + P_n) \) and \(\pm(P_0 + P_1 + \cdots + P_n) \).

Proof. We prove the proposition by induction, the case \(n = 1 \) being clear. Let \(\pm P'_1 = \pm(\sum_{i=1}^{n-1} P_i) \in \mathcal{K}_A(\mathbb{F}) \) which can be computed from the known data by the induction hypothesis.

In Proposition 2.1 set \(x = P'_1, y = (P_0 + P_n), z = P_0 + P'_1, t = P_n \) to recover \(\pm(P_0 + P'_1 + P_n) \). The conditions of Proposition 2.1 hold if \(2P_0 \neq 0 \) and \(2P'_1 - 2P_0 \neq 0 \). By hypothesis, we can rule out the case \(2P_0 = 0 \). Suppose that \(2P'_1 - 2P_0 = 0 \) then \(\pm(P'_1 - P_n) \) is a point of 2-torsion on \(\mathcal{K}_A \), so we can always compute the addition by \(\pm(P'_1 - P_n) \). From \(\pm(P_0 + P_n) \) we can compute \(\pm(P_0 + 2P_n) \) using a differential addition, and we recover \(\pm(P_0 + P'_1 + P_n) = \pm(P_0 + 2P_n) + \pm(P'_1 - P_n) \). We have shown that we can always compute \(\pm(P_0 + P'_1 + P_n) \).

Next, in Proposition 2.1 set \(x = P'_1, y = P_n, z = P_0 + P'_1, t = -P_0 + P_n \) to recover \(\pm(P'_1 + P_n) \). Note that \(\pm(-P_0 + P_n) \) can be computed with a differential addition since we know \(\pm P_0, \pm P_n \) and \(\pm(P_0 + P_n) \) by hypothesis. Again, we can apply the Proposition at the condition that \(2P_0 - 2P_n \neq 0 \) and \(2P'_1 - 2P_0 + 2P_n \neq 0 \). If \(2P_0 - 2P_n = 0 \) then \(P_0 - P_n \) is a point of 2-torsion so that we can always compute the addition by \(\pm(P_0 - P_n) \). From the induction hypothesis, we can recover \(\pm(P_0 + P'_1) \) so that we can compute \(\pm(P'_1 + P_n) = \pm(P_0 + P'_1 + P_n) \).

On the other hand, if \(2P'_1 = 2P_0 - 2P'_1 \). By permuting \(P'_1 \) and \(P_n \) we also know that \(2P_0 = 2P'_1 - 2P_n \), otherwise we could compute \(\pm(P'_1 + P_n) \) via a compatible addition (so in this case \(P_0 \) is a point of 4-torsion). We can also assume that neither \(P'_1 \) or \(P_n \) is a point of 2-torsion, otherwise we could compute \(\pm(P'_1 + P_n) \) directly. We can then use Proposition 2.1 again, this time with \(x = P'_1, y = P_n, z = P_0 + P'_1 + P_n, t = -P_0 \). We can apply this Proposition if \(2P_0 + 2P_n \neq 0 \) and \(2P_0 + 2P'_1 \neq 0 \). But by the above \(2P_0 + 2P_n = 2P'_1 \neq 0 \) because \(P'_1 \) is not a point of 2-torsion, and similarly \(2P_0 + 2P'_1 \neq 0 \).
So in all cases we can always recover \(\pm(P'_1 + P_n) \) and \(\pm(P_0 + P'_1 + P_n) \). The important point is that by Remark 2.2 we can detect in which case we are, and of course generically we just need two compatible additions to compute the two points.

Remark 2.5. The idea behind Proposition 2.4 is that giving the points \(\pm(P_0 + P_i) \) on \(\mathcal{K}_A \) “fixes” the sign of \(P_i \) relatively to \(P_0 \). Since \(P_1, \ldots, P_n \) have “compatible” signs with respect to \(P_0 \), this explains why we are able to compute \(\pm(P_1 + \cdots + P_n) \) and \(\pm(P_0 + P_1 + \cdots + P_n) \).

Another application of compatible additions is to do multi-scalar multiplication on the Kunmer variety. More precisely, we assume that we are given the points \(\pm P, \pm Q \) and \(\pm (P + Q) \) in \(\mathcal{K}_A(\mathbb{F}) \), and we want to compute \(\pm(\alpha P + \beta Q) \) for some \(\alpha, \beta \in \mathbb{Z} \). An easy approach is to do a 2-dimensional Montgomery ladder. At each step we have the four elements \(\pm(mP + nQ), \pm((m + 1)P + nQ), \pm(mP + (n + 1)Q), \pm((m + 1)P + (n + 1)Q) \). Depending on whether the current bits of \((\alpha, \beta) \) is \((0, 0), (1, 0), (0, 1) \) or \((1, 1) \), we add \(\pm(mP + nQ), \pm((m + 1)P + nQ), \pm(mP + (n + 1)Q) \) or \(\pm((m + 1)P + (n + 1)Q) \) to the four points. This costs a doubling and three differential additions (the point \(\pm(P - Q) \) is easily obtained from \(\pm P, \pm Q \) and \(\pm (P + Q) \)).

A less trivial approach [Ber06] consists in working with three points and doing one doubling and two differential additions at each step. Actually, one can see that we only need to keep track of two elements in the square. This is easier to see this on an example:

Example 2.6. Suppose that we have only computed \(\pm(nP + (m + 1)Q) \) and \(\pm((n + 1)P + mQ) \). If we are lucky the current bits of \((\alpha, \beta) \) are \((1, 0) \) or \((0, 1) \) and we don’t need the two missing elements for this step. In this case we can go to the next bits with only one doubling and one differential addition. If however the bits are for instance \((0, 0) \) then we need to recover \(\pm(nP + mQ) \). But this can be done by a compatible addition with (in the terminology of Proposition 2.1) \(\pm x = \pm(nP + (m + 1)Q), \pm y = \pm(-Q), \pm z = \pm((n + 1)P + mQ), \pm t = \pm(-P) \). (For the conditions of the Proposition to hold we need that \(2P + 2Q \neq 0 \) and \(2(n + 2)P + (2m + 2)Q \neq 0 \). But if this is not the case then the points \(\pm((2n)P + (2m + 1)Q), \pm((2n + 1)P + (2m)Q) \) are easy to compute directly.) In this case we need one compatible addition and two differentiable additions.

We expect to need to reconstruct a missing element in the square with probability 1/2. But when we compute this missing element, we can choose which two out the three elements we keep for the next step. Continuing the example, we now have \(\pm(nP + mQ), \pm((n + 1)P + mQ) \) and \(\pm(nP + (m + 1)Q) \). We look at the next bits of \((\alpha, \beta) \) and see that they are \((0, 0) \) and \((1, 0) \). Then for the current step we compute only \(\pm((2n)P + (2n)Q), \pm((2n + 1)P + (2n)Q) \). We know that we won’t need to do a compatible addition for the two next steps.

Using this strategy of keeping the two points among the three that appear next (forgetting about the fourth point), a Monte Carlo simulation shows that on average there will be 1.111 differential additions, 0.888 doubling and 0.293 compatible additions by bits. (A cleverer strategy could detect when we will not use the two points before the next compatible addition anyway and take this opportunity to replace some differential additions by doublings.)

So depending on the cost of a compatible addition compared to doublings and differential additions, this strategy might be better than [Ber06]. (But one should take care that since compatible additions are not done for each bits, an implementation of this computation may not be safe against side channel attacks.)

Of course we can extend Example 2.6 to multiscalar multiplication. (Such a setting can appear when using a multidimensional GLV ladder to speed-up the scalar multiplication [GLV01].) The generalisation of [Ber06] to this setting uses a Montgomery chain with \(n + 1 \) points at each step [Bro06] (where \(n \) is the number of points in the multiscalar multiplication). By using compatible additions, we only need to keep 2 points at each steps.

Proposition 2.7. Assume that we have the points \(\pm P_1, \ldots, \pm P_n \in \mathcal{K}_A(\mathbb{F}) \) and also the \(2^n \) sums \(\pm(\sum \varepsilon_i P_i) \in \mathcal{K}_A(\mathbb{F}) \) for \(i \in \{ 1, \ldots, n \}, \varepsilon_i \in \{ 0, 1 \} \). (Actually we can assume that \(P_1 \) is not of 2-torsion otherwise it is easy to go back to a multiscalar multiplication with \(n - 1 \) points. Then by Proposition 2.4 it suffices to have the \(\pm(P_1 + P_i) \) to recover the other sums.)
Then we can compute $\pm(\sum \alpha_i P_i)$ for $\alpha_i \in \mathbb{N}$ by the following recursive algorithm: if we already have $\pm(\sum m_i P_i)$ and $\pm(\sum m_i P_i)$ then let $Q = \sum \varepsilon_i P_i$ where ε_i is equal to the current bit of α_i. We can recover $\pm(\sum m_i P_i + Q)$ via a compatible addition between $\pm Q$, $\pm(\sum m_i P_i)$ and $\pm(\sum m_i P_i + Q)$ and then use two differential additions to recover $\pm(\sum n_i P_i)$ and $\pm(P_1 + \sum n_i P_i)$ where $n_i = 2m_i + \varepsilon_i$.

This costs (at most) 1 compatible addition and two differential additions by bits.

Proof. We just need to check that the condition of Proposition 2.1 holds in order to do the compatible addition. Suppose the contrary. Since P_1 is not a point of 2-torsion, the only possibility is that $2(P_1 + \sum m_i P_i - Q) = 0$. But in this case $\sum n_i P_i = 3Q - 2P_1$ and $P_1 + \sum n_i P_i = 3Q - P_1$ which are easy to compute directly.

Of course the strategy given at the end of Example 2.6 to reduce the number of compatible additions apply too, but the probability of having to do a compatible addition tends to one by bits exponentially fast in n. Moreover, to prevent some side channel attacks, it may be better to always do a compatible addition at each step anyway. However it is possible to replace the two differential additions by one doubling and one differential addition, by computing $\pm(\sum n_i P_i)$ and $\pm(Q + \sum n_i P_i)$ instead. This strategy of changing the couple of point we keep each time costs 1 compatible addition, 1 differential addition and 1 doubling by bits.

Coming back to Example 2.6, if we relax the condition that in the differential chain each difference should be $P, Q, P + Q$ or $P - Q$, then [Ber06] obtains a differential chain (the ‘extended-gcd’ chain) that uses around 1.76 additions by bit. This algorithm constructs a differential chain \mathcal{R} (where each element in \mathcal{R} is a couple), starting with $\mathcal{R} = \{(0,0), (0,1), (1,0), (1,1)\}$ and requiring that one can add $x + y$ (and $-x - y$) only when x, y and $x - y$ are already in \mathcal{R}. By using ‘compatible additions’ for the multiscalar multiplication (and assuming that the points P_i are linearly independent for simplicity here), one only need to construct a chain \mathcal{R} of tuples such that if $(x, y, u, v) \in \mathcal{R}$ are such that $x + y = u + v$, then one can add $x + y$ (and $-x - y$) to \mathcal{R} provided that

- $x - y \in \mathcal{R}$;
- or $x - y \neq u - v$ and $x - y \neq v - u$.

3. ARITHMETIC WITH THETA FUNCTIONS

This section is mainly a survey of all the results on theta functions that we use in the rest of the paper. The main results are duplication formulas and Riemann relations. We explain that a sufficient condition for the Riemann relations to allow to compute the addition of an abelian variety is closely related to the rank of the multiplication map in the graded ring of theta functions. We deduce algorithms to compute addition on abelian varieties and compatible addition on Kummer varieties. We end up the section by studying the three way addition introduced in [LR13].

For simplicity we will define theta functions for abelian variety over the complex field \mathbb{C}. It should be noted that the Theorems 3.1 and 3.2 are actually valid over any field of odd characteristic k by the algebraic theory of theta functions [Mum66].

Let A be an abelian variety over \mathbb{C} and \mathcal{L} be an ample symmetric line bundle on A. Writing $A = V/\Lambda$ where V is a \mathbb{C}-vector space of dimension g and Λ is a \mathbb{Z}-lattice of rank $2g$ of V, a section $f \in \Gamma(A, \mathcal{L})$ corresponds to an analytic function f on \mathbb{C}^g which satisfy the condition

$$f(z + \lambda) = a_{\mathcal{L}}(z, \lambda)f(z) \quad \forall z \in V, \lambda \in \Lambda,$$

for a certain automorphic factor $a_{\mathcal{L}} : V \times \Lambda \to \mathbb{C}^*$ which satisfy the cocycle condition $a_{\mathcal{L}}(z, \lambda + \lambda') = a_{\mathcal{L}}(z, \lambda)a_{\mathcal{L}}(z + \lambda, \lambda')$.

In fact, the Chern class of \mathcal{L} can be described by a (positive) hermitian form H such that $E(\Lambda, \Lambda) \subset \mathbb{Z}$ where $E = \text{Im} \ H$ and by Appell-Humbert’s theorem the automorphic factor $a_{\mathcal{L}}$ can be chosen so that

$$(1) \quad a_{\mathcal{L}}(z, \lambda) = \chi(\lambda)e^{\pi H(z, \lambda) + \pi/2H(\lambda, \lambda)\pi/2},$$

for a certain quasi-character $\chi : \Lambda \to \pm 1$. (For more details we refer to [Mum70; BL04]).

More concretely, if A has a principal polarisation, up to a linear transform of V, we can write $\Lambda = \mathbb{Z}^g + \Omega \mathbb{Z}^g$ where $\Omega \in \mathfrak{H}_g$ is in the Siegel upper half space. Then one can define a principal symmetric
line bundle \mathcal{L}_0 associated to the hermitian form H_0 corresponding to the matrix $(\text{Im } \Omega)^{-1}$ and the quasi-character $\chi_0(\lambda) = e^{iE(\lambda_1, \lambda_2)}$ where $\lambda = \lambda_1 + \lambda_2$ is the decomposition of λ in $\mathbb{Z}^g \oplus \mathbb{Z}^g$.

We recall the definition of the theta functions with characters $a, b \in \mathbb{Q}^3$:

$$\theta \left[\frac{\Omega}{n} \right] (z, \Omega) = \sum_{n \in \mathbb{Z}^g} e^{\pi i (n + a) \cdot \Omega (n + a) + 2 \pi i (n + a) \cdot (z + b)}.$$

These theta functions with characters are related by

$$\theta \left[\frac{\Omega}{n} \right] (z, \Omega) = e^{\pi i \alpha \cdot \Omega + 2 \pi i \alpha \cdot (z + b)} \theta \left[\frac{\Omega}{n} \right] (z + \Omega \alpha + b, \Omega),$$

where $m, n \in \mathbb{Z}^g$; and satisfy the functional equation

$$\theta \left[\frac{\Omega}{n} \right] (z, \Omega) = e^{2 \pi i \alpha \cdot m} \theta \left[\frac{\Omega}{n} \right] (z, \Omega),$$

Let $n \in \mathbb{N}$ and $\mathcal{L} = \mathcal{L}_0^n$. We have $\dim \Gamma(A, \mathcal{L}_0^n) = n^g$ and if $n = n_1 n_2$, a basis of the global sections $\Gamma(A, \mathcal{L}_0^n)$ is given by

$$\theta \left[\frac{\Omega}{n_1 n_2} \right] (z_1 z, n_1 \Omega, n_2 \Omega) \quad a \in Z(n_1), b \in Z(n_2),$$

where $Z(n) = \mathbb{Z}^g / n \mathbb{Z}^g$ (this is an easy generalisation of [Mum83, p. 123–124]). One should note that the basis given in Equation (5) corresponds to the factor of automorphy from Equation (1) twisted by a coboundary so that the sections are periodic with respect to \mathbb{Z}^g. In other words, we have chosen \mathcal{L} in its isomorphic class such that sections $f \in \Gamma(A, \mathcal{L})$ satisfy

$$f(z + m) = f(z),$$

$$f(z + \Omega m) = e^{-\pi i m \cdot \Omega - 2 \pi i z \cdot m} f(z).$$

From Equation (5), we see that the period matrix Ω defines more than an ample line bundle \mathcal{L}_0, it also gives a canonical basis of sections of \mathcal{L}_0^n for all $n \in \mathbb{N}$. In the following, we will take the basis of sections coming from the decomposition $n_1 = 1$, $n_2 = n$ and to simplify the notations we let for $i \in Z(n)$

$$\theta_{i}^\mathcal{L}_0(z) = \theta \left[\frac{\Omega}{n} \right] (z, \Omega/n).$$

We will often denote this function by θ_i when the context is clear. This is the unique basis (up to multiplication by a constant) such that translation by a point of n-torsion is given by

$$\theta_b(z + \frac{m_1}{n} + \frac{\Omega m_2}{n}) = e^{-\pi i m_2 z} e^{-2 \pi i b \cdot m_2} \theta_{b+m_1}(z),$$

for $m_1, m_2 \in \mathbb{Z}^g$ (for more details on the canonical choice of a basis of sections, see [Mum91, Mum66]).

When $n = 4$, the decomposition $n_1 = 2$, $n_2 = 2$ in Equation (5) yields to the classical basis of level 4 theta functions $\theta \left[\frac{a \sqrt{2}}{b \sqrt{2}} \right] (2z, \Omega)$. More generally, in terms of the basis from Equation (5), the action of translation by a point of n-torsion is given in projective coordinates by

$$\left(\theta \left[\frac{a/n_1}{b/n_2} \right] (n_1 z + \frac{m_1}{n} + \frac{\Omega m_2}{n}, n_1 \Omega, n_2 \Omega) \right)_{a,b} = e^{-2 \pi i m_2 b / n} \theta \left[\frac{(a+m_2) \cdot n_1}{(b+m_1) \cdot n_2} \right] (n_1 z, n_1 \Omega / n_2)_{a,b}.$$

This can be seen from Equation (8) and the linear change of variable

$$\theta \left[\frac{a/n_1}{b/n_2} \right] (n_1 z, n_1 \Omega / n_2) = \frac{1}{n_1 \Omega} \sum_{b \in \mathbb{Z}^g / Z^g} e^{-2 \pi i a \cdot b} \theta \left[\frac{0}{b / n_1 + b} \right].$$

By a theorem of Lefschetz, when $n \geq 3$ the line bundle \mathcal{L} is very ample, so the n^g theta functions θ_i gives an embedding of A into the projective space \mathbb{P}^{n^g-1} ([Mum83, Theorem 1.3, p. 125–134], [BL04, Theorem 4.5.1]). Since $\theta_i(-z) = \theta_{-i}(z)$, when $n = 2$ the morphism to projective space factorizes through the Kummer variety \mathcal{K}_A. When \mathcal{L}_0 is an irreducible principal polarisation on A, the morphism to projective space associated to $\mathcal{L} = \mathcal{L}_0^2$ is actually an embedding of the Kummer variety \mathcal{K}_A ([BL04, Theorem 4.8.1]).
The most important tools concerning the arithmetic of abelian (and Kummer) varieties embedded by theta functions are the duplication formulae and Riemann relations. From now on, we suppose that $\mathcal{L} = \mathcal{L}^g_n$ is totally symmetric, or equivalently that n is even [Mum66, Corollary 4 p. 315].

Theorem 3.1 (Duplication formulae). Fix $z_1, z_2 \in \mathbb{C}^g$. Then for all $i, j \in \mathbb{Z}(n)$,

$$\theta \left[\frac{0}{n} \right] (z_1 + z_2, \Omega_n) \theta \left[\frac{0}{n} \right] (z_1 - z_2, \Omega_n) = \sum_{t \in \mathbb{Z}^g/\mathbb{Z}^g} \theta \left[\frac{i}{m} \right] (z_1, 2\Omega_n) \theta \left[\frac{i}{m} \right] (z_2, 2\Omega_n).$$

Reciprocally, for all $\chi \in \frac{1}{2}\mathbb{Z}^g/\mathbb{Z}^g$ and $i, j \in \mathbb{Z}(2n)$ such that $i + j \in \mathbb{Z}(n)$

$$\theta \left[\frac{\chi}{i/n} \right] (2z_1, 2\Omega_n) \theta \left[\frac{\chi}{j/n} \right] (2z_2, 2\Omega_n) = \frac{1}{2\theta} \sum_{t \in \mathbb{Z}^g/\mathbb{Z}^g} e^{-2\pi i z \chi} t \theta \left[\frac{2\chi}{m/n} + t \right] (z_1 + z_2, \Omega_n) \theta \left[\frac{0}{m/n} \right] (z_1 - z_2, \Omega_n).$$

Proof. See [Igu72, Theorem 2 p. 139, p. 141], an algebraic proof is given by [Mum66] by applying the isogeny theorem to $A \times A \to A \times A, (x, y) \mapsto (x + y, x - y)$. For a generalisation, see [Koi76; Kem89].

We can rewrite duplication formulae in the standard basis (7). For this, let for $\chi \in \hat{Z}(2)$ and $i \in \mathbb{Z}(n), U_{\chi,i}^2(z) = \sum_{t \in \mathbb{Z}(2)} \chi(t) \theta_{i+t}(z)$. In terms of theta functions with characteristics, the level 2n theta function $U_{\chi,i}^2(z)$ is equal to $\theta \left[\frac{\chi}{i} \right] (2z, 2\Omega_n)$, where we have identified $\hat{Z}(2)$ to its dual group $\hat{Z}(2)$ via the map $x \mapsto \chi(z) = e^{\pi i z \cdot x}$. It is easy to check that if $t \in \mathbb{Z}(2), U_{\chi,i+t} U_{\chi,j} = \chi(t) U_{\chi,i} U_{\chi,j}$ and that duplication formulae from Theorem 3.1 can be rewritten as

$$\theta_{i+j}^2(z_1 + z_2) \theta_{i-j}(z_1 - z_2) = \sum_{\chi \in \hat{Z}(2)} U_{\chi,i}^2(z_1) U_{\chi,j}^2(z_2)$$

for $z_1, z_2 \in \mathbb{C}^g, \chi \in \hat{Z}(2)$ and $i, j \in \mathbb{Z}(2n)$ such that $i + j, i - j \in \mathbb{Z}(n)$.

Theorem 3.2 (Riemann relations). Let $x_1, y_1, u_1, v_1, z \in \mathbb{C}^m$, such that $2z = x_1 + y_1 + u_1 + v_1$ and let $y_2 = z - y_1, u_2 = z - u_1, v_2 = z - v_1$. Then for all characters $\chi \in \hat{Z}(2)$ and all $i, j, k, l, m \in \mathbb{Z}(n)$ such that $i + j + k + l = 2m$, if $i' = m - i, j' = m - j, k' = m - k$ and $l' = m - l$, then

$$\left(\sum_{t \in \mathbb{Z}(2)} \chi(t) \theta_{i+1}(x_1) \theta_{j+1}(y_1) \right) \left(\sum_{t \in \mathbb{Z}(2)} \chi(t) \theta_{k+1}(u_1) \theta_{l+1}(v_1) \right) = \left(\sum_{t \in \mathbb{Z}(2)} \chi(t) \theta_{i+1}(x_2) \theta_{j'+1}(y_2) \right) \left(\sum_{t \in \mathbb{Z}(2)} \chi(t) \theta_{k'+1}(u_2) \theta_{l'+1}(v_2) \right).$$

In particular, we have the addition formulae for $z_1, z_2 \in \mathbb{C}^g$ (with χ, i, j, k, l like before):

$$\left(\sum_{t \in \mathbb{Z}(2)} \chi(t) \theta_{i+1}(z_1 + z_2) \theta_{j+1}(z_1 - z_2) \right) \left(\sum_{t \in \mathbb{Z}(2)} \chi(t) \theta_{k+1}(0) \theta_{l+1}(0) \right) = \left(\sum_{t \in \mathbb{Z}(2)} \chi(t) \theta_{i+1}(z_2) \theta_{j'+1}(z_2) \right) \left(\sum_{t \in \mathbb{Z}(2)} \chi(t) \theta_{k'+1}(z_1) \theta_{l'+1}(z_1) \right).$$

We also have the three ways additions formulae for $z_1, z_2, z_3 \in \mathbb{C}^g$:

$$\left(\sum_{t \in \mathbb{Z}(2)} \chi(t) \theta_{i+1}(z_1 + z_2 + z_3) \theta_{j+1}(z_1) \right) \left(\sum_{t \in \mathbb{Z}(2)} \chi(t) \theta_{k+1}(z_2) \theta_{l+1}(z_3) \right) = \left(\sum_{t \in \mathbb{Z}(2)} \chi(t) \theta_{i+1}(0) \theta_{j'+1}(z_2 + z_3) \right) \left(\sum_{t \in \mathbb{Z}(2)} \chi(t) \theta_{k'+1}(z_1 + z_3) \theta_{l'+1}(z_1 + z_2) \right).$$
Proof. We can verify (13) by expressing the left hand side and right hand side of the equation in term of the U_{X^2} basis using (11). Then (14) and (15) are immediate consequences of (13) (using that $\theta_i(z_z) = \theta_{-i}(z_i)$). For more details, see [LR12] or [Mum66]. A slightly different form is also given in [Mum66, p. 334–335]; see also [Mum83; Koi76] for an analytic proof. □

If $4|n$, following [Mum83], by applying (13) with $x_1 = y_1$ and $u_1 = v_1 = 0$, we obtain a complete set of equations for the embedding of A into $\mathbb{P}^Z(n)$. It is clear that Riemann equations are parametrized by the (projective) theta null point $\theta_A = (\theta_i(0))_{i \in Z(n)}$ which is defined in particular by the data of Ω and n. If $n = 2$, since the Riemann equations are trivial, they do not give equations for the embedding of K_A is $\mathbb{P}^Z(2)$. Nonetheless, in the case that dim $A = 1$, K_A is just the projective line and there is no equations and if dim $A = 2$ then the embedding of K_A is $\mathbb{P}^Z(2)$ is given by a well known quartic equation (see [Mum66, §5] for instance) the coefficients of which can easily be computed from the knowledge of the level 2 theta null point. In the following, we suppose that A is given by the way of its theta null point so that we have a projective model of A on which we would like to have an efficient and complete arithmetic.

It is clear that Equation (14) can be used to compute the addition law on A. In order to do so, it is important to know when factor of the level left side of (14), $\sum_{t \in Z(2)} \chi(t) \theta_{k+t}(0) \theta_{l+t}(0)$ does not cancel. By Equation (12), we have $\sum_{t \in Z(2)} \chi(t) \theta_{k+t}(0) \theta_{l+t}(0) = U_{X^2},L_{0}(0)$ where $k_0 + l_0 = k$ and $k_0 - l_0 = l$. To understand the arithmetic of theta functions, we thus need to investigate the non cancellation of the level 2n theta functions U_{X^2}. Actually, this non cancellation is closely related to the rank of the natural multiplication map $\Gamma(A, L') \otimes \Gamma(A, L') \rightarrow \Gamma(A, L^2)$.

To see this, following Mumford [Mum66, p. 328], we consider the morphism $\xi : \pi_2^2 \otimes \pi_2^2 \rightarrow (x, y, x - y)$. Let π_1 and π_2 the first and second projections $A \times A \rightarrow A$. Let $\Delta : X \times X \times X$ be the diagonal; Δ induces the multiplication map $\Delta^* : \Gamma(A, \pi_1^2 \otimes \pi_2^2) \otimes \Gamma(A, \pi_2^2 \otimes \pi_2^2) \rightarrow \Gamma(A, \pi_1^2 \otimes \pi_2^2 \otimes \pi_2^2 \otimes \pi_2^2)$. If $S : A \rightarrow A \times A$ is the inclusion map $x \mapsto (x, 0)$ then Δ fits into the commutative diagram

$$
\begin{array}{ccc}
(A, L') & \rightarrow & (A, L^2) \\
\downarrow \Delta & & \downarrow \xi \\
(A \times A, \pi_1^2 \otimes \pi_2^2) & \rightarrow & (A \times A, \pi_1^2 \otimes \pi_2^2 \otimes \pi_2^2 \otimes \pi_2^2).
\end{array}
$$

so $\Delta^* = S^* \xi^*$. But ξ^* is given by the duplication formula from Theorem 3.1 and $S^* : \Gamma(A \times A, \pi_1^2 \otimes \pi_2^2 \otimes \pi_2^2) \rightarrow \Gamma(A, \pi_1^2 \otimes \pi_2^2 \otimes \pi_2^2 \otimes \pi_2^2)$ is given by $\pi_1^2 \theta_{2x}^2 \otimes \pi_2^2 \theta_{2y}^2 \rightarrow \theta_{2x}^2(0) \theta_{2y}^2$. We finally get that the map $\Gamma(A, \mathcal{L}) \otimes \Gamma(A, \mathcal{L}) \rightarrow \Gamma(A, \mathcal{L}^2)$ is given by the map

$$
\sum_{t \in Z(2)} \chi(t) (\theta_{2x}^2 \otimes \theta_{2y}^2) \mapsto U_{X^2},L_{0}(0),
$$

which makes clear the link between the non cancellation of the U_{X^2} and the rank of the multiplication map.

Theorem 3.3. Let \mathcal{L}_0 be a principal symmetric line bundle on A. Then the multiplication map

$$
\Gamma(A, \mathcal{L}_0^m) \otimes \Gamma(A, \mathcal{L}_0^n) \rightarrow \Gamma(A, \mathcal{L}_0^{m+n})
$$

is surjective when $m \geq 2$ and $n \geq 3$. In particular, if $\mathcal{L} = \mathcal{L}_0^m$ with $n > 2$ even, then $\Gamma(A, \mathcal{L}) \otimes \Gamma(A, \mathcal{L}) \rightarrow \Gamma(A, \mathcal{L}^2)$ is surjective, or equivalently for any $\chi \in \mathbb{Z}(2)$, $i \in \mathbb{Z}(2n)$, there exists $i_0 \in \mathbb{Z}(n)$ such that $U_{X^2}^\chi,i_{i_0}(0) \neq 0$.

If $\mathcal{L} = \mathcal{L}_0^2$, then the rank of the multiplication map is equal to the number of even theta null coordinates $U_{X^2}^\chi,i_{i_0}(0) \neq 0$ for $\chi \in \mathbb{Z}(2)$, $i \in \mathbb{Z}(4)$ such that $\chi(2i) = 1$.

Proof. This Theorem is proved analytically in [Koi76], and algebraically in [Kem88] (see also [Kem89, Lemma 17]). When n is divisible by 4, Mumford as a finer result in [Mum66, p. 340]. □
The use of the words odd and even for the theta null coordinates comes from the fact that when \(n = 2 \), we have \(U_{\chi,i}^{-2} (z) = \chi(2) U_{\chi,i}^{-2} (z) \). So when \(\chi(2) = -1 \), the function \(U_{\chi,i}^{-2} \) is odd and we always have \(U_{\chi,i}^{-2} = 0 \). In terms of theta functions with characteristics, the functions \(U_{\chi,i}^{-2} \) correspond to the usual level 4 theta functions \(\{ \theta_{[a/2]}^{[b/2]} (2, \Omega) \mid a, b \in \mathbb{Z} \} \) and \(\chi(2i) \) corresponds to \((-1)^{a \cdot b}\) which determines the \(2^{g-1}(2g+1) \) even theta functions from the \(2^{g-1}(2g-1) \) odd ones.

Remark 3.4 (Normal projectivity). If \(\mathcal{L} \) is a very ample line bundle on a smooth projective variety \(X \), the corresponding embedding of \(X \) into projective space is said to be projectively normal if the homogeneous ring associated to this embedding is integrally closed. This condition is equivalent to the condition that \(S^n \Gamma(X, \mathcal{L}) \rightarrow \Gamma(X, \mathcal{L}^n) \) is surjective for all \(n \geq 2 \) [Har00, Exercise 5.14 p. 126], or equivalently by [BL04, p. 187] that \(\Gamma(X, \mathcal{L}^n) \otimes \Gamma(X, \mathcal{L}) \rightarrow \Gamma(X, \mathcal{L}^{n+1}) \) is surjective for \(n \geq 1 \). (We remark that the condition that \(\Gamma(X, \mathcal{L}^n) \otimes \Gamma(X, \mathcal{L}) \rightarrow \Gamma(X, \mathcal{L}^{n+1}) \) is surjective for \(n \) sufficiently large is equivalent to \(\mathcal{L} \) being very ample by [Mum69, p. 38]).

By Theorem 3.3, if \(\mathcal{L} = \mathcal{L}_0^m \) where \(\mathcal{L}_0 \) is a principal ample symmetric line bundle and \(m \geq 3 \), then \((A, \mathcal{L})\) is projectively normal. If \(m \) is totally symmetric, then by definition \(\mathcal{L} \) descends to an ample line bundle \(\mathcal{M} \) on \(K_A \), and if \(\pi: A \rightarrow K_A \) denotes the projection, then \(\pi^* \Gamma(K_A, \mathcal{M}) = \Gamma(A, \mathcal{L}^+)^w \) where \(\Gamma(A, \mathcal{L}^+)^w \) denotes the section invariant under the action by \(-1\). By [Ko76, Corollary 4.5.2],[Kem88] the multiplication map \(\Gamma(A, \mathcal{L}_0^{2m+n}) \otimes \Gamma(A, \mathcal{L}_0^{2n}) \rightarrow \Gamma(A, \mathcal{L}_0^{2(n+m)}) \) is surjective when \(m \geq 1 \) and \(n \geq 2 \). So if \(m \geq 2 \), the variety \((K_A, \mathcal{M})\) is projectively normal. When \(m = 2 \), we have \(\Gamma(A, \mathcal{L}^+)^w = \Gamma(A, \mathcal{L}) \) or in other words \(\mathcal{L} \) can be seen as a line bundle on \(K_A \). Then \((K_A, \mathcal{L})\) is projectively normal if and only if \(\Gamma(A, \mathcal{L}) \otimes \Gamma(A, \mathcal{L}) \rightarrow \Gamma(A, \mathcal{L}^2)^+ \) is surjective, but by Theorem 3.3 this is equivalent to the condition that every even theta null coordinate is non zero.

Remark 3.5 (Non annulation of the even theta null coordinates). When \(g = 1 \), it is well known that the three even theta null coordinates are never 0 for an elliptic curve. When \(g = 2 \) the product of the square of the 10 even theta null coordinates define a modular form \(\chi_{10} \) of weight 10 on the Siegel modular space whose locus is the abelian surfaces that are isomorphic to a product of two elliptic curves [GL12, Section 2.6]. More precisely, when \(\Omega \) is in the fundamental domain defined by Gottschling [Got59], then the even theta null coordinates are non zero except \(\theta[1/1] (0, \Omega) \) which cancels exactly when \(\Omega = \begin{pmatrix} \tau_1 & 0 \\ 0 & \tau_2 \end{pmatrix} \) is when \((A, \mathcal{L})\) is isomorphic to a product of elliptic curves with the product polarization. For more details we refer to [Dup06].

When \(g > 2 \) it is well known that Jacobians of hyperelliptic curves are characterized by the cancellation of some even theta null coordinates [Mum84, §6], so an absolutely simple abelian variety can have a zero even theta null coordinate.

Corollary 3.6. Let \(\mathcal{L} = \mathcal{L}_0^m \), where \(n \) is even and \(\mathcal{L}_0 \) is principal and symmetric, coming from a period matrix \(\Omega \). We represent the abelian variety \((A, \mathcal{L})\) via the corresponding theta null point.

If \(n > 2 \) then for all \(z_1, z_2 \in C^g \), if we are given \((\theta_i(z_1))_{i \in \mathbb{Z}(n)}\) and \((\theta_i(z_2))_{i \in \mathbb{Z}(n)}\), then one can recover all products \(\theta_i(z_1 + z_2) \theta_j(z_1 - z_2) \) for \(i, j \in \mathbb{Z}(n) \).

If \(n = 2 \) and we assume that the even theta null coordinates are non zero, then from the same data we can recover all terms of the form \(\theta_i(z_1 + z_2) \theta_j(z_1 - z_2) + \theta_j(z_1 + z_2) \theta_i(z_1 - z_2) \) for \(i, j \in \mathbb{Z}(2) \).

Proof. When \(n > 2 \), for all \(i, j \in \mathbb{Z}(n) \) and \(\chi \in \mathbb{Z}(2) \), we can find \(k, l \in \mathbb{Z}(n) \) such that \(i + j + k + l \in 2\mathbb{Z}(n) \) and \(\sum_{t \in \mathbb{Z}(2)} \chi(t) \theta_{k+t}(0) \theta_{l+t}(0) \neq 0 \). Indeed, we may as well take \(k = i, l = j \), and if needed translate them by a suitable element by using Theorem 3.3 so that \(U_{\chi,i} \chi_{10} \chi_{10}^2 \neq 0 \). By Theorem 3.2 we can then recover \(\sum_{t \in \mathbb{Z}(2)} \chi(t) \theta_{i+t}(z_1 + z_2) \theta_{j+t}(z_1 - z_2) \). By summing over \(\chi \in \mathbb{Z}(2) \), we then recover \(\theta_i(z_1 + z_2) \theta_j(z_1 - z_2) \).

The case \(n = 2 \) is done similarly, we refer to [LR10] and [Rob10] for more details.

By the discussion of Remark 3.4 for \(n = 2 \), it should not be surprising that when the even theta null coordinates are non zero we can recover the symmetric elements \(\theta_i(z_1 + z_2) \theta_j(z_1 - z_2) + \theta_j(z_1 + z_2) \theta_i(z_1 - z_2) \). From now on we will always assume that we are in this case when \(n = 2 \). It is easy from Corollary 3.6
to describe equations of the degree 2 scheme \(\pm \{x + y, x - y\} \); we refer to [LR13] for more details and to Section 7 for explicit formulas in dimension 2.

When \(n > 2 \) is even we can thus always compute the addition of the projective points \(x \) and \(y \) in \((A, L) \). Indeed, if \(\theta_n(x - y) \neq 0 \), then the projective point \((\theta(x + y)\theta_n(x - y))_{i} \in \mathcal{Z}(n)\) represent the point \(x + y \). But one can see that the relations in Theorem 3.2 are stronger than just computing additions on the variety \(A \). To explain this, we introduce the affine theta coordinates of \(z \in \mathbb{C}^g \) as \(\theta_i(z), i \in \mathbb{Z}(n) \). Then, if we know the affine theta coordinates of \(z_1, z_2 \in \mathbb{C}^g \) and also the affine theta coordinates of the point \(z_1 - z_2 \), then by Corollary 3.6 we can recover the affine theta coordinates of the point \(z_1 + z_2 \in \mathbb{C}^g \).

This affine differential addition allows us to recover the analytic addition law on \((\mathbb{C}^g, +)\) which is above the abelian variety \(A = \mathbb{C}^g/(\mathbb{Z}^g + \Omega \mathbb{Z}^g) \). This affine differential addition is an essential building block for algorithms on abelian varieties that needs a bit more arithmetic, like isogenies [LR12; CR13] or pairings [LR10; LR13]. In this context, the affine three ways addition formulae from Equation (15) are also very useful; let \(z_1, z_2 , z_3 \in \mathbb{C}^g \), then given the affine coordinates of \(z_1, z_2, z_3, z_2 + z_3, z_1 + z_3, z_1 + z_2 \) one can use Equation (15) to recover the affine coordinates of \(z_1 + z_2 + z_3 \). (We refer to [LR13] for a proof which use a result similar to Theorem 3.3 but for sections of fibers translated by points, see also [Kem88]).

Unlike the standard addition, the (affine) differential addition and (affine) three way additions can also be computed when the level \(n \) is two. Indeed, for the differential addition, by Corollary 3.6 we know the elements \(\theta_i(z_1 + z_2)\theta_j(z_1 - z_2) + \theta_j(z_1 + z_2)\theta_i(z_1 - z_2) \), from which it is easy to also recover the coordinates \(\theta_i(z_1 + z_2) \) if we also know the \(\theta_i(z_1 - z_2) \). For the (affine) three way addition, a proof can be found in [LR13] for generic points. Of course one can not compute normal addition in level 2, but we have already noted that Corollary 3.6 allows to compute the schematic addition of \(x, y \in \mathcal{A} \) and thus of compatible additions.

One should note the difference between the affine three way addition from Equation (15) and the projective three way addition from Proposition 2.4. The first one takes as input the affine coordinates of \(x, y, z, y + z, x + z, x + y \) and compute the affine coordinate of \(x + y + z \), while the second one takes the projective coordinates of \(x, y, z, x + y, x + z \) and compute the projective coordinates of \(x + y + z \).

This calls for two remarks. First, when we want to compute the addition of two projective points \(x \) and \(y \) on a Kummer variety, then we know that we can do a differential addition if we also know the projective point \(x - y \) (with an affine differential addition from above, except that since we only want the projective result we can gain some computations by replacing divisions by some multiplications). But one might guess that we need less information than the full coordinates of \(x - y \) to recover the projective coordinates of \(x + y \) (as we have just seen we already need less information to compute projective coordinates of \(x + y + z \) than its affine coordinates). We will return to this in Section 5. The second remark is that while differential additions are very fast on the Kummer variety, especially in the generic case when the coordinates of \(x - y \) are all non zero as in [Gau77], compatible additions are much slower. But in Proposition 2.4, we use two compatible additions to recover \(x + y + z \) and \(y + z \) from \(x, y, z, x + y, x + z \). According to the formulae in Section 7, it is faster to first compute \(y + z \) using one compatible addition, and then recover \(x + y + z \) by using the affine three way addition from Equation (15) (except that we only need the result in projective coordinates which allows to be a bit faster than a full affine three way addition).

We end up this section by proving that the affine three way addition can always be computed when the even theta null coordinates are non zero. This is a strengthening a result of [LR13] which the same result in proved only for general points.

Proposition 3.7. Let \(L = L^0_n \) with \(n \) even and \(z_1, z_2 \in \mathbb{C}^g \). Then from the affine level \(n \) theta coordinates of \(z_1, z_2, z_1 + z_2, z_1 + z_3, z_1 + z_2 + z_3 \) up to a sign.

Proof. If \(n \geq 4 \), this was already proven in [LR13]. We can thus assume that \(n = 2 \). If \(z_1, z_2 \) or \(z \) is a point of 2-torsion, we can directly compute the (affine) action of translation by it using Equation (8). If not one can do a compatible addition to recover \(z_1 + z_2 + z_3 \) projectively. We then need to find the projective factor \(\lambda \). Writing \(z_1 + z_2 + z_3 = (z_1 + z_2) + (z_2 + z_3) = (z_1 + z_2 + z_3) + z_2 \) where the two terms on the right can be computed exactly by a differential addition gives \(\lambda^2 \).

\[\Box \]
Of course in practice it is faster to use Equation (15) to compute the three way addition because it will give enough relations in the generic case that to use the method of the proof of Proposition 3.7.

Corollary 3.8. Let n be even, and assume that we have m points \(z_i \in C^g \) given by their theta coordinates \((\theta_k(z_i), k \in \mathbb{Z}(n)) \). Assume that we also know the theta coordinates \((\theta_k(z_i + z_j), k \in \mathbb{Z}(n)) \) for all \(i \neq j \). Then for any \((\lambda_i)_{i=1}^m \in \mathbb{Z}^m \), we can recover the theta coordinates of \((\theta_k(\lambda_1z_1 + \cdots + \lambda_mz_m), k \in \mathbb{Z}(n)) \) of the sum \(\sum \lambda_i z_i \).

Proof. By an easy recursive application of Proposition 3.7 we can recover all points \(\sum \varepsilon_i z_i \) where \(\varepsilon_i \in \{0, 1\} \). One can then use differential additions to recover \(\sum \lambda_i z_i \).

4. ARITHMETIC, LEVELS AND ISOGENIES

In this section, we explain how to compute the fiber of the natural projection \(A \to K_A \). The main result, extending the usual genus 1 case, says that we can compute this fiber only with differential and compatible additions up to one choice of sign.

If \(E : y^2 = f(x) \) is an elliptic curve given by its Weierstrass equation, working on the Kummer line amounts to forgetting the coordinate \(y \). Reciprocally, given a point \(\pm P = x(P) \) on the Kummer line, finding the points \(P, -P \) on \(E \) above it comes down to computing a square root to find \(\{(x(P), \sqrt{f(x(P))}), (x, -\sqrt{f(x(P))})\} \).

If \((A, \mathcal{L}^0) \) is a principally polarised abelian variety, the map from the abelian variety to the Kummer variety is given by the duplication formulae from Theorem 3.1. More precisely, if \(\mathcal{L} = \mathcal{L}^0 \) and we work with the basis \((\theta_i^{\mathcal{L}})_{i=1}^n \) of level 2 theta functions for the embedding of \(K_A \) and the basis \((\theta_i^{\mathcal{L}^2})_{i=1}^m \) of level 4 theta functions for the embedding of \(A \), then the map natural projection \(A \to K_A \) is given by

\[
\theta_{i+j}(x)\theta_{i-j}(x) = \frac{1}{2^g} \sum_{t \in \mathbb{Z}(2)} \theta_{i+j+t}(x)\theta_{i-j+t}(0)
\]

Indeed, we note that on the left of Equation (17) we get a product of two level 2 theta functions, so by Theorem 3.3 and Remark 3.4 we get all even coordinates \(\Gamma(A, \mathcal{L}^2)^+ \). Thus Equation (17) defines the projection map from \((A, \mathcal{L}^2) \) to \((K_A, \mathcal{L}^2)^+ \).

Now we would like to inverse this map to get, from the knowledge of point on a Kummer variety the two points on the abelian variety lying above it. As in the elliptic curve case we would like to do this at the expense of only one square root (besides the standard fields operations).

We suppose here that we know the abelian variety \(A \) via its level 4 theta null point \(\tilde{0}_A = (\theta_i(0))_{i=1}^n \). It will be easier to work with the variables \(U_{\chi, i}^{\mathcal{L}^2} \) from Section 3 since Equation (12) gives

\[
U_{\chi, i}^{\mathcal{L}^2}(x)U_{\chi, j}^{\mathcal{L}^2}(0) = \sum_{t \in \mathbb{Z}(2)} \chi(t)\theta_{i+j+t}(x)\theta_{i-j+t}(x),
\]

Unfortunately since the odd theta null values are null, Equation (18) allows only to recover the coordinates \(U_{\chi, i}^{\mathcal{L}^2} \) such that \(\chi(2i) = 1 \). But from Equation (9) we see that if \(T_i \) is the point of 4-torsion corresponding to \(-\frac{i}{4} \in \frac{1}{4} \mathbb{Z}/\mathbb{Z} \) we have \(U_{\chi, i}(T_i) = U_{\chi, 0}(0) \neq 0 \). With the equation

\[
U_{\chi, i}^{\mathcal{L}^2}(x)U_{\chi, j}^{\mathcal{L}^2}(T_i) = \sum_{t \in \mathbb{Z}(2)} \chi(t)\theta_{i+j+t}(x+T_i)\theta_{i-j+t}(x-T_i),
\]

we can then recover \(U_{\chi, i}^{\mathcal{L}^2}(x) \) provided that we know the level 2 theta coordinates of \(x + T_i \) and \(x - T_i \). We first remark that we can compute \(T_i \in A \) by using Equation (9) and then push it to \(K_A \).

Now fix a point \(i_0 \in \mathbb{Z}(4) \), and fix once and for all a choice of \(x + T_{i_0} \in K_A(\overline{K}) \) (this can be done using Corollary 3.6 and requires a square root). Now let \(i \) be any other element of \(\mathbb{Z}(4) \), by pushing \(T_i + T_{i_0} \) to \(K_A \), we can use a compatible addition (Proposition 2.1) to recover \(x + T_i \). In other words once we have fixed a choice of \(x + T_{i_0} \) the other choices of sign for \(x + T_i \) are fixed and can be recovered by using compatible additions. Now from \(x + T_i \) one can recover \(x - T_i \) by doing a differential addition and then use Equation (19) to recover \(U_{\chi, i}^{\mathcal{L}^2}(x) \).
In a sense, since differential additions and compatible additions allows us to go back to the abelian variety from the Kummer (up to one choice of sign), all arithmetic on the Kummer should come from these two operations.

Remark 4.1. One should be careful here because Equation (19) makes sense for affine coordinates and we are working with projective coordinates. What happens is that by taking an affine lift of the level 4 theta null point, we can use Equation (9) to get a canonical lift of the 4-torsion points \(T_i \). Let \(z \in \mathbb{C}^g \) be a lift of \(x \), then if we take any affine lift \(x + T_i \) of \(x + T_i \in K_A \) it is equal to \(z + T_i \) up to a projective factor \(\lambda \). But then computing \(x - T_i \) affinely via a differential addition gives that \(x - T_i \) is equal to \(z - T_i \) up to the projective factor \(\lambda^{-1} \); so these factors cancels out in Equation (19).

Working on an abelian variety with level 4 theta functions requires \(4^g \) (projective) coordinates. Compared to the \(2^g \) coordinates needed for representing a point on the Kummer variety using level 2 theta functions, this looks like a very inefficient way to represent a choice of sign! We can have a closer look at our algorithm to go from level 2 to level 4 and see how much information we really need to encode the choice of sign and still do arithmetic efficiently on the abelian variety. But since the map from Equation (17) is a bit complicated (compared to the elliptic curve case where the map from the Weierstrass model to the Kummer line is a projection), we will investigate another map that comes from isogenies. This will allow us to treat any even level \(n \geq 4 \).

Theorem 4.2 (Isogeny theorem). Let \(n = n_1n_2 \) and \(\ell = \ell_1\ell_2 \). Let \(\pi : A = \mathbb{C}^g/(\mathbb{Z}^g \oplus \Omega\mathbb{Z}^g) \to B = \mathbb{C}^g/(\mathbb{Z}^g \oplus \mathbb{Z}^g/\ell\mathbb{Z}^g) : z \mapsto \ell_1z \) be the canonical isogeny with kernel \(K = \mathbb{Z}^g/\mathbb{Z}^g \oplus \mathbb{Z}^g/\ell\mathbb{Z}^g/\Omega\mathbb{Z}^g/\ell\mathbb{Z}^g \). Then if we use the basis with level \(\ell n = (\ell_1n_1)(\ell_2n_2) \) from Equation (5) for \(A \) and the basis with level \(n = n_1n_2 \) for \(B \), we get that

\[
\pi^* \left(\theta_{a/n_1b/n_2}^{\ell_1}(z) \right) = \theta_{a\ell_1/n_1b\ell_2/n_2}^{\ell_1\Omega}(z).
\]

Proof. This is immediate. \(\square \)

Corollary 4.3. Let \(A = \mathbb{C}^g/(\mathbb{Z}^g \oplus \Omega\mathbb{Z}^g) \) be an abelian variety, that we represent via the embedding of level \(n \) theta functions where \(n = 2m \) is greater or equal to 4. Let \(\pi : A \to B = \mathbb{C}^g/(\mathbb{Z}^g \oplus \mathbb{Z}^g/\ell\mathbb{Z}^g) : z \mapsto z \) be the canonical isogeny of kernel \(K = \mathbb{Z}^g/\mathbb{Z}^g \oplus \mathbb{Z}^g/\ell\mathbb{Z}^g/\Omega\mathbb{Z}^g/\ell\mathbb{Z}^g \), where we represent \(B \) with level 2 theta coordinates.

Then \((\theta_{\ell i}^A(\pi(z)))_{i \in \mathbb{Z}(2)} = (\theta_{\ell i}^A(\varphi(z))) \) where \(\varphi : Z(2) \to Z(n) \) is the natural embedding.

We can also see the theta coordinates as affine coordinates on \(\mathbb{C}^g \) rather than as projective coordinates on the abelian variety \(A = \mathbb{C}^g/A \). We recall from Section 3 that we define the affine coordinates of \(z \in \mathbb{C}^g \) as \(\theta_i(z), \ i \in Z(n) \). It is easy to lift \(\pi \) to an affine map \(\tilde{\pi} \) such that \(\tilde{\pi}^* \theta_{\ell i} = \theta_{\ell i}^A \; \).

Theorem 4.4. Let \(e_1, \ldots, e_g \) be a basis of \(\mathbb{Z}^g/\ell\mathbb{Z}^g \) given by affine theta coordinates (they can be recovered from the affine theta null point of level \(n \) on \(A \) via Equation (8)).

Let \(z \in \mathbb{C}^g \). Then

- The affine theta null point \(\tilde{0}_A \) can be recovered from the \(1 + g(g + 1)/2 \) points \(\tilde{\pi}(0_A), \tilde{\pi}(e_i), \tilde{\pi}(e_i + e_j) \);
- The affine theta null point \(z \) can be recovered from the above data and the \(1 + g \) points \(\tilde{\pi}(z), \tilde{\pi}(z + e_i) \). In particular we can encode a point on \(A \) by using \((1 + g)2^g \) coordinates (once we know the theta null point).

Proof. If we combine Equation (9) with the form of \(\tilde{\pi} \) given by Corollary 4.3, then it is straightforward to see that we can recover the theta coordinates of \(z \) from the theta coordinates of the points \(\tilde{\pi}(z + \sum \lambda_i e_i) \) where \(\lambda_i \in \{0, \ldots, \ell - 1\} \). But \(\tilde{\pi}(z + \sum \lambda_i e_i) = \tilde{\pi}(z) + \sum \tilde{\pi}(\lambda_i e_i) \). By Corollary 3.8, we can recover the right hand term from the points \(\tilde{\pi}(0_A), \tilde{\pi}(e_i), \tilde{\pi}(e_i + e_j), \tilde{\pi}(z), \tilde{\pi}(z + e_i) \) by using three way additions and differential additions. \(\square \)
Remark 4.5. If \(n \geq 4 \) and \(g > 1 \) we thus get a more compact representation of a point \(x \) in the abelian variety \(A \) than by using the level \(n \) theta functions as coordinates. We can also compute the arithmetic directly on this representation: if we know the coordinates of \(x, y \in A \) given by \(\tilde{\pi}(x), \tilde{\pi}(x + e_i), \tilde{\pi}(y), \tilde{\pi}(y + e_i) \); then we can recover the coordinates \(\tilde{\pi}(x + y), \tilde{\pi}(x + y + e_i) \) by doing some three way additions. (Of course if we already know \(\tilde{\pi}(x - y), \tilde{\pi}(x - y + e_i) \) it is faster to do differential additions).

Remark 4.6. If we only know \(\pi(z) \), since \(B \) is represented by theta functions of level 2 this mean that we know \(\pi(z) \in K_B \), and the best we can hope is to recover the preimage \(\pm z + \text{Ker} \pi \in A \). This preimage can be recovered in a similar way as we did in the inversion of the duplication formula. First we fix a choice of \(\pi(z) + \pi(e_i) \); we can recover all the other points \(\pi(z) + \pi(e_i) \) by a compatible addition with \(\pi(e_1 + e_i) \). Now we fix an affine lift \(\lambda_i \tilde{\pi}(z + e_i) \) where \(\lambda_i \) is an unknown projective factor. By computing differential additions, and since \(\tilde{\pi}(z + me_i) = \tilde{\pi}(z) \) we recover \(\lambda_i^m \) as in [LR12; CR13]. We choose \(\lambda_i \) satisfying these equations; by Theorem 4.4 we can then recover one of the element \(z \) or \(-z \) in the preimage. In total there is \(2m^g \) possible choices, so we recover all elements in the preimage.

Let \(D \) be the diagonal matrix with entries \((1, \ldots, 1, 2)\) and let \(A' \) be the abelian variety \(A' = C^g/(\mathbb{Z}^g + D\mathbb{Z}^g) \) where \(\Omega \in \mathcal{O}_g \). Then \(\Omega \) induces a polarisation \(\mathcal{L} \) of type \((1, \ldots, 1, 2)\) on \(A' \); a basis of sections of \(\mathcal{L}^2 \) is given by
\[
\theta \left[\begin{array}{c} y \\ 1 \end{array} \right] (\cdot, \Omega(2D)^{-1})_{b \in (2D)^{-1}\mathbb{Z}^g/\mathbb{Z}^g}.
\]
If \(A' \) is simple, then by [BL04, Theorem 4.3.1] \(\mathcal{L} \) has no fixed components so that \(\mathcal{L}^2 \) is a very ample line bundle by [BL04, Theorem 4.5.5]. So in this case we can embed the abelian variety \(A' \) using only \(2 \cdot 2^g \) projective coordinates. Unfortunately \(A' \) is not principally polarized in general since the Néron Severi group of an abelian variety is \(\mathbb{Z} \) generically.

Still, if we let \(\pi : A' \to A = C^g/(\Omega\mathbb{Z}^g + \mathbb{Z}^g) \), then a similar reasoning as in Corollary 4.3 and Theorem 4.4 show that for \(z \in C^g \), the level \((2, 2, \ldots, 2, 4)\)-theta coordinates of \(z \) with respect to \(A' \) can be recovered from the level 2 theta coordinates with respect to \(A \) of the two points \(\tilde{\pi}(z) \) and \(\tilde{\pi}(z + e) \) where \(e \) is the point of 4-torsion generating \(D^{-2}\mathbb{Z}^g/\mathbb{Z}^g \). This idea can be used to efficiently represent a point on an abelian variety.

5. Arithmetic on abelian varieties

In this section, we introduce a much more compact, while very efficient, representation of points of abelian varieties than the one provided by level 4-theta coordinates. We explain how compatible and differential additions may be used to compute the arithmetic of an abelian variety with this representation.

Let \(A \) be an abelian variety and \(K_A \) the corresponding Kummer variety. In this section, we will use the same notation as in Section 2, for \(x \in A(\overline{K}) \), we denote by \(\pm x \in K_A(\overline{K}) \) the point of \(K_A \) image of \(x \) by the natural projection. We suppose that we are given a point \(T \in A(\overline{K}) \) that is not a point of 2-torsion. We will represent a point \(x \in A(\overline{K}) \) by the couple of points \((\pm x, \pm (x + T)) \in K_A(\overline{K})^2 \).

Proposition 5.1. The map \(\alpha : A \to K_A^2 \), given on geometric points by \(x \mapsto (\pm x, \pm (x + T)) \) is injective. Furthermore, given a couple \((\pm x_1, \pm x_2) \in K_A(\overline{K})^2 \) it is easy to check if it lies in \(\alpha(A(\overline{K})) \). Lastly, one can do arithmetic on this representation.

Proof. The natural projection \(A \to K_A \) has degree 2, so if \((\pm x, \pm (x + T)) = (\pm y, \pm (y + T)) \) then either \(x = y \), or \(x = -y \). But in the latter case, since \(x + T = y + T \) or \(x + T = -y - T \) in \(A \) and \(T \) is not a point of 2-torsion, we need to have \(x = -x \) so \(\alpha \) is injective in all cases.

The couple \((\pm x_1, \pm x_2) \in K_A(\overline{K})^2 \) lies in \(\alpha(A(\overline{K})) \) if and only if \(\pm x_2 \in \{ \pm (x_1 + 1), \pm (x_1 - 1) \} \) in \(K_A(\overline{K})^2 \) which can be tested by the way of a schematic addition. Finally, the addition of \((\pm x, \pm (x + T)) \) and \((\pm y, \pm (y + T)) \) is given by the couple \((\pm (x + y), \pm (x + y + T)) \in K_A(\overline{K})^2 \) which can be computed from Proposition 2.4. \(\square \)

Remark 5.2. On elliptic curves, we recover a representation studied by Kohel in [Koh11]. If \(T' \in A(\overline{K}) \) is another point not of 2-torsion, one can go from the representation \((\pm x, \pm (x + T)) \in K_A(\overline{K})^2 \) to the representation \((\pm x, \pm (x + T')) \in K_A(\overline{K})^2 \) only once we have fixed a choice in \(\{ T + T', T - T' \} \). The
ambiguity comes from the fact that (-1) is always an automorphism on A from which we can act on our representations.

Remark 5.3. If we represent K_A via the embedding given by level 2 theta functions, then it is straightforward to apply the isogeny and pairing algorithms from [LR12; LR13] on the representation $(\pm x, \pm (x + T))$.

For an isogeny $f : A \to B$, what we can compute is the map from the representation from $(\pm x, \pm (x + T))$ on A to the representation $(\pm y, \pm (y + f(T)))$ on B. In the case that f is an endomorphism so that $B = A$, we will usually want to compute the endomorphism with respect to the same representation $(\pm y, \pm (y + T))$ on A. Such is the case, for instance, when we want to use f to speed-up the scalar multiplication as in [GLV01]. To obtain f we can apply Remark 5.2 and compute once and for all an element in $\{T \pm f(T)\} \subset K_A(\overline{F})$ (such a choice may amount to replace f by $-f$).

Remark 5.4 (Multiscalar multiplication). We can reinterpret Proposition 2.7 as follow: the standard approach to a multiscalar multiplication $\sum m_i P_i$ is to precompute the $\sum x_i P_i$, $x_i \in \{0, 1\}$ and do a double and add algorithm. Proposition 2.7 can be seen as an adaptation of this algorithm to the coordinates from Proposition 5.1. We represent a point on A by the couple $(\sum m_i P_i, \sum m_i P_i + P_i)$ in the Kummer. The only difference is that rather than doing a double and add (which will involve a compatible addition), we do it the reverse way: first a compatible addition to change the representation to $(\sum m_i P_i, \sum m_i P_i + Q)$ using Remark 5.2 (keeping the notations of Proposition 2.7), and then a double.

As noted in Section 3, when doing an addition of $(\pm x, \pm (x + t))$ and $(\pm y, \pm (y + T))$, it is faster to compute $(\pm x, \pm (x + y + T))$ by using a compatible addition and a three way addition than by using two compatible additions. Still the arithmetic on this representation is quite cumbersome. Luckily scalar multiplication are much better behaved.

Indeed the scalar multiplication $(\pm x, \pm (x + T)) \mapsto (\pm nx, \pm (nx + T))$ can be computed with a Montgomery ladder of the form $(\pm nx, \pm (m + 1)x, \pm ((m + 1)x + T))$ where each step will use one doubling and two differential additions on the Kummer. So compared to the scalar multiplication on the Kummer variety this will be around 50 percent slower. A much better idea is to use the standard trick to only compute $\pm(n - 1)x, \pm nx$ on the Kummer variety (via a standard Montgomery ladder). Then at the end one can recover $\pm nx + T$ by doing a compatible addition $(nx + T) = ((n - 1)x + (x + T))$. So this only add an extra computation at the end compared to the standard multiplication on the Kummer. Of course, the same trick will work for a multiscalar multiplication.

Finally it might seem that we need twice as many coordinates to represent the point $x \in A(\overline{F})$ using the representation $(x, x + T) \in K_A(\overline{F})^2$ than we need to represent a point in the Kummer. But actually, in a way similar to the case of elliptic curves in Weierstrass form where we only need one extra coordinate to encode the choice of sign, once we have $\pm x \in K_A(\overline{F})$ we can encode $\pm (x + T)$ as the corresponding root in the degree two scheme $\{\pm (x + T), \pm (x - T)\}$. In most cases this can be done by using only one coordinate. In the level 2 representation of the Kummer variety, we then represent a point of A by a pair in $\mathbb{P}^{2r - 1}(\overline{F}) \times \mathbb{P}^1(\overline{F})$. We refer to Section 7 for an analysis of the arithmetic in this representation.

6. Conclusion

In this paper we have shown how a simple type of addition on a Kummer variety which we called the compatible addition can be used to do some arithmetic that does not come from differential additions.

We have used this tool to explain how to go from a level 2 theta representation to a level 4 theta representation and to derive an efficient representation of an abelian variety A by embedding it into K_A^2. If K_A is represented by theta functions of level 2, this representation only add one extra coordinates (more precisely this gives an embedding of A into $\mathbb{P}^{2r - 1} \times \mathbb{P}^1$), and benefits from the same efficient scalar multiplication as the one in K_A.

7. Appendix: Explicit Formulae

Let \((a_i)_{i \in \mathbb{Z}(2)}\) be the level two theta null point representing a Kummer variety \(K_A\) of dimension 2. Let \(x = (x_i)_{i \in \mathbb{Z}(2)}\) and \(y = (y_i)_{i \in \mathbb{Z}(2)}\), we let \(X = x + y\) and \(Y = x - y\). We will give formulae for the coordinates \(2\kappa_{ij} = X_i Y_j + X_j Y_i\).

Let \(i \in \mathbb{Z}(2), \chi \in \hat{\mathbb{Z}(2)}\) and let
\[
z_i^\chi = \left(\sum_{t \in \mathbb{Z}(2)} \chi(t)x_{i+t}x_t \right) \left(\sum_{t \in \mathbb{Z}(2)} \chi(t)y_{i+t}y_t \right) \left(\sum_{t \in \mathbb{Z}(2)} \chi(t)a_{i+t}a_t \right).
\]
By Equation (12), \(\sum_i \chi(t)a_{i+t}a_t\) is simply the classical theta null point \(\theta \left[\frac{x^{i/2}}{i/2} \right] (0, \Omega)^2\). Then Theorem 3.2 gives

\[
\begin{align*}
4X_{00}Y_{00} &= z_{00}^0 + z_{01}^1 + z_{10}^1 + z_{11}^1, \\
4X_{01}Y_{01} &= z_{00}^0 - z_{01}^1 - z_{10}^1 + z_{11}^1, \\
4X_{10}Y_{10} &= z_{00}^0 + z_{01}^1 - z_{10}^1 + z_{11}^1, \\
4X_{11}Y_{11} &= z_{00}^0 + z_{01}^1 + z_{10}^1 - z_{11}^1, \\
2(X_{10}Y_{00} + X_{00}Y_{10}) &= z_{00}^0 + z_{01}^1, \\
2(X_{11}Y_{01} + X_{01}Y_{11}) &= z_{00}^0 - z_{01}^1, \\
2(X_{00}Y_{01} + X_{01}Y_{00}) &= z_{00}^0 + z_{01}^1, \\
2(X_{11}Y_{10} + X_{10}Y_{11}) &= z_{00}^0 - z_{01}^1, \\
2(X_{11}Y_{00} + X_{00}Y_{11}) &= z_{11}^0 + z_{11}^1, \\
2(X_{01}Y_{10} + X_{10}Y_{01}) &= z_{11}^0 - z_{11}^1.
\end{align*}
\]

As usual, we let \(M\) represent the cost of a multiplication (in the field of definition of \(x\) and \(y\)), \(S\) represent the cost of a square, and \(M_0\) represent the cost of a multiplication coming from the theta null point \((a_i)_{i \in \mathbb{Z}(2)}\) (so a data that depend only on the Kummer variety). Finally \(I\) represent the cost of an inversion, which we will replace by some multiplications using the fact that we have projective coordinates. We may suppose that \(a_0 = 1\). Also we note \(A_i^\chi = \sum \chi(t)a_{i+t}a_t\). We have seen that from the duplication formulae, if \(a_i = \theta \left[\frac{0}{i/2} \right] (0, \Omega/2)\) then \(A_i = \theta \left[\frac{x^{i/2}}{i/2} \right] (0, \Omega)^2\). For homogeneity reasons, we may also assume that \(A_{00} = 1\).

To compute the four \(z_{i0}^0\) we need \(4M + 8S + 3M_0\). To compute the two \(z_{i1}^0\) we need \(2M + 4M + 2M_0\). But actually, since we already have the squares \(z_i^0\), we can compute the product \(x_{i+t}x_t\) as \(2x_{i+t}x_t = (x_{i+t} + x_t)^2 - x_{i+t}^2 - x_t^2\) so the actual cost is \(2M + 4S + 2M_0\). In total to compute all \(\kappa_{ij}\) we need \(4M + 8S + 3M_0 + 3(2M + 4S + 2M_0) = 10M + 20S + 9M_0\). When \(x = y\), the cost reduces to \(8S + 3M_0 + 3(2M + 2S + 2M_0) = 6M + 14S + 9M_0\).

7.1. Differential additions. The first four equations are enough to give the \(\kappa_{ij}\) and can be used to compute the differential addition \(X\) from \(x, y, Y\) in \(4M + 8S + 3M_0 + 4I\) (in the generic case where the coordinates of \(Y\) are non zero, otherwise we need all the \(\kappa_{ij}\)). Similarly, to compute the double of \(x\) (again in the generic case where the coordinates of the theta null point are non zero), we need \(8S + 6M_0\). Once we have computed the differential addition \(x + y\), computing another differential addition \(x + y'\) involving the same point \(x\) costs only \(4M + 4S + 3M_0 + 4I\). In a Montgomery ladder, computing the scalar multiplication \(nP\), the differential additions will involve the point \(P\) so up to some precomputations the \(4I\) from the formula above become \(3M\). One step of the Montgomery ladder then costs \(7M + 12S + 9M_0\); we recover the formulas from [Gau07] this way. In [Gau07] a \(3M - 3S - 3M_0\) tradeoff is described. For the complexity analysis here we assume that we have small constants so the cost of \(M_0\) is small and we have not done this trade off.

In a \(d\)-multiscalar Montgomery ladder, computing the multiplication \(m_1P_1 + \cdots + m_dP_d\), the algorithm from [Bro06] costs \(1\) doubling and \(d\) differential addition on the Kummer by step. This give a complexity of \(8S + 6M_0 + d(7M + 4S + 3M_0) = 7dM + (8 + 4d)S + (6 + 3d)M_0\).
7.2. **Compatible additions.** We describe the degree two scheme \{X, Y\} by the polynomial \(\Psi_\alpha(Z) = Z^2 - 2 \frac{\zeta_{2\alpha}}{\kappa_0} Z + \frac{\zeta_{4\alpha}}{\kappa_0}\) whose roots are \(\{\frac{\chi_{2\alpha}}{Y}, \frac{\chi_{4\alpha}}{Y}\}\) (where \(\alpha\) is such that \(X_\alpha Y_\alpha - X_\alpha Y_\alpha \neq 0\)). To compute \(\kappa_0\) and \(\kappa_\alpha\) we need \(4M + 8S + 3M_0\), and to compute \(\kappa_\alpha\) we need \(2M + 4S + 2M_0\); so in total to compute \(\Psi_\alpha\), we need \(6M + 12S + 5M_0 + 2I\).

Once we have a root \(Z\), if we let \(Z' = 2 \frac{\zeta_{2\alpha}}{\kappa_0} - Z\) be the conjugate root (corresponding to \(\frac{\chi_{2\alpha}}{Y}\)), we can recover the coordinates \(X_i, Y_i\) by solving the equation

\[
\begin{pmatrix} 1 & 1 \\ Z & Z' \end{pmatrix} \begin{pmatrix} Y_i/Y_0 \\ X_i/X_0 \end{pmatrix} = \frac{2\kappa_0 (\kappa_0)}{2\kappa_\alpha (\kappa_0)} \; ;
\]

We find \(X_i = \frac{2(\zeta_{2\alpha} - \zeta_{4\alpha})}{\zeta_{2\alpha} - \zeta_{4\alpha}} Y_i/Y_0\) for \(i \neq 0, \alpha\) (here we have \(X_0 = 1, X_\alpha = Z\)). But usually we will express \(Z = (X_0 : X_\alpha)\) recovering \(X\) costs in total \((10M + 20S + 9M_0) + 8I = 18M + 20S + 9M_0\).

For a compatible addition, where \(x + y = z + t\), we can find \(Z\) as the common root between \(\Psi_\alpha\) and the similar polynomial \(\Psi'_\alpha(Z) = Z^2 - 2 \frac{\zeta_{4\alpha}}{\kappa_0} Z + \frac{\zeta_{2\alpha}}{\kappa_0}\) coming from the symmetric coordinates \(z, t, j\). Computing the coefficients needed for \(\Psi'_\alpha\) costs \(6M + 12S + 5M_0\). The common root is

\[
Z = \frac{\kappa_0 \kappa_\alpha - \kappa_0 \kappa_\alpha'}{2(\kappa_0 \kappa_0' - \kappa_\alpha \kappa_\alpha')};
\]

Computing \(Z\) projectively costs \(4M\). In the end, a compatible addition costs \((18M + 20S + 9M_0) + (6M + 12S + 5M_0) + 4M = 28M + 32S + 14M_0\).

7.3. **Multiscalar multiplication.** We compute the cost of a multiscalar multiplication using the strategy outlined in Proposition 7.2 and Remark 5.4: which cost one compatible addition, one differential addition and one doubling by multibits. With the same notations as this Proposition, we assume that we have precomputed all data corresponding to the \(\sum \varepsilon_i P_i\), \(\varepsilon_i \in \{0, 1\}\). For the compatible addition, due to the precomputations we gain \((1M + 4S + 2S \times 3 + 9M_0) + (1M + 4S + 2S + 5M_0) = 2M + 16S + 14M_0\) and the compatible addition costs \(26M + 16S\). The doubling and the differential addition then cost \((8S + 6M_0) + (7M + 3M_0) = 7M + 8S + 9M_0\) (reusing what we have already computed for the compatible addition). Finally we get a cost of \(33M + 24S + 9M_0\) by multibits.

So for a \(d\)-dimensional GLV scheme, using compatible additions or only differential additions according to the size of \(d\), we get a cost of of \(\max(7dM + (8 + 4d)S + (6 + 3d)M_0, 33M + 24S + 9M_0)\). In particular, even for large \(d\) we are competitive with the best result using Mumford coordinates (in Jacobian form) [HC] which needs \(52M + 11S\) for a \(mDBLADD\).

We note that there is probably a lot of room for improvement here. First, we only need the square of the coordinates of the point computed via a compatible addition, there may be a way to compute them directly faster. Also we have not used the equation of the Kummer surface to speed up the computations.

7.4. **Three way additions.** In the \((\pm x, \pm (x + T))\) representation, a doubling costs one doubling and two differential additions in the Kummer, for a cost of \(4M + 12S + 12M_0\). A differential addition costs one differential addition in the Kummer, for a cost of \((4M + 8S + 3M_0 + 4I) + (4M + 4S + 3M_0 + 4I) = 8M + 12S + 6M_0 + (6M + 4M + 4M) = 24M + 12S + 6M_0\).

A standard addition is much more expensive: we compute \(x + y + T\) via a compatible addition \((x + T) + y = x + (y + T)\), for a cost of \(28M + 32S + 14M_0\). We could compute \(x + y\) via another compatible addition, but it is faster to do a three way addition, using Equation (15). For all \(\chi \in \hat{Z}(2)\),

\[
(\sum_{t \in \hat{Z}(2)} \chi(t)(x + y + T_t)) = (\sum_{t \in \hat{Z}(2)} \chi(t)x_t y_t) = (\sum_{t \in \hat{Z}(2)} \chi(t)0_t(x + y + T_0)) = (\sum_{t \in \hat{Z}(2)} \chi(t)(y + T_t)(x + T_0)).
\]

To recover \(x + y\), this costs \((4M + 4M + 3M_0) + (1M + 1I) \times 4 + 3M_0 = 12M + 6M_0 + 4I = 22M + 6M_0\).

In total a standard addition costs \((28M + 32S + 14M_0) + (22M + 6M_0) = 50M + 32S + 20M_0\).
If we will add a lot of time so we are allowed to make precomputations first, then as in Section 7.3 the cost of the compatible addition to compute $x + y + T$ is $28M + 16S$, the cost of the three way addition is $20M + 6M_0$ for a total cost of $48M + 16S + 6M_0$.

As we can see the arithmetic is extremely expensive in this representation. To be efficient, one need to go to the level 2 Kummer model (once the necessary precomputations have been done in this representation), and only switch back to this representation at the end using a compatible addition.

References

REFERENCES

Institut de Mathématiques de Bordeaux, 351 cours de la libération, 33405 Talence cedex FRANCE

Équipe MACISA, LIRIMA (Laboratoire International de Recherche en Informatique et Mathématiques Appliquées)