7. Committee, DRAFT standard for floating-point arithmetic p754 1.2.1, 2006.

R. P. Brent, Fast Multiple-Precision Evaluation of Elementary Functions, Journal of the ACM, vol.23, issue.2, pp.242-251, 1976.
DOI : 10.1145/321941.321944

N. Brisebarre and S. Chevillard, Efficient polynomial L-approximations, 18th IEEE Symposium on Computer Arithmetic (ARITH '07), pp.169-176, 2007.
DOI : 10.1109/ARITH.2007.17

URL : https://hal.archives-ouvertes.fr/inria-00119513

S. Chevillard and C. Q. Lauter, A Certified Infinite Norm for the Implementation of Elementary Functions, Seventh International Conference on Quality Software (QSIC 2007), pp.153-160, 2007.
DOI : 10.1109/QSIC.2007.4385491

URL : https://hal.archives-ouvertes.fr/ensl-00119810

M. Cornea, J. Harrison, and P. T. Tang, Scientific Computing on Itanium-Based Systems, 2002.

C. Daramy-loirat, D. Defour, F. De-dinechin, M. Gallet, N. Gast et al., Cr-libm, a library of correctly-rounded elementary functions in double-precision Arenaire team, Available at https, 2006.

F. De-dinechin, A. Ershov, and N. Gast, Towards the Post-Ultimate libm, 17th IEEE Symposium on Computer Arithmetic (ARITH'05), 2005.
DOI : 10.1109/ARITH.2005.46

URL : https://hal.archives-ouvertes.fr/inria-00070636

F. De-dinechin, C. Q. Lauter, and G. Melquiond, Assisted verification of elementary functions using Gappa, Proceedings of the 2006 ACM symposium on Applied computing , SAC '06, pp.1318-1322, 2006.
DOI : 10.1145/1141277.1141584

F. De-dinechin, C. Q. Lauter, and J. Muller, Fast and correctly rounded logarithms in double-precision, RAIRO - Theoretical Informatics and Applications, vol.41, issue.1, pp.85-102, 2007.
DOI : 10.1051/ita:2007003

URL : https://hal.archives-ouvertes.fr/inria-00070331

F. De-dinechin, C. Q. Lauter, and J. Muller, Fast and correctly rounded logarithms in double-precision, Theoretical Informatics and Applications, pp.85-102, 2007.
DOI : 10.1051/ita:2007003

URL : https://hal.archives-ouvertes.fr/inria-00070331

T. J. Dekker, A floating-point technique for extending the available precision, Numerische Mathematik, vol.5, issue.3, pp.224-242, 1971.
DOI : 10.1007/BF01397083

S. Gal, Computing elementary functions: A new approach for achieving high accuracy and good performance, Accurate Scientific Computations, pp.1-16, 1986.
DOI : 10.1007/3-540-16798-6_1

D. Knuth, The Art of Computer Programming, 1998.

. Q. Ch and . Lauter, A correctly rounded implementation of the exponential function on the Intel Itanium architecture, 2003.

. Q. Ch, V. Lauter, and . Lefèvre, An efficient rounding boundary test for pow(x,y) in double precision, 2007.

V. Lefèvre, Developments in Reliable Computing, chapter An Algorithm That Computes a Lower Bound on the Distance Between a Segment and Z 2, pp.203-212, 1999.

V. Lefèvre, Moyens Arithmétiques Pour un Calcul Fiable, 2000.

V. Lefèvre, New Results on the Distance between a Segment and Z??. Application to the Exact Rounding, 17th IEEE Symposium on Computer Arithmetic (ARITH'05), pp.68-75, 2005.
DOI : 10.1109/ARITH.2005.32

V. Lefèvre and J. Muller, Worst cases for correct rounding of the elementary functions in double precision, Proceedings 15th IEEE Symposium on Computer Arithmetic. ARITH-15 2001, 2001.
DOI : 10.1109/ARITH.2001.930110

R. Li, P. Markstein, J. P. Okada, and J. W. Thomas, The libm library and floatingpoint arithmetic in HP-UX for Itanium 2, 2002.

P. Markstein, IA-64 and Elementary Functions: Speed and Precision. Hewlett- Packard Professional Books, 2000.

O. Møller, Quasi double-precision in floating point addition, BIT, vol.7, issue.6, pp.37-50, 1965.
DOI : 10.1007/BF01975722

J. Muller, Elementary Functions, Algorithms and Implementation, Birkhäuser Boston, 2006.
URL : https://hal.archives-ouvertes.fr/ensl-00000008

T. Ogita, S. M. Rump, and S. Oishi, Accurate Sum and Dot Product, SIAM Journal on Scientific Computing, vol.26, issue.6, pp.1955-1988, 2005.
DOI : 10.1137/030601818

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

G. Revy, Analyse et implantation d'algorithmes rapides pour l'évaluation polynomiale sur les nombres flottants, 2006.

P. H. Sterbenz, Floating point computation, 1974.

W. F. Wong and E. Goto, Fast hardware-based algorithms for elementary function computations using rectangular multipliers, IEEE Transactions on Computers, vol.43, issue.3, pp.278-294, 1994.
DOI : 10.1109/12.272429

A. Ziv, Fast evaluation of elementary mathematical functions with correctly rounded last bit, ACM Transactions on Mathematical Software, vol.17, issue.3, pp.410-423, 1991.
DOI : 10.1145/114697.116813