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A very simple test, introduced by Ziv, allows one to determine if an approximation to the value f(x) of
an elementary function at a given point x suffices to return the floating-point number nearest f(x). The
same test may be used when implementing floating-point operations with input and output operands of
different formats, using arithmetic operators tailored for manipulating operands of the same format. That
test depends on a “magic constant” e. We show how to choose that constant e to make the test reliable and
efficient. Various cases are considered, depending on the availability of an fma instruction, and on the range
of f(x).
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1. INTRODUCTION

The result of an accurate numerical calculation is frequently available as the uneval-
uated sum of two floating-point numbers: a “main term” yh and a “correcting term”
yℓ, such that if y is the exact result for which we are trying to find an approximation,
yh + yℓ is very close to y (say, within some relative error bound ǫ). Examples occur in:
evaluation of elementary functions, compensated summation algorithms, and (as we
will see below) implementation of “heterogeneous” floating-point operations. The prob-
lem we face here is to check whether we can easily deduce the floating-point number
nearest y from yh, yℓ and ǫ. Before going further, let us recall some elementary notions
of floating-point arithmetic and define some notation.

1.1. Floating-point numbers

A binary, precision-p, floating-point number is a number of the form

x = X · 2kx−p+1, (1)
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where X is an integer, |X| ≤ 2p − 1, and kx is an integer. In practical implementations
of floating-point arithmetic, it is required that kx should be between two extremal
exponents, kmin and kmax. The floating-point representation (1) of x is said normal if
|X| is the largest possible that still satisfies |X| ≤ 2p − 1. When (1) is the normal
representation of X, X is called the integral significand of x, X · 2−p+1 is called the
significand of x, and kx is called the exponent of x. A normal number has absolute
value larger than or equal to 2kmin . Its integral significand is larger than or equal to
2p−1. A subnormal number has absolute value less than 2kmin .

Assuming a given precision p, we call midpoint a number that is exactly halfway
between two consecutive floating-point numbers, and we define a function ulp (which
is an acronym for unit in the last place [Kahan 2004]) as follows:

— if |x| ∈ [2k, 2k+1), where k is an integer larger than or equal to kmin, then ulp(x) =
2k−p+1;

— if x is subnormal then ulp(x) = 2kmin−p+1.

Roughly speaking, ulp(x) is the distance between two consecutive floating-point
numbers in the neighborhood of x.

We define RNp(t) as the precision-p floating-point number that is closest to t (when
t falls exactly halfway between two consecutive floating-point numbers, RNp(t) will be
the one of these two numbers whose integral significand is even: this is the so-called
round to nearest ties to even rule of the IEEE 754 standard [IEEE Computer Society
2008]), and RUp(t) as the smallest floating-point number that is larger than or equal
to t. When there is no ambiguity on the value of p, we just write “RN(t)” or “RU(t)”.
With a correctly rounded arithmetic, assuming that round to nearest ties to even is the
chosen rounding rule, the number x obtained after executing the C-instruction x = y
+ z is RN(y + z).

We will also need the following algorithm, due to Dekker:

ALGORITHM 1: Fast2Sum(a, b)

s← RN(a + b)
z ← RN(s− a)
t← RN(b− z)

It satisfies:

THEOREM 1.1 (DEKKER’S FAST2SUM ALGORITHM). (for a proof, see [Dekker 1971;
Knuth 1998; Muller et al. 2010])

Assume a binary floating-point system.
Let a and b be floating-point numbers, and assume that the exponent of a is larger

than or equal to that of b. Algorithm 1 computes two floating-point numbers s and t
that satisfy:

— s + t = a + b exactly;
— s is the floating-point number that is closest to a + b.

In the following, we assume we use a binary floating-point arithmetic that is com-
pliant with the IEEE 754 standard, which implies that the arithmetic operations are
correctly rounded, and we also assume that the “round-to-nearest ties-to-even” round-
ing direction is selected (or that none is selected, since that one is the default).
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1.2. Instances of the “main+correcting terms” problem

1.2.1. Evaluation of functions. Assume one wishes to write a program that evaluates a
real-valued function f with correct rounding, that is, for any input floating-point num-
ber x, the program must return RN(f(x)).1 A strategy for doing this, first suggested
and implemented by Ziv [Ziv 1991] in his library of correctly-rounded transcendentals
is the following one:

— First, compute an approximation, say y1, to f(x) = y with relative error less than ǫ1.
From that approximation and the error bound, one can deduce an interval I1 such
that y ∈ I1.

— If all elements of I1 round to the same floating-point number ŷ (in other words, if I1

does not contain a midpoint), then, necessarily, RN(f(x)) = ŷ.
— Otherwise, we need to perform another step, i.e., to compute a more accurate approx-

imation y2, with relative error bound ǫ2 < ǫ1, and so on: we may need an arbitrarily
long sequence of approximations y1, y2, y3, etc., that become more and more costly to
compute.

This is illustrated by Fig. 1. This process can be improved if we know in advance
what is the smallest nonzero relative distance between f(z), where z is a floating-
point number, and a midpoint, provided that this smallest distance is not too small.
When we know that smallest distance, we can implement an efficient program with
a small (in practice, 2 or 3) number of steps. Knowing that smallest distance requires
solving a problem called the Table Maker’s Dilemma [Kahan 2004; Muller 2006].

The important fact is the following: since the cost of computing an approximation
increases as the error bound ǫi decreases, it is very important to make sure that
we hardly ever need to use the second, third, etc. steps. Hence, the test that decides
whether we need to perform a second step must satisfy the following properties:

— of course, it must be reliable: if (y1, ǫ1) does not suffice to deduce the value of RN(y),
the test must say so;

— the number of “wrong alarms” (i.e., of cases for which (y1, ǫ1) would have sufficed to
deduce the value of RN(y), and yet step 2 is performed) must be as small as possible;

— the test itself must be very “cheap”, i.e., cost a very few arithmetic operations and
comparisons only.

In the following, we assume the availability of an algorithm that makes it possible to
approximate y = f(x) by the unevaluated sum of two floating-point numbers: a “main
term” yh and a “correcting term” yℓ, with relative error bounded by some ǫ, that is,

yh + yℓ = y · (1 + α), with |α| ≤ ǫ. (2)

Such algorithms do exist for evaluating the usual transcendental functions (in general,
through some judicious combination of table look-up and polynomial approximation).
We can even assume that yℓ is small enough in front of yh, so that the floating-point
number nearest yh + yℓ is yh: otherwise, it suffices to use the Fast2Sum algorithm,
(Algorithm 1, given above), to get into this situation.

We wish to find some way of very quickly checking whether yh = RN(y) or not.
We will call that problem the “main+correcting terms” problem (see below for a more
accurate definition).

1We assume that f(x) is not exactly halfway between two consecutive floating-point numbers. This case can
be shown to never happen in nontrivial cases with the most usual transcendental functions such as sin, exp,
ln, . . . , and concerning the most frequent algebraic functions, this problem is partly dealt with in [Jeannerod
et al. 2011].
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FP numbers

RN(y) ???

y is here
RN(y)

Fig. 1. Given an approximation y1 to y = f(x) and a bound ǫ1 on the approximation error, we know that y
lies in an interval I1. In the first case, all elements of I1 round to the same floating-point number, so that
we can return RN(y). In the second case, a new, more accurate, approximation y2 must be computed.

1.2.2. Implementation of heterogeneous operations. A similar situation also occurs when
we want to implement “heterogeneous” floating-point operations (that is, operations
whose operands have different floating-point formats), assuming we only have hard-
ware operators for “homogeneous” operations. Notice that such heterogeneous op-
erations are required by the IEEE 754-2008 Standard for Floating-Point Arith-
metic [IEEE Computer Society 2008]. Suppose we have two different formats available
on the same system: a format of precision p, and another of precision q, where p < q
(typical real-life examples are with p = 53 and q = 64, which correspond to the bi-
nary64/double precision and the “Intel double-extended” formats, and with p = 24 and
q = 53, which correspond to the binary32/single precision and binary64/double pre-
cision formats). Also suppose we only have addition/subtraction operators for adding
two numbers of precision p and returning a result in precision p; and for adding two
numbers of precision q and returning a result in precision q (we consider here the case
of addition, but the very same applies to multiplication, division, and square root). We
want to add two numbers of precision q, and get the result in precision p, rounded to
nearest. That is, given a(q) and b(q) of precision q, we wish to compute

y(p) = RNp(a
(q) + b(q)).

To do so, the first idea that springs in mind is to first compute, using the precision-q
floating-point addition instruction:

y(q) = RNq(a
(q) + b(q)),

which satisfies2 y(q) = (a(q) + b(q))(1 + µ), with |µ| ≤ 2−q, and then to round y(q) to the
nearest precision-p floating-point number, that is to compute

ŷ(p) = RNp(y
(q)).

2Unless underflow occurs, but for the usual floating-point formats, an underflow in precision q will corre-
spond to a number of absolute value under the smallest nonzero floating-point number in precision p.
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Unfortunately, although ŷ(p) will frequently be equal to y(p) = RNp(a
(q) +b(q)), this will

not always be the case: this is a typical issue of the double rounding problem [Mon-
niaux 2008; Boldo and Melquiond 2008]. An example with p = 53 and q = 64 is
a(q) = 263 + 210 and b(q) = 2−2, for which one easily finds that ŷ(p) = 263 whereas
y(p) = 263 + 211.

Once ŷ(p) is computed, one may compute

y∗
ℓ = y(q) − ŷ(p).

Since ŷ(p) is a precision-p floating-point number and p < q, ŷ(p) is also a precision-q
floating-point number. Therefore, y∗

ℓ can be computed using the precision-q floating-
point addition instruction.

One easily shows that y∗
ℓ is exactly representable in precision q. Hence, y∗

ℓ is exactly
computed. We now consider two cases:

— if q ≤ 2p + 1 then y∗
ℓ is exactly representable in precision p. Hence, after having

(exactly) computed y∗
ℓ using precision-q addition, one can convert it to the precision-p

format without any loss of accuracy. By choosing yh = ŷ(p), yℓ = y∗
ℓ , and α = µ,we find

yh + yℓ = (a(q) + b(q))(1 + α),

with |α| ≤ 2−q and RN(yh + yℓ) = yh, which is just another instance of (2);

— if q ≥ 2p + 1, then define yℓ = RNp(y
∗
ℓ ). We have

|yℓ − y∗
ℓ | ≤ 2−p|y∗

ℓ | ≤ 2−2p|y(q)| ≤ 2−2p(1 + µ)|a(q) + b(q)|,
Hence, by choosing yh = ŷ(p), we find

yh + yℓ =
(

ŷ(p) + y∗
ℓ

)

+ (yℓ − y∗
ℓ ) =

(

a(q) + b(q)
)

· (1 + α),

with |α| ≤ 2−q + 2−2p + 2−2p−q and RN(yh + yℓ) = yh,3 which is just another instance
of (2).

1.2.3. Summation algorithms. There is a large literature on summation algorithms that
first approximate a sum x1 + x2 + · · · + xm by a main term and a correcting term and
then return the floating-point sum of these two terms (see for instance [Pichat 1972;
Neumaier 1974; Ogita et al. 2005]). Being able to quickly check whether we finally
obtain the floating-point number closest to the exact sum is, of course, of interest.

1.3. Statement of the “main+correcting terms” problem

Let us now state the “main+correcting terms” problem more formally.

PROBLEM 1 (MAIN+CORRECTING TERMS PROBLEM). Assume that an exact, real
number y, is approximated by two precision-p binary floating-point numbers yh and
yℓ, that satisfy

|(yh + yℓ) − y| < ǫ · |y|, (3)

with ǫ < 2−p−1, and

yh = RN(yh + yℓ). (4)

3Unless yℓ = (1/2)ulp(yh) exactly, but this case corresponds to the case when a(q) + b(q) is extremely close
to a precision-p midpoint: in such a case, the test will correctly reply that we are unable to conclude whether
yh equals RN(a(q) + b(q)) or not.
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We assume that yh is a normal number (otherwise, the only floating-point value yℓ that
satisfies (4) is yℓ = 0). The problem we address here is the following one: find some
simple test that makes it possible to quickly determine whether yh is the floating-point
number closest to y or not.

1.4. Ziv’s rounding technique

In Ziv’s Accurate Portable Mathlib (or libultim) library of elementary functions [Ziv
1991], the test being performed to solve Problem 1 is the following one:

Is yh equal to RN (yh + RN(yℓ · e))?

where e is some “magic constant” that must be adequately chosen (this is the main
purpose of this paper). A similar test has also been used, later on, in the CRLibm
library [de Dinechin et al. 2005]. Notice that RN (yh + RN(yℓ · e)) is what we get4 by
evaluating, in floating-point arithmetic, the C expression:

yh + (yl * e).

We wish to find that “magic constant” e. It will be a nonnegative floating-point num-
ber, as small as possible (due to Observation 1, below), such that

yh = RN (yh + RN(yℓ · e)) ⇒ yh = RN(y). (5)

Notice that (3) and (4) imply that yh and y have the same sign. Without loss of gen-
erality, we assume that they are positive. In the following, we will say that e allows
for a correct Ziv rounding test if (5) holds as soon as (3) and (4) hold. We will say
that (y, yh, yℓ) is a false negative if (3) and (4) hold, yh 6= RN (yh + RN(yℓ · e)) and yet
yh = RN(y). Our goal is to make sure that e should allow for a correct Ziv rounding
test, and that false negatives should be as infrequent as possible.

Let us now raise two observations:

OBSERVATION 1. If (y, yh, yℓ) is a false negative for the Ziv rounding test with con-
stant e, then it will be a false negative with any constant e′ > e. In other words, the
number of false negatives will increase with e.

OBSERVATION 2. If constant e does not allow for a correct Ziv rounding test, then
no constant e′ < e will allow for a correct Ziv rounding test.

These two observations are an almost immediate consequence of the fact that the
function t 7→ RN(t) is monotonic. From these observations, we conclude that we should
try, given ǫ and p, to find a value of e as small as possible that allows for a correct Ziv
rounding test. This is the purpose of the next section.

2. MAIN RESULT

2.1. Preliminary properties

PROPERTY 1. If (y − yh) and yℓ have different signs then yh = RN(y).

PROOF. If (y − yh) and yℓ have different signs then either y ≤ yh ≤ yh + yℓ or
yh + yℓ ≤ yh ≤ y. In any case, y is closer to yh than to yh + yℓ, so that (3) implies
|yh − y| < ǫ · |y|. Since |ǫ| < 2−p−1, this implies yh = RN(y). This is illustrated by
Figure 2.

4Assuming round-to-nearest, ties-to-even rounding direction attribute, which is the default.
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yh + yℓ

yh

y

Fig. 2. Illustration of Property 1: when (y−yh) and yℓ have different signs, y is closer to yh than to yh +yℓ,
which implies yh = RN(y).

Now, notice that (3) implies |yh − y| < ǫ · |y| + |yℓ|, and y < (yh + yℓ)/(1 − ǫ), from
which we deduce

|yh − y| <
ǫ

1 − ǫ
· (yh + yℓ) + |yℓ|. (6)

2.1.1. If yh is not a power of two

PROPERTY 2. Assume that yh is not a power of two. If |yℓ| ≤ (1/2)ulp(yh)·(1−ǫ)−yhǫ
then yh = RN(y).

PROOF. If |yℓ| ≤ (1/2)ulp(yh) · (1 − ǫ) − yhǫ, then

1

2
ulp(yh) − yh · ǫ

1 − ǫ
≥ |yℓ|

(

1 +
ǫ

1 − ǫ

)

,

which implies

ǫ

1 − ǫ
· (yh + yℓ) + |yℓ| ≤

1

2
ulp(yh).

Therefore, using (6), we find |yh − y| < (1/2)ulp(yh), which implies yh = RN(y).

PROPERTY 3. Assume that yh is not a power of two. Let e be a nonnegative floating-
point number. If (1/2)ulp(yh) is in the normal range, and yh = RN (yh + RN(yℓ · e)) ,
then |yℓ| ≤ (1 + 2−p) · ulp(yh)/(2e).

PROOF. From yh = RN (yh + RN(yℓ · e)), and since yh is not a power of 2, we deduce

yh − 1

2
ulp(yh) ≤ yh + RN(yℓ · e) ≤ yh +

1

2
ulp(yh),

which implies

|RN(yℓ · e)| ≤
1

2
ulp(yh). (7)

Since (1/2)ulp(yh) is in the normal range, (7) implies |yℓ · e| ≤ (1 + 2−p) · (1/2)ulp(yh),
q.e.d.

Combining Properties 2 and 3, we find that if

(1 + 2−p) · ulp(yh)

2e
≤ 1

2
ulp(yh) · (1 − ǫ) − yhǫ, (8)

then yh = RN (yh + RN(yℓ · e)) implies yh = RN(y). Now, let us find a value of e, as
small as possible, such that (8) holds for all floating-point numbers yh that are not in
the subnormal range. Condition (8) is equivalent to

e ≥ (1 + 2−p) · ulp(yh)

(1 − ǫ) · ulp(yh) − 2yhǫ
.
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0:8 F. de Dinechin et al.

If yh is in the normal range, then one can write ulp(yh) = ξ · yh · 2−p, with 1 < ξ ≤ 2.
We therefore have

(1 + 2−p) · ulp(yh)

(1 − ǫ) · ulp(yh) − 2yhǫ
=

(1 + 2−p) · ξ
(1 − ǫ) · ξ − 2p+1ǫ

.

Elementary calculus shows that if ǫ < 1/(2p+1 + 1) then the largest value of

(1 + 2−p) · ξ
(1 − ǫ) · ξ − 2p+1ǫ

for 1 ≤ ξ ≤ 2 is attained for ξ = 1. From this, we immediately deduce

PROPERTY 4. Assume that yh is not a power of 2, that 1
2ulp(yh) is in the normal

range and that ǫ < 1/(2p+1 + 1). If

e ≥ 1 + 2−p

1 − ǫ − 2p+1ǫ
(9)

then yh = RN (yh + RN(yℓ · e)) implies yh = RN(y).

2.1.2. If yh is a power of 2. Reminder: we still assume that y and yh are positive.

(1) first, if y ≥ yh and yℓ ≥ 0 (i.e., yh + yℓ ≥ yh), then we have

y − yh <
1

2
ulp(yh) ⇒ y = RN(yh),

and

(yh = RN(yh + RN(yℓ · e)) ⇒ yh ≤ yh + RN(yℓ · e) ≤ yh +
1

2
ulp(yh),

so that the proofs of properties 2, 3, and 4 remain valid: Property 4 still holds;
(2) second, if (y ≤ yh and yℓ ≥ 0) or (y ≥ yh and yℓ ≤ 0) then, from Property 1,

y = RN(yh);
(3) the remaining case is y ≤ yh and yℓ ≤ 0. In that case, since yh is a power of 2, if yh is

in the normal range, then ulp(yh) = 2−p+1yh, and we have the following properties.

PROPERTY 5. Assume that yh is a power of 2, y ≤ yh and yℓ ≤ 0. If

|yℓ| ≤ yh · (1 − ǫ) · 2−p−1 − ǫ

1 − 2ǫ
(10)

then yh = RN(y).

Notice that Condition (10) cannot be satisfied if 2−p−1 − ǫ/(1 − ǫ) ≤ 0, that is, if
ǫ ≥ 1/(1 + 2p+1).

PROOF. If (10) is satisfied, then
ǫ

1 − ǫ
(yh + yℓ) + |yℓ| ≤ 2−p−1yh,

which implies, using (6), that 0 ≤ yh − y ≤ 2−p−1yh = (1/4)ulp(yh), from which we
deduce yh = RN(yh).

Notice that, since yh is a power of 2, the usual condition |yh − y| < 1
2ulp(yh) would

not have sufficed to show that yh = RN(y). This is illustrated by Fig. 3

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: February 2013.
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yh = 2k

(1/2)ulp(yh)

y
RN(y)

Fig. 3. When yh is a power of 2, |yh − y| < 1
2

ulp(yh) does not necessarily imply that yh = RN(y).

PROPERTY 6. Assume that yh is a power of 2, y ≤ yh, that yℓ ≤ 0, and that
2−p−1yh = (1/4)ulp(yh) is a normal number. If

yh = RN(yh + RN(yℓ · e)), (11)

then |yℓ| ≤ ((1 + 2−p) · 2−p−1 · yh)/e.

PROOF. Since yh is a power of 2, (11) implies yh−(1/4)ulp(yh) ≤ yh +RN(yℓ ·e) ≤
yh, which implies (since ulp(yh) = 2−p+1yh),

−2−p−1yh ≤ RN(yℓ · e) ≤ 0,

which implies (since 2−p−1yh is a normal number), |yℓ · e| ≤ (1 + 2−p) · 2−p−1yh.
q.e.d

Finally, from Properties 5, 6, and the previous observations, we deduce

PROPERTY 7. Assume that yh is a power of 2, that 1
4ulp(yh) is a normal number,

and that ǫ < 1/(1 + 2p+1). If

e ≥ (1 + 2−p) · (1 − 2ǫ)

1 − ǫ − 2p+1ǫ
(12)

then yh = RN (yh + RN(yℓ · e)) implies yh = RN(y).

PROOF. As discussed above, we only have to consider the case where y ≤ yh and
yℓ ≤ 0. From properties 5 and 6 we immediately see that if

(1 + 2−p) · 2−p−1 · yh

e
≤ yh ·

2−p−1 − ǫ
1−ǫ

1 − ǫ
1−ǫ

then yh = RN (yh + RN(yℓ · e)) will imply yh = RN(y). This immediately gives Condi-
tion (12).

2.2. On the values of e that allow for a correct Ziv rounding test

From Properties 4 and 7, we easily deduce

THEOREM 2.1. Assume that yh is a floating-point number such that 1
4ulp(yh) is in

the normal range, and that ǫ is less than 1/(2p+1+1). Also assume that yh = RN(yh+yℓ)
and |(yh + yℓ) − y| < ǫ · |y|, with ǫ < 2−p−1. If

e ≥ 1 + 2−p

1 − ǫ − 2p+1ǫ
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then yh = RN (yh + RN(yℓ · e)) implies yh = RN(y).

Theorem 2.1 means that in practice, we will perform the rounding test using

e = RU

(
1 + 2−p

1 − ǫ − 2p+1ǫ

)

,

where RU(t) is the smallest floating-point number larger than or equal to t. Notice that
if a fused multiply-add (fma) instruction is available, one may compute RN(yh + yℓ · e)
instead of RN (yh + RN(yℓ · e)), and get a very slightly better value of e. This will be
dealt with in Section 3.2.

2.3. A result on near-optimality

Let us show that the value e given by Theorem 2.1 is close to the best possible
one, at least for some range of values of ǫ. To do so, consider ǫ of the form ǫ =
(2−p−k+1 + 2−3p)/(2 − 2−p + 2−3p), for k > 1 and k < p/2. For that ǫ, the minimum
value of e given by Theorem 2.1 is

1 + 2−p

1 − ǫ − 2p+1ǫ
=

(
2k

2k − 2

)

+

(

4k

(2k − 2)
2

)

· 2−p −
(

−4k + 21+k − 8k

(2k − 2)
3

)

· 2−2p + . . .

which is within around 22−2k from 1+21−k, and above it. One can easily check that for






yh = 2 − 2−p+1

yℓ = 2−p − 2−p−k+1

y = 2 − 2−p + 2−3p

e = 1 + 21−k,

we have |yh + yℓ − y| < ǫ · |y|, yh = RN(yh + yℓ), and yh = RN (yh + RN(yℓ · e)), and yet
yh 6= RN(y). This shows that for that value of e, that is slightly below the minimum
value provided by Theorem 2.1, we do not always have a correct Ziv rounding.

This was a kind of “generic” example (for arbitrary values of p). For particular values
of p we have even more convincing examples. Assume the floating-point format is the
binary64 (formerly called “double precision”) format of the IEEE 754 Standard. We
have p = 53. Consider

y =
1461983273612937874357096965722

776934764230052409376713600323
,

and assume that we have

ǫ = 2−80,

yh =
2118642268759237

1125899906842624
,

yℓ =
9007199188662643

81129638414606681695789005144064
.

One easily finds that |(yh + yℓ) − y| < ǫ · |y|, more precisely, we have

|(yh + yℓ) − y|
ǫ · |y| ≈ 1 − 2.54811 · 10−37.

The bound on e given by Theorem 2.1 is

e∗ =
1 + 2−p

1 − ǫ − 2p+1ǫ
=

1208925819614629308923904

1208925801600230665224191
.
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One may easily check that RN(yh + RN(e∗ · yℓ)) 6= yh. Now, if we choose

e =
4503599649443365

4503599627370496

then we have

— RN(yh + RN(e∗ · yℓ)) = yh, whereas

RN(y) =
8474569075036949

4503599627370496
6= yh,

which shows that the chosen value of e does not allow for a valid Ziv rounding test;

— and yet, e/e∗ = 0.9999999900000000987640 . . .: the chosen value of e is therefore ex-
tremely close to the bound given by Theorem 2.1.

This example shows that, at least in some cases, Theorem 2.1 gives a very sharp bound.

2.4. Simpler bounds for e

In Section 2.2, we give a bound on the value of e, such that if e is larger than or equal
to that bound, we have a correct Ziv rounding test. Let us call e∗ that bound, namely,

e∗ =
1 + 2−p

1 − ǫ − 2p+1ǫ
.

Computing e∗ (or, more precisely, computing RU(e∗), which is the smallest value of e
that is a floating-point number and that satisfies the condition given by Theorem 2.1)
cannot be easily done in precision-p floating-point arithmetic. In most cases this is not
a problem: an elementary function library is designed once for all, and will be used
many times so that it is worth spending time to develop it, possibly using a multiple-
precision environment. This might be different if we consider the automatic design of
ad-hoc programs for specific functions. Let us now suggest two simpler bounds that
are easily computable. Assume that 1 − 2p+1ǫ is exactly representable in precision-p
floating-point arithmetic (this is not too much a constraint in practice: ǫ will frequently
be a power of 2, and larger than 2−2p). The two simpler bounds will be floating-point
approximations to (1 + 2−p+1)/(1 − 2p+1ǫ), more precisely, we will consider

e↑ = RU

(
1 + 2−p+1

1 − 2p+1ǫ

)

, and eN = RN

(
1 + 2−p+1

1 − 2p+1ǫ

)

,

Notice that since 1 + 2−p+1 is a floating-point number, and since we have assumed
that 1−2p+1ǫ is a floating-point number too, e↑ and eN are straightforwardly computed.
As Property 8 will show, e↑ is always larger than or equal to e∗ and eN . We could not
show that eN is always larger than e∗, yet this is true in some important practical
cases (See Property 9). However, using e↑, one is able to show the following result.

PROPERTY 8. If ǫ ≤ 2−p−3 and 1 − 2p+1ǫ is a floating-point number (for instance,
this will be satisfied if ǫ is a power of two larger than or equal to 2−2p−1) then 1 ≤
e↑/e∗ < 1 + 4 · 2−p.

PROOF. Define ρ = e↑/e∗. We easily find

1 + 2−p+1

1 − 2p+1ǫ
1 + 2−p

1 − ǫ − 2p+1ǫ

≤ ρ ≤

(
1 + 2−p+1

)
·
(
1 + 2−p+1

)

1 − 2p+1ǫ
1 + 2−p

1 − ǫ − 2p+1ǫ

.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: February 2013.



0:12 F. de Dinechin et al.

Let us denote ω = 1 − 2p+1ǫ. We have 1 − ǫ − 2p+1ǫ = ω
(
1 − ǫ

ω

)
, so that

1 + 2−p+1

ω
1 + 2−p

ω
(

1 − ǫ

ω

)

≤ ρ ≤

(
1 + 2−p+1

)2

ω
1 + 2−p

ω
(

1 − ǫ

ω

)

,

which implies

1 + 2−p+1

1 + 2−p

(

1 − ǫ

ω

)

≤ ρ ≤
(
1 + 2−p+1

)2

1 + 2−p

(

1 − ǫ

ω

)

≤
(
1 + 2−p+1

)2

1 + 2−p
.

Elementary manipulation shows that for all p ≥ 1, we have (1 + 2−p+1)/(1 + 2−p) ≥
1 + 2−p − 2−2p, and (

(
1 + 2−p+1

)2
)/(1 + 2−p) ≤ 1 + 4 · 2−p. Furthermore, ǫ ≤ 2−p−3

implies ω ≥ 3/4 and 1 − ǫ/ω ≤ 1 − 2−p−1/3, from which we get, since
(
1 + 2−p − 2−2p

)
·

(
1 − 2−p−1/3

)
= 1 + 5

62−p − 7
62−2p + 1

62−3p is larger than 1 as soon as p ≥ 1,

1 ≤ ρ < 1 + 4 · 2−p.

Now, for special values of p (namely, those corresponding to the binary interchange
formats of the IEEE Standard for Floating-Point Arithmetic and to the INTEL “double-
extended precision” format), and special values of ǫ (those of the form γ · 2−p−k, with
γ = 1, 3/4, 5/8, or 7/8, and 3 ≤ k ≤ p + 1), one can get an even more interesting result:

PROPERTY 9. If p ∈ {11, 24, 53, 64, 113}, and ǫ = γ · 2−p−k, with γ = 1, 3/4, 5/8, or
7/8, and 3 ≤ k ≤ p + 1, then e∗ ≤ eN < e∗ + ulp (e∗) .

To prove that property, we just enumerated all possible cases. When the conditions of
Property 9 hold, eN is equal to the smallest floating-point number larger than or equal
to e∗: it is therefore not possible to deduce a better constant e from Theorem 2.1.

3. ADDITIONAL RESULTS

3.1. When the test fails, it gives us information anyway

Let us now see that, under mild conditions on ǫ and e, when we perform a correct Ziv
rounding test and the test fails (i.e., we cannot be sure that yh = RN(y)), we get some
information anyway. More precisely, we have the following property:

THEOREM 3.1. If

— p ≥ 2;
— ǫ < 1/(2p+3 + 9);
— the chosen value of e is

RU

(
1 + 2−p

1 − ǫ − 2p+1ǫ

)

(i.e., the smallest one for which Theorem 2.1 guarantees that we have a correct Ziv
rounding test),

then when the test fails, i.e., when we have

yh + yℓ = y · (1 + α), with |α| ≤ ǫ, (13)

yh = RN(yh + yℓ),
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and

yh 6= RN(yh + RN(e · yℓ))

the two numbers yh and yc = RN(yh+RN(e·yℓ)) are consecutive floating-point numbers,
and y is between them, which implies that RN(y) is either yh or yc.

Theorem 3.1 is especially useful when implementing a locally monotonic elementary
function f at point x. It essentially means that it suffices to approximate

f−1

(
yh + yc

2

)

with large enough accuracy to determine if the correct value to be returned is yh or
yc. This is of interest when f−1 is simpler to approximate than f (e.g., when f is
the arcsin function). Theorem 3.1 is also useful when implementing heterogeneous
operations. Consider the problem presented in Section 1.2.2. When the test fails,
assuming q ≥ p + 1, (yh + yc)/2 is a precision-q floating-point number, so that it can
easily be compared to a(q) + b(q).

PROOF. Without loss of generality, we assume that yh and y are positive. Assume
p ≥ 2 and ǫ < 1/(2p+3 + 9). First, elementary manipulation shows that

1 + 2−p

1 − ǫ − 2p+1ǫ
< 2,

which implies e ≤ 2.
Now, from yh = RN(yh + yℓ) and e ≤ 2, we easily deduce that

— |RN(eyℓ)| ≤ ulp(yh) if yh is not a power of 2 or yℓ has the same sign as yh; and
— |RN(eyℓ)| ≤ 1

2ulp(yh) if yh is a power of 2 and yℓ has not the same sign as yh.

A consequence of this is that yc = RN(yh + RN(e · yℓ)) is either yh or the floating-point
predecessor or successor of yh.

Since e ≤ 2, one easily deduces that if |yℓ| ≤ 1
8ulp(yh) then |RN(eyℓ)| ≤ 1

4ulp(yh), so
that yc = RN(yh + RN(e · yℓ)) = yh (this is straightforward if yh is not a power of two,
and this is a consequence of the round to nearest even rule if yh is a power of two). As
a consequence, if yc 6= yh then, necessarily, |yℓ| > 1

8ulp(yh) > 2−p−3yh. Now, from (13)
we have

y − yh = yℓ

(

1 − α
y

yℓ

)

(14)

with |α| ≤ ǫ. We have just shown above that yc 6= yh implies
∣
∣
∣
∣

yh

yℓ

∣
∣
∣
∣
< 2p+3. (15)

Also, RN(yh + yℓ) = yh implies
∣
∣
∣
∣

yh

yℓ

∣
∣
∣
∣
≥ 2p. (16)

We have

y =
yh + yℓ

1 + α
,
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therefore, using (16),
∣
∣
∣
∣

y

yℓ

∣
∣
∣
∣
≤ yh + |yℓ|

|yℓ|(1 + α)
≤ yh(1 + 2−p)

|yℓ| · (1 − ǫ)
,

therefore, using (15),
∣
∣
∣
∣

y

yℓ

∣
∣
∣
∣
< 2p+3 · 1 + 2−p

1 − ǫ
,

therefore

|α| ·
∣
∣
∣
∣

y

yℓ

∣
∣
∣
∣
< 2p+3 ·

(
1 + 2−p

)
· α

1 − ǫ
≤ 2p+3 ·

(
1 + 2−p

)
· ǫ

1 − ǫ
. (17)

Elementary manipulation shows that the right-hand side of (17) will be less than 1 as
soon as ǫ < 1/(2p+3 + 9). Hence, using (14), as soon as ǫ < 1/(2p+3 + 9), if yc 6= yh then
i) y − yh and yℓ have the same sign, and ii) y is less than or equal to the floating-point
successor of yh, and larger than or equal to its floating-point predecessor. Therefore:

— if yℓ > 0 then y > yh and (straightforwardly), yc > yh;
— if yℓ < 0 then y < yh and (straightforwardly), yc < yh.

Hence, when the test fails, y is between the two consecutive floating-point numbers yc

and yh, which implies that RN(y) is either yh or yc.

3.2. When an fma instruction is available

If an fma instruction is available, we can use it to change the test (5) into another
one that is very slightly better in the general case and, more important, that works
even if (1/4)ulp(yh) is subnormal. The fma instruction evaluates expressions of the
formRN(a + bc).It is available on processors such at the Intel Itanium, IBM PowerPC,
AMD Bulldozer, and will be available on the Intel Haswell. It allows for faster and, in
general, more accurate dot products, matrix multiplications, and polynomial evalua-
tions. The fma instruction is included in the new IEEE 754-2008 standard for floating-
point arithmetic. If an fma instruction is available, a natural idea is to replace the
test

is yh equal to RN(yh + RN(yℓ · e)) ?

by the test

is yh equal to RN(yh + yℓ · e) ?

Analyzing that new test, that is, trying, given ǫ, to find a bound e∗ on e such that if
e ≥ e∗ then

yh = RN (yh + yℓ · e) ⇒ yh = RN(y), (18)

is done in a way very similar to what we did in Section 2. Assuming yh is in the normal
range, Property 3 becomes:

Assume yh is not a power of 2. If yh = RN(yh + yℓ · e) then |yℓ| ≤ ulp(yh)/2e.

That is, compared to Property 3, we get rid of the term (1+2−p) and of the requirement
that (1/2)ulp(yh) should be in the normal range. A consequence is that we have a prop-
erty analogous to Property 4, without that term and that requirement. Properties 6
and 7 are transformed in a similar way, and we deduce:

THEOREM 3.2. Assume that yh is a normal floating-point number and that ǫ is less
than 1/(2p+1 + 1). Also assume that yh = RN(yh + yℓ) and |(yh + yℓ) − y| < ǫ · |y|. If
e ≥ 1/(1 − ǫ − 2p+1ǫ) then yh = RN (yh + yℓ · e) implies yh = RN(y).
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3.3. If (1/4)ulp(yh) is subnormal and there is no fma instruction

Now, if (1/4)ulp(yh) is subnormal, then the relative error committed when rounding
yℓ · e may be very large. If we try to adapt the proof of Proposition 3, we easily find that
from

|RN(yℓ · e)| ≤
1

2
ulp(yh)

the only thing we can deduce is |yℓ · e| ≤ (3/4)ulp(yh). Therefore, the bound of Theo-
rem 2.1 becomes

e ≥ 3/2

1 − ǫ − 2p+1ǫ
(19)

which is quite bad. Unfortunately, at least in some cases, values of e slightly below
that bound will fail. Consider for instance:







y = 2kmin+1 + 2kmin−p+1 + 2kmin−2p

yh = 2kmin+1

yℓ = 2kmin−p+1

ǫ = 2−2p−1.

For which we have yh = RN(yh+yℓ), and |(yh + yℓ) − y| ≤ ǫ·|y|. The bound on e provided
by (19) is

e∗ =
3/2

1 − 2−p − 2−2p−1
≈ 3

2
·
(
1 + 2−p

)
.

If we choose the following value of e, which is only very slightly below e∗:

e =
3

2
− 2−p+1 = 1.0111 · · · 1

︸ ︷︷ ︸

p bits

,

then we have RN(yℓ · e) = 2kmin−p+1, so that RN(yh + RN(yℓ · e)) = yh, and yet,

RN(y) = 2kmin+1 + 2kmin−p+2 6= yh.

This example shows that if ulp(yh)/4 can be subnormal, it is much preferable to
perform Ziv’s rounding test using an fma instruction. This is a real concern for the
implementation of the heterogeneous operations: small values must be handled sepa-
rately. However, if we aim at evaluating usual transcendental functions with correct
rounding, this problem will almost never need to be considered. Assume we wish to
compute f(x), for an input floating-point number x such that f(x) is very near zero:

— if x is very near zero too, for most usual functions, we can directly deduce the
correctly rounded value of f(x) from the Taylor series expansion of f at 0. Consider
for instance the case of the sine function. Assume we wish to evaluate sin(x), where
x > 0 is a tiny floating-point number. Let x = mx · 2ex , with 1 ≤ mx < 2. Assume x
is not a power of 2 (that case is easily handled separately) If x <

√
3 · 2−p/2, then

mx ·x2 < 6·2−p, so that m3
x ·23ex < 6·2ex−p, which implies x3/6 < 2ex−p = (1/2)ulp(x).

As a consequence, all values between x − x3/6 and x will round to x, which implies
RN(sin(x)) = x. Similar reasonings can be done for various functions and, possibly,
better bounds can be obtained for particular values of p. Table I shows how to
handle many usual functions in the double-precision/binary64 format of IEEE 754.

— in practice, for larger arguments, when x is a floating-point number, f(x) is always
far from the subnormal range, even if, in theory, there is a root of f near x: for
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Table I. Correctly rounding some functions for tiny arguments in the
double-precision/binary64 format, assuming rounding to nearest (that ta-
ble is extracted from [Muller et al. 2010]). If x is a real number, we let x−

denote the largest floating-point number strictly less than x, and x+ de-
note the smallest floating-point number strictly larger than x.

This function
can be

replaced by
when

exp(ǫ) − 1 ǫ |ǫ| < RN(
√

2) × 2−53

exp(ǫ) − 1, ǫ ≥ 0 ǫ+
RN(

√
2) × 2−53

≤ ǫ < RN(
√

3) × 2−52

ln(1 + ǫ) ǫ |ǫ| < RN(
√

2) × 2−53

sin(ǫ), sinh(ǫ), sinh−1(ǫ) ǫ |ǫ| ≤ α = RN(31/3) × 2−26

arcsin(ǫ) ǫ |ǫ| < α = RN(31/3) × 2−26

tan(ǫ), tanh−1(ǫ) ǫ |ǫ| < η = RN(121/3) × 2−27

tanh(ǫ), arctan(ǫ) ǫ |ǫ| ≤ η

instance, for the trigonometric functions, using a continued-fraction argument first
presented by Kahan [Kahan 1983], one can show that the double-precision/binary64
number larger than 1 which is nearest an integer multiple of π/2 is

6381956970095103 × 2+797

whose cosine is around −4.69×x−19: 1/4 ulp of that value is far above the subnormal
threshold.

4. EXPERIMENTS

4.1. General remarks

We have limited our tests to IEEE binary64 floating-point numbers (p = 53): both yh

and yℓ are of the type “double” of the C language. We (allegedly) tried to approximate
an arbitrary precision number y, with relative error bounded by ǫ. We also have limited
ourselves to peculiar values of yℓ, where it is positive (the negative case is symmetric),
and close to (1/2)ulp(yh) since, considering the small values of e that we obtain for
reasonable values of ǫ, nothing special happens for values of yℓ notably smaller than
(1/2)ulp(yh). The value of y is chosen extremely close to the limit imposed by ǫ. When yℓ

is very close to (1/2)ulp(yh), y will frequently be larger than or equal to yh+(1/2)ulp(yh)
unless ǫ is very small. Therefore our experiments can be viewed as mimicking a worst
case situation, where y is always cornered close to the upper bound rather than having
its value scattered all over the interval ((yh + yℓ) × (1 − ǫ), (yh + yℓ) × (1 + ǫ)).

Every result of our tests falls in one of the following categories:

— positive: yh = RN(yh + RN(yℓ × e)) and yh = RN(y). In such a case, we are done:
Ziv’s rounding test indicates that yh is the correct rounding of y;

— false positive: yh = RN(yh + RN(yℓ × e)) and yh 6= RN(y). That case must never
occur, since it means that the rounding test is not correct;

— negative: yh 6= RN(yh + RN(yℓ × e)) and yh 6= RN(y). In such a case, a different
strategy (e.g. a tighter approximation) should be used;

— false negative: yh 6= RN(yh+RN(yℓ×e)) and yh = RN(y), which causes us to unduly
switch to a more expensive strategy. This case must occur as scarcely as possible.

More precisely, the various parameters involved in our experiments satisfy:

— yh ∈ [1, 2);
— yℓ ∈ [15/32ulp(yh), 16/32ulp(yh));
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— ǫ ∈
(
2−81, 2−55

]
;

— as a consequence, e ∈ [1.0000000074505808, 2.0000000000000004].

4.2. Ziv rounding test and ǫ (for p = 53)

The results of our experiments (100, 000, 000 values ǫ chosen randomly for each inter-
val [2−k, 2−k+1), for k from −81 to −56, one random yh in [1, 2) and one random yℓ

in [15/32ulp(yh), 16/32ulp(yh)) for each ǫ) are presented in Table II. For the largest

Table II. Results of our experiments, for ǫ ∈
`

2−81, 2−55
˜

ǫ Positives False Positives Negatives False Negatives

[2−55, 2−56[ 0 0 100 000 000 0

[2−56, 2−57[ 0 0 99 997 603 2397

[2−57, 2−58[ 23 284 922 0 76 116 019 599 059

[2−58, 2−59[ 61 962 104 0 37 740 947 296 949

[2−59, 2−60[ 80 926 366 0 18 924 027 149 607

[2−60, 2−61[ 90 593 819 0 9 332 714 73 467

[2−61, 2−62[ 95 167 993 0 4 794 367 37 640

[2−62, 2−63[ 97 625 196 0 2 356 226 18 578

[2−63, 2−64[ 98 776 533 0 1 213 736 9 731

[2−64, 2−65[ 99 399 403 0 596 044 4 553

[2−65, 2−66[ 99 703 144 0 294 513 2 343

[2−66, 2−67[ 99 853 799 0 145113 1 088

[2−67, 2−68[ 99 924 441 0 74 914 645

[2−68, 2−69[ 99 962 425 0 37 261 314

[2−69, 2−70[ 99 981 576 0 18286 138

[2−70, 2−71[ 99 990 768 0 9 154 78

[2−71, 2−72[ 99 995 282 0 4 677 41

[2−72, 2−73[ 99 997 740 0 2 239 21

[2−73, 2−74[ 99 998 842 0 1 148 10

[2−74, 2−75[ 99 999 413 0 584 3

[2−75, 2−76[ 99 999 715 0 284 1

[2−76, 2−77[ 99 999 853 0 147 0

[2−77, 2−78[ 99 999 928 0 70 2

[2−78, 2−79[ 99 999 955 0 44 1

[2−79, 2−80[ 99 999 981 0 19 0

[2−80, 2−81[ 99 999 991 0 9 0

values of ǫ, the values of e are so large that test fails systematically (yielding a “neg-
ative” result) because y is certain to be larger than or equal to yh + ulp(yh) and
RN(yℓ × e) ≥ (1/2)ulp(yh). As ǫ decreases, so does e and y has less latitude to wan-
der beyond yh + ulp(yh). As a consequence, the number of “negatives” decreases and
so does the number of “false negatives”. At some point, the “false negatives” seem to
totally vanish: the probability of a false negative is too low for there to be one among
the tested cases, and all we have left is a small and decreasing (by a factor 2 each time
ǫ itself decreases by a factor 2) number of “negatives”. The comforting result is that, at
no point, do we have a “false positive”.

4.3. Near optimality of the value of e given by Theorem 2.1

To minimize the number of “false negatives” e must be as small as possible (and yet
large enough to allow for a correct Ziv testing). Hence, it is important to know how
far from optimal is the value of e given by Theorem 2.1. The best constant that can be
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deduced from Theorem 2.1 is RU(e∗) = RU((1+2−p)/(1− ǫ− 2p+1ǫ)). We want to know
how much we can subtract from RU(e∗) before we start getting “false positive” values.
In several experiments, we got our first false positive value at RU(e∗) − 221 × ulp(e∗).
“False positive” cases obtained in a specific run, with value RU(e∗) − 221 × ulp(e∗), are
given in Table III.

Table III. False positives for e = RU(e∗) − 221 × ulp(e∗)

Example 1
yh = 1.9947587312896187 yℓ = 1.1102229216237452e − 16 ǫ = 5.1757461373254229e − 24

RN(y) = 1.9947587312896189

y = 1.99475873128961878055
77597160974603068928590135
23728434792028406527975734
416324

e = 1.000000092772301

Example 2
yh = 1.9883894880686108 yℓ = 1.110222993284877e − 16 ǫ = 1.5927638864921235e − 24

RN(y) = 1.988389488068611

y = 1.98838948806861093299
14757256952656859493280554
75352754840860468630843325
121040

e = 1.0000000282270229

Example 3
yh = 1.9802155978993843 yℓ = 1.1102230085276806e − 16 ǫ = 8.2224179116152375e − 25

RN(y) = 1.9802155978993845

y = 1.98021559789938439433
14345963756318263894453847
32167637700306671773559863
566352

e = 1.0000000143465304

4.4. Simplified and accurate formulas

As noticed in Section 2.4, two simpler bounds, eN and e↑, can be computed in precision-
p floating-point arithmetic. Since eN is always less than or equal to e↑, it is preferable
to choose e = eN , whenever we are sure that this yields to a correct Ziv rounding test.
Unfortunately, eN is not always larger than or equal to the bound e∗ of Theorem 2.1
(we could only show that for some specific values of ǫ, for the binary formats specified
by the IEEE 754-2008 Standard, see Property 9). Below are the results of some tests
done in the binary64 format, for approximation accuracy bounds ǫ varying from 2−56

to 2−90. Notice that in all the previous developments, we have considered ǫ < 2−p−1.
In our case that should give ǫ < 2−54. But when ǫ ∈ (2−56, 2−55] we have found many
cases where eN < e∗. This is a limited annoyance since, as can be found up from
section 4.2, in this approximation accuracy interval the test is far from pertinent (all
our corner cases are “negative”, but that could also be true for many of then in more
“conventional” situations): in practice, much smaller values of ǫ are considered.

Table IV. Comparison between eN and e∗, for tests done in the binary64 format,
and error bounds ǫ varying from 2−56 to 2−90.

max relative error (eN − RU(e∗))/RU(e∗) 2.2204460492339477e-16

eN = RU(e∗) cases 1 514 615 533

Total number of cases 3 500 000 000
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5. CONCLUSION

We have given and proven conditions on the constant e of Ziv’s rounding test that allow
one to make sure that the test is always reliable (i.e., we never have “false positives”).
Furthermore, these conditions are very tight, and for values of the approximation error
ǫ that make sense in practice, the probability of observing a “false negative” (i.e., the
test makes us believe that a more accurate computation is required, whereas yh was
already the right answer) is very low. This makes Ziv’s rounding test an excellent so-
lution for checking whether we can return a correctly-rounded result or not. There are
several already-existing applications of that test for implementing correctly-rounded
elementary functions, and there are interesting potential applications for implement-
ing “heterogeneous” arithmetic operations.
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