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Abstract— In this work we propose the use of a modified
version of the correlation coefficient as a performance criterion
for the image alignment problem. The proposed modification
has the desirable characteristic of being invariant with respect
to photometric distortions. Since the resulting similarity measure
is a nonlinear function of the warp parameters, we develop two
iterative schemes for its maximization, one based on the forward
additive approach and the second on the inverse compositional
method. As it is customary in iterative optimization, in each
iteration the nonlinear objective function is approximated by an
alternative expression for which the corresponding optimization
is simple. In our case we propose an efficient approximation that
leads to a closed form solution (per iteration) which is of low
computational complexity, the latter property being particularly
strong in our inverse version. The proposed schemes are tested
against the Forward Additive Lucas-Kanade and the Simul-
taneous Inverse Compositional algorithm through simulations.
Under noisy conditions and photometric distortions our forward
version achieves more accurate alignments and exhibits faster
convergence whereas our inverse version has similar performance
as the Simultaneous Inverse Compositional algorithm but at a
lower computational complexity.

Index Terms— Image registration, motion estimation, gradient
methods, parametric motion, correlation coefficient.

I. I NTRODUCTION

The parametric image alignment problem consists in finding a
transformation which aligns two image profiles. The profiles can
either be entire images as in the image registration problem [1],
[2], or sub-images as in the region tracking [3], [4], [5], motion
estimation [6], [7], [8], [9] and stereo correspondence problem
[10], [11]. In image registration, the alignment problem needs
to be solved only once, whereas in region tracking a template
image has to be matched over a sequence of images. Finally in
motion estimation and stereo correspondence, the goal is to find
the correspondence for all image points in a pair of images.

The alignment problem can be seen as a mapping between the
coordinate systems of two images, therefore the first step towards
its solution, is the suitable selection of a geometric transforma-
tion that adequately models this mapping. Existing models are
basically parametric [12] and their exact form depends heavily
on the specific application and the strategy selected to solve the
alignment problem [3], [13]. The class of affine transformations
and in particular several special cases (as pure translation) have
been in the center of attention in many applications [1], [2], [3],
[4], [6], [10], [11], [13]. Alternative approaches rely on projective
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transformations (homography) and more generally on nonlinear
transformations [5], [13], [14], [15].

Once the geometric parametric transformation has been defined
the alignment problem reduces itself into a parameter estimation
problem. Therefore the second step towards its solution consists
in coming up with an appropriate performance measure, that is,
an objective function. The latter, when optimized, will yield the
optimum parameter estimates. Most existing approaches adopt
measures that rely onlp norms of the error between, either the
whole image profiles (pixel-based techniques) or specific feature
of the image profiles (feature-based techniques) [12]. Clearly the
l2 norm is by far the most popular selection so far [1], [3], [6],
[7], [9], [10], [13], [15], [16]. The l2 based objective function is
usually referred as the Sum-Squared-Differences (SSD) measure
and the corresponding optimization problem is known as the SSD
technique [5], [9]. Variations of this approach have been proposed
for the important problem of optical flow determination [5], [7],
[17], and robust versions that can combat outliers were developed
in [18].

For the optimum parameter estimation all existing objective
functions require nonlinear optimization techniques. Depending
on the adopted solution strategy, the corresponding techniques
can be broadly classified into two categories. The first includes
gradient based or differential approaches and the second direct
search techniques [12]. Gradient based schemes, because of their
low computational cost, are regarded as more well fitted for
CV applications [13], [19]. They are, however, characterized
by noticeable convergence failure whenever homogeneous areas
and/or single slanted edges (aperture problem [20]) are present.
Meaningless estimates may also arise whenever we have strong
displacement values. Direct search techniques, on the other hand,
do not suffer the latter drawback. Indeed these approaches can
easily accommodate large motions, since they rely on global
image searches. Unfortunately the latter require an exceedingly
high computational cost which becomes more intense in cases
of fine quantization needed in the case of accurate estimates [6].
Efforts to reduce complexity by adopting interpolation instead
of fine quantization or hybrid techniques that combine the two
classes can be found in [9], [15], [21].

A common assumption encountered in most existing techniques
is thebrightness constancyof corresponding points or regions in
the two profiles [20]. However, this assumption is valid only in
specific cases and it is obviously violated under varying illumi-
nation conditions. It becomes therefore clear that in a practical
situation, it is important the alignment algorithm to be able to
take into account illumination changes. Alignment techniques that
compensate for photometric distortions in contrast and brightness
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have been proposed in [1], [6], [8], [10], [16]. Alternative schemes
make use of a set of basis images for handling arbitrary lighting
conditions [3], [22] or use spatially dependent photometric models
[7].

In this paper we adopt a recently proposed similarity measure
[2], [11], the enhanced correlation coefficient, as our objective
function for the alignment problem. Our measure is characterized
by two very desirable properties. First, it is invariant to photomet-
ric distortions in contrast and brightness. Second, although it is a
nonlinear function of the parameters, the iterative scheme we are
going to develop for the optimization problem, will turn out to be
linear, thus requiring reduced computational complexity. Despite
the resemblance of our final algorithm to well known variants
of Lucas-Kanade alignment method which take lighting changes
into account [10], [19], its performance, as we are going to see,
is notably superior. We would like to mention that the enhanced
correlation coefficient criterion was successfully applied to the
problem of1-D translation estimation in stereo correspondence
[11] and2-D translation estimation in registration [2].

The remainder of this paper is organized as follows. In Section
II, we formulate the parametric image alignment problem. Section
III contains our main analytic results, namely the definition of
our objective function; the development of a forward and an
inverse compositional iterative scheme for its optimization, and
the relation of the proposed schemes to existing SSD techniques.
In Section IV our schemes are tested in a number of experiments
against the currently most popular algorithms, namely the Lucas-
Kanade and Simultaneous Inverse Compositional method. Finally,
Section V contains our conclusions.

II. PROBLEM FORMULATION

Suppose we are given a pair of image profiles (intensities)
Ir(x), Iw(y) where the first is thereferenceor templateimage
and the second thewarped and x = [x1, x2]

t,y = [y1, y2]
t,

denote coordinates. Suppose also that we are given a set of
coordinatesT = {xk, k = 1, ..., K} in the reference image, which
is called target area. The alignment problem consists in finding
the corresponding coordinate set in the warped image. Of course
we are not interested in arbitrary correspondences but rather in
those that are structured and can be modeled with a well defined
vector mappingy = φ(x;p), where p = [p1, · · · , pN ]t is a
vector of unknown parameters. Such correspondence problems
arise often in practice with the most common case being motion
estimation in a sequence of images. In this application due to the
relative motion between scene and camera whole (target) areas
appear differently in time.

Assuming that a transformation model is given (and under the
validity of the brightness constancy assumption), the alignment
problem is simply reduced to the problem ofestimating the
parametersp such that

Ir(x) = Iw(φ(x;p)), ∀x ∈ T . (1)

In order to have a chance of obtaining a unique solution it is
necessary that the numberN of unknown parameters does not
exceed the numberK of target coordinates. Of course in practice
we usually haveN ≪ K which suggests that (1) is an over-
determined system of (nonlinear) equations.

Most existing algorithms attempt to compute the parameter vec-
tor p by minimizing thedifferenceor thedissimilarity of the two
profiles. Dissimilarity is expressed through an objective function

E(p) which involves thelp norm of the intensity difference of the
two images. Since in real applications, due to different viewing
directions and/or different illumination conditions, the brightness
constancy assumption is violated, it is necessary to include an
additional photometric transformationΨ(I, α) that accounts for
the photometric changes and which is parametrized by a vector
of unknown parametersα. A typical optimization problem has
the following form

min
p,α

E(p, α) = min
p,α

�
x∈T

|Ir(x)−Ψ(Iw(φ(x;p)), α) |p. (2)

We must mention that optimization problems of the form of
(2) are often ill-posed and it is usually necessary to impose
extra regularity (smoothness) conditions in order to obtain an
acceptable solution [17].

Solving the optimization problem is clearly not a simple task
because of the nonlinearity involved in the correspondence part.
Computational complexity and estimation quality of the existing
schemes depends on the specificlp norm and the models used for
warping and photometric distortion. As far as the norm powerp

is concerned most methods usep = 2 (Euclidean norm). This
will also be the case in our approach which we detail in the next
section.

III. PROPOSEDCRITERION AND MAIN RESULTS

Under the warping transformationφ(x;p), the coordinates
xk, k = 1, . . . , K of the target areaT are mapped into the
coordinatesyk(p) = φ(xk;p), k = 1, . . . , K. Let us define
the reference vectorir and the correspondingwarped vector
iw(p) as ir = [Ir(x1) Ir(x2) · · · Ir(xK)]t, iw(p) =

[Iw(y1(p)) Iw(y2(p)) · · · Iw(yK(p))]t, and denote with̄ir and
īw(p) their zero mean versions which are obtained by subtracting
from each vector its corresponding arithmetic mean. We then
propose the following criterion to quantify the performance of
the warping transformation with parametersp

EECC(p) = ����
īr

‖̄ir‖
−

īw(p)

‖̄iw(p)‖
����
2

, (3)

where‖ · ‖ denotes the usual Euclidean norm.
It is apparent from (3) that our criterion is invariant to bias

and gain changes. This also suggests that our measure is going
to be invariant to any photometric distortions in brightness and/or
in contrast. Consequently, to a first approximation, we can com-
pletely disregard the photometric transformation and concentrate
solely on the geometric. It is also interesting to mention that our
measure exhibits statistical robustness against outliers, as it is
reported in [23]. All these positive characteristics clearly support
our expectation that the proposed criterion will turn out to be
a suitable objective function for the parametric image alignment
problem.

A. Performance Measure Optimization

Once the performance measure is specified we then continue
with its minimization in order to compute the optimum parameter
values. It is straightforward to prove that minimizingEECC(p)

is equivalent tomaximizingthe following enhanced correlation
coefficient[11]

ρ(p) =
ītr īw(p)

‖̄ir‖‖̄iw(p)‖
= î

t
r

īw(p)

‖̄iw(p)‖
, (4)



3

where, for simplicity, we denote witĥir = īr/‖̄ir‖ the normalized
version of the zero-mean reference vector, which is constant.
Notice that even if̄iw(p) depends linearly on the parameter vector
p the resulting objective function is still nonlinear with respect to
p due to the normalization of the warped vector. This of course
suggests that its maximization requires nonlinear optimization
techniques.

As it was mentioned in Introduction maximizingρ(p) can
either be performed using direct search or gradient based ap-
proaches. Here we are going to use the latter. As it is customary
in iterative techniques, we are going to replace the original opti-
mization problem by a sequence of secondary optimizations. Each
secondary optimization relies on the outcome of its predecessor
thus generating a chain of parameter estimates which hopefully
converges to the desired optimizing vector. At each iteration we do
not have to optimize the objective function, but anapproximation
to this function. Of course the approximation must be selected
so that the resulting optimizers are simple to compute. Next, let
us introduce the approximation we are going to apply for our
objective function and derive the solution that maximizes it.

Assume thatp is “close” to some nominal parameter vector
p̃ and writep = p̃ + ∆p, where∆p denotes a vector of per-
turbations. Let̃y = φ(x; p̃) be the warped coordinates under the
nominal parameter vector andy = φ(x;p) under the perturbed.
Consider the intensity of the warped image at coordinatesy and
apply a first order Taylor expansion with respect to the parameters,
then we can write

Iw(y) ≈ Iw(ỹ) + [∇yIw(ỹ)]t
∂φ(x; p̃)

∂p
∆p, (5)

where∇yIw(ỹ) denotes the gradient vector of length 2 of the
intensity functionIw(y) of the warped image, evaluated at the
nominal warped coordinates̃y. Sinceφ(x;p) is a vector trans-
formation of length 2 (in order to yield the warped coordinates),
then ∂φ(x;p̃)

∂p
denotes the size2 × N Jacobian matrix of the

transform with respect to the parameters, evaluated at the nominal
parameter values. Note that we have silently assumed that the
intensity functionIw and the warping transformationφ are of
sufficient smoothness to allow for the existence of the required
partial derivatives.

We can now apply (5) for all coordinatesxk, k = 1, . . . , K of
the target areaT . This will yield the following linearized version
of the warped vector with parametersp:

iw(p) ≈ iw(p̃) + G(p̃)∆p (6)

where G(p̃) denotes the sizeK × N Jacobian matrix of the
warped intensity vector with respect to the parameters, evaluated
at the nominal parameter values̃p. In order to specify exactly
this matrix let us assume that the warping transformation is of
the formφ(x;p) = [φ1(x;p), φ2(x;p)]t, whereφ1, φ2 are scalar
functions. Then the(k, n) element of the matrixG can be written
as

G(p̃)k,n =
2�

i=1

�
∂Iw(y)

∂yi ���� y=yk(p̃)

×
∂φi(xk;p)

∂pn ���� p=p̃ � (7)

where k = 1, . . . , K; n = 1, . . . , N and we recall thaty =

[y1, y2]
t are the coordinates in the warped image.

We now need to compute the zero-mean version of the warped
vector. With the help of (6) we obtain the following approximation

of the objective functionρ(p) defined in (4):

ρ(p) ≈ ρ(∆p|p̃) = î
t
r

īw(p̃) + Ḡ(p̃)∆p

‖̄iw(p̃) + Ḡ(p̃)∆p‖
(8)

where Ḡ(p̃) and īw(p̃) are the column-zero-mean versions of
G(p̃) and iw(p̃) respectively.

Let us from now on, for notational simplicity, drop the depen-
dence of the warped vectors onp, we can then write our previous
approximation as follows

ρ(∆p|p̃) =
îtr īw + îtrḠ∆p�

‖̄iw‖2 + 2̄itwḠ∆p + ∆ptḠtḠ∆p

. (9)

Althoughρ(∆p|p̃) is nonlinear in∆p, its maximization is sim-
ple and results in a closed-form expression. This is a consequence
of the next theorem which provides the necessary result.

Theorem I: Consider the scalar function

f(x) =
u + utx�

v + 2vtx + xtQx
(10)

where u, v are scalars;u,v are vectors of lengthN ; Q is a
square, symmetric and positive definite matrix of sizeN and
v,v, Q are such that

v > v
tQ−1

v (11)

then, as far as the maximal value off(x) is concerned, we
distinguish the following two cases:

Caseu > utQ−1v: here we have a maximum, specifically

max
x

f(x) = � (u− utQ−1v)2

v − vtQ−1v
+ utQ−1u. (12)

which is attainable for

x = Q−1 � v − vtQ−1v

u− utQ−1v
u− v 	 . (13)

Caseu ≤ utQ−1v: here we have a supremum which is equal
to

sup
x

f(x) =
�

utQ−1u (14)

and can be approached arbitrarily close by selecting

x = Q−1 {λu− v} , (15)

with λ positive scalar and of sufficiently large value1.
Proof: The proof makes repeated use of the Schwartz

inequality. All details are presented in the Appendix.
Let us now examine whether we can apply Theorem I for

the maximization ofρ(∆p|p̃) defined in (9). For this we need
to verify the validity of (11). For the problem of interest this
translates into the following inequality‖īw‖2 > ītwPG īw, where
PG = Ḡ(ḠtḠ)−1Ḡt. This relation is trivially satisfied because
PG is an orthogonal projection operator (i.e.P 2

G = PG and
P t

G = PG) and therefore we can write‖̄iw‖2 = ‖PG īw‖
2 +‖[I−

PG ]̄iw‖
2 ≥ ‖PG īw‖

2 = ītwPG īw, whereI denotes the identity
matrix. We have equality if and only if[I − PG ]̄iw = 0, which
is true whenever̄iw is a linear combination of the columns of̄G.
Clearly the probability of this to happen is zero especially under
the presence of noise. Consequently the desired inequality, for all
practical purposes, is strict.

1More precisely we mean that for everyǫ > 0 there exists a sufficiently
large scalarλǫ such that the resultingf(x) is ǫ close to the upper bound.
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TABLE I

OUTLINE OF THE PROPOSEDFORWARD ADDITIVE ECC (FA-ECC) REFINEMENT ALGORITHM

Initialization
Use reference imageIr to compute the zero-mean normalized vectorîr.
Initialize p0 and setj = 1.

Iteration Steps
S1 : Using φ(x;pj−1) warp Iw and compute its zero-mean counterpart vectorīw(pj−1).
S2 : Using φ(x;pj−1) compute the Jacobian̄G(pj−1) using (7).
S3 : Comparêitr īw with îtrPG īw and compute perturbations∆pj either from (16) or using (17) and (18).
S4 : Update parameter vectorpj = pj−1 + ∆pj . If ‖∆pj‖ ≥ T then,j + + and gotoS1; else stop.

Since we can apply Theorem I, according to (13), the optimiz-
ing perturbation is equal to

∆p = (ḠtḠ)−1Ḡt � ‖̄iw‖2 − ītwPG īw

îtr īw − îtrPG īw
îr − īw 	 , (16)

when îtr īw > îtrPG īw; or according to (15),

∆p = (ḠtḠ)−1Ḡt 
 λ̂ir − īw � , (17)

when îtr īw ≤ îtrPG īw. Where λ must be selected so that the
resulting ρ(∆p|p̃) satisfiesρ(∆p|p̃) > ρ(0|p̃). In other words
we would like to select a perturbation that will increase the
correlation and will make it non-negative. The following lemma
provides possible values forλ.

Lemma I: Let̂itr īw ≤ îtrPG īw and define the following two
values forλ

λ1 = � ītwPG īw

îtrPG îr
, λ2 =

îtrPG īw − îtr īw

îtrPG îr
. (18)

Then forλ ≥ λ1 we have thatρ(∆p|p̃) > ρ(0|p̃); for λ ≥ λ2

that ρ(∆p|p̃) ≥ 0; finally for λ ≥ max{λ1, λ2} we have both
inequalities valid.

Proof: By substituting the value of∆p from (17) in (9), the
objective function becomes the following function ofλ

f(λ) =
(̂itr īw − îtrPG īw) + λ̂itrPG îr�
(‖̄iw‖2 − ītwPG īw) + λ2 îtrPG îr

. (19)

It is easy to verify that the derivative off(λ) is non-negative,
thereforef(λ) is increasing inλ. This suggests that forλ ≥ λ2

we havef(λ) ≥ 0. Notice now that forλ = λ1 we can write

f(λ1) =

îtr īw − îtrPG īw + �  ītwPG īw ��� îtrPG îr �
‖̄iw‖

≥ ρ(0|p̃),

(20)
with the last inequality being a consequence of applying the
Schwartz inequality on̂itrPG īw and recalling thatPG is an
orthogonal projection operator.

Remarks:One should expect that, asīw approaches̄ir, to use
mostly (16) since for̄iw ≈ īr we havêitr īw ≈ îtr īr > îtrPG īr ≈
îtrPG īw. It is interesting however to note that if one insists on
using (16) at all times then, wheneverîtr īw ≤ îtrPG īw holds, we
end up with anegativecorrelationρ(∆p|p̃) (this being true even
if ρ(0|p̃) > 0) which is alwayssmaller than ρ(0|p̃). In other
words instead of increasing the correlation coefficient (as it is
the desired goal) in this case wedecreaseit. This clearly suggest
that it is preferable to use (17) with a value ofλ as indicated in
Lemma I, Equ. (18).

B. Forward Additive ECC Iterative Algorithm

Let us now translate the above results into aniterative scheme
in order to obtain the solution to the original nonlinear opti-
mization problem. Assuming that estimatepj−1 of the parameter
vector is available from iterationj−1, we can computēiw(pj−1)

and Ḡ(pj−1); then we can approximateρ(p) following (8) with
the help ofρ(∆pj |pj−1) and optimize this approximation with
respect to∆pj . This will lead to the following parameter update
rule pj = pj−1 + ∆pj . As it is indicated in StepS4, we stop
iterating whenever the norm of the updating vector∆pj becomes
smaller than some predefined threshold valueT . The iteration
steps are summarized in Table I and the corresponding algorithm
we call it the Forward Additive ECC (FA-ECC).

Given the numberK of pixels in the target areaT , and the
parameter vector estimatepj−1 of lengthN , the complexity per-
iteration of the proposed scheme can be easily estimated. From
Table I and taking into account that usuallyK ≫ N , we realize
that the most computationally demanding part is StepS3 which
involves the computation of∆pj with the help of (16) or (17). As
we can see, in this step we need to form the matrixḠtḠ which
requiresO(KN2) operations. This is the leading complexity in
our algorithm since all other steps require at mostO(KN) per
iteration.

C. Inverse Compositional ECC Iterative Algorithm

When the alignment problem is restricted to specific classes of
parametric models, it is possible to devise more computationally
efficient versions, since certain parts of the algorithm can be
computed off-line [3], [13], [15]. If for example we adopt the
methodology proposed in [19] we can come up with the Inverse
Compositional ECC (IC-ECC) version of our algorithm that has
the significantly reduced complexityO(KN) per iteration. We
briefly mention that the methodology found in [3], [13], [15]
relies in interchanging the role ofiw andir. Consequently matrix
G becomes the Jacobian matrix of the template intensity vector
and since the warping function for this vector is the identity,
matrix G is constant andḠtḠ can be computed off-line. The
latter is the reason behind the one order of magnitude reduction
in computational complexity. The outline of our alternative algo-
rithmic version IC-ECC can be easily obtained from Table I by
appropriately modifying our FA-ECC version.

Regarding inverse algorithms (additive and compositional) as
well as the forward compositional algorithms we should point out
that they can be appliedonly to specific classes of warps. It is
also known that inverse algorithms are more susceptible to noisy
conditions than their forwards counterparts [13]. These important
weaknesses limit the usage of such algorithms in practice.
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D. Relation to Existing SSD Based Measures

In this subsection we are going to derive our performance mea-
sure in a different way. This will also help us in related it to the
two, currently most popular SSD approaches in the literature. For
our analysis we are going to assume that photometric distortion is
limited only to global brightness and contrast changes. Under this
simple type of photometric changes we can define the following
performance measure for our parametric alignment problem

E(p, α) = ‖α1iw(p) + α2 − ir‖
2, (21)

whereα = [α1 α2]
t is the parameter vector for the photometric

transformation. Our goal of course is to minimize the objec-
tive function with respect to all parameters. Regarding the first
photometric parameter, we must point out that negative values
of α1 produce theinversion effect where colors are reversed.
Consequently, if there exists the a-priori knowledge that such a
color inversion cannot take place, then it is logical to limitα1

only to positive values. Now if we first minimize the objective
function with respect toα1, α2 we obtain the following interesting
result

E(p) = min
α1≥0,α2

E(p, α) = ‖̄ir‖
2 
 1− [max{ρ(p), 0}]2 � , (22)

where ρ(p) is the correlation function defined in (4). Notice
that since the reference image is constant, so is the norm‖īr‖2

contained in the previous relation, therefore further minimiza-
tion with respect top is equivalent to minimizing the term
(1− [max{ρ(p), 0}]2). But this expression is decreasing inρ(p),
consequently we can equivalently maximize the correlation func-
tion ρ(p), thus recovering our criterion. The final optimization
problem makes a lot of sense. Indeed notice that sinceρ(p) is
free from photometric distortions (the simple type we consider
here) and under the knowledge that there is no color inversion, it
is quite plausible to look for the mostpositivecorrelation.

If we drop the constraintα1 ≥ 0 then the minimization of the
objective function in (22) is the optimization problem proposed by
Fuh and Maragos [6]. By optimizing first with respect toα1, α2

yields

EFM(p) = min
α1,α2

E(p, α) = ‖̄ir‖
2{1− ρ2(p)}. (23)

Notice that the resulting measure is now a decreasing function
of |ρ(p)|, therefore any further minimization with respect top
is equivalent to maximizing the absolute value|ρ(p)| of the
correlation function. It is clear that this optimization problem
does not take into account the prior knowledge that there is no
color inversion. In [6] maximization was achieved by adopting
an exhaustive search approach in theN -D quantized parameter
space. Clearly in a non color-inversion situation such a search will
give rise to the correct maximum positive correlation (provided
of course that the warped image does not contain parts that are
the negative of the target area). However, as we mentioned in
the Introduction, exhaustive search approaches are characterized
by high computational complexity which becomes exceedingly
demanding when we are interested in fine sub-pixel accuracy.

Although not proposed in [6], alternatively we could adopt an
iterative approach similar to the one suggested for our measure.
If however we attempt to maximize|ρ(p)| using the same
approximation as in (8), then one can show that the optimum
perturbation∆p is always given by (16). As it was indicated in
our remarks (after Lemma I), adopting this strategy may result

in negative correlations corresponding to local minima forρ(p)

instead of the desired maxima. In other words there are more
chances for the iterative algorithm to be locked in erroneous local
extrema, than it is the case with our approach.

An alternative measure arises if in (21) we interchange the roles
of iw and ir, that is,

E(p, α) = ‖α1ir + α2 − iw(p)‖2. (24)

This is the approach adopted by Lucas-Kanade [10] and is known
to generate along with its variants the most widely used algo-
rithms in practice. Following similar steps as in the previous two
cases, let us first minimize with respect to the two photometric
parameters. This yields

ELK(p) = min
α1,α2

E(p, α) = ‖̄iw(p)‖2{1− ρ2(p)}. (25)

We observe in the current outcome that the resulting criterion
has two terms that depend on the parametersp, namely the
familiar part {1 − ρ2(p)} but also the magnitude of the warped
image ‖̄iw(p)‖2 (which is not constant). Therefore minimizing
ELK(p) with respect to the parameters involves the minimization
of the combination of the two terms. The first observation is
that this criterion will not necessarily produce the same solution
as our measure. Second, due to the term‖̄iw(p)‖2 it is clear
that an iterative algorithm can lock in solutions which result in
‖̄iw(p)‖2 ≈ 0 (for example areas with uniform intensity). And
third, because of the termρ2(p) the algorithm can lock in negative
correlations.

Despite the previous observations, the Lucas-Kanade perfor-
mance measure gives rise to the most popular iterative algorithms
for the image alignment problem. For this reason we are going
to use it as a point of reference and compare it against our
scheme. Consequently, let us present its forward additive (FA-
LK) updating version in more detail. Substituting the linear
approximation of̄iw(p) in (25), then minimizing with respect
to ∆p, we obtain the following optimum updating perturbation

∆pLK = (ḠtḠ)−1Ḡt � îtr īw − îtrPG īw

1− îtrPG îr
îr − īw � , (26)

which is applicable at all times. Comparing (16) with (26) we
realize that the difference is only in the scalar quantity that
precedes the vector̂ir. As we are going to see, this seemingly
slight variation, in combination with (17), will result in significant
performance improvements.

For the Lucas-Kanade approach it is possible to define a special
SSD based measure that can handle arbitrary linear appearance
variations. For its minimization, an iterative algorithm that makes
use of the inverse additive update rule was proposed in [3] by
Hager and Beluhmer. Based on the same SSD measure, Baker
et.al. [19], by adopting the inverse compositional approach, pro-
posed several variants of the Hager-Beluhmer algorithm. Among
these alternative algorithmic schemes the Simultaneous Inverse
Compositional (SIC) algorithm is reported to have the best
performance [19]. Therefore this algorithm will also be tested
in the next section.

IV. SIMULATION RESULTS

In this section we perform a number of simulations in order
to evaluate our forward FA-ECC and inverse IC-ECC algorithmic
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Fig. 1. MSD in dB as a function of number of iterations under the presence of noise (σi = 8 gray levels); (a)σp = 2, (b) σp = 6, (c) σp = 10. In (d),
PoC as a function ofσp for jmax = 15.

version. As we mentioned above we will also simulate the For-
ward Additive LK (FA-LK) algorithmic version that copes with
photometric distortions, and the Simultaneous Inverse Composi-
tional algorithm which is considered as the most effective inverse
LK scheme. For all aspects affecting the simulation experiments,
we made an effort to stay exactly within the framework specified
in [13], [19]. To model the warping process we are going to
use the class of affine transformations. We know that the 2-D
rigid body or similarity transformation are members of this class.
Furthermore the Jacobian of the affine model is a constant matrix
meaning that it can be computed off-line. Before proceeding with
the presentation of our simulation results let us first briefly present
the experimental setup and the figures of merit we are going to
adopt.

A. Experimental Setup and Figures of Merit

In order to create a reference and a warped image we follow
the procedure proposed in [13]. In brief, letI(x) be a given image
andxi, i = 1, 2, 3 the coordinates of three points which define the
boundaries of the desired target area. We perturb these points by
adding Gaussian noiseN (0, σ2

p) (σp captures the strength of the
geometric deformation), select a vectorx0 such that the points
x0 + xi, i = 1, 2, 3 lie in the interior of the support of the
given image, and define the parameter vectorpr of the affine
transformation that maps the original points to the translated noisy
ones. We apply this transformation to all points of the target area
to warp it. With the help of bilinear interpolation we compute the
new intensities. This process defines the reference profileIr(x).
For the warped image we use the given one.

All algorithms are initialized in the same way namelyp0 =

[1 0 0 1 xt
0]

t. At iterationj each algorithm provides the parameter
estimatespj . In order to measure the quality of this estimate we
use the following quantity

e(j) =
1

6

3�
i=1

‖φ(xi;pr)− φ(xi;pj)‖
2 (27)

which quantify the existing squared error between the exact
warped version of the pointsxi, i = 1, 2, 3 and their estimated
counterparts.

By averaging this error over many realizations that differ in
the point noise realization, we can compute the Mean Square
Distance (MSD) value. Obviously by computing this value in each
iteration of an algorithm we form a sequence that captures its
learning ability. Of course it is unrealistic to expect that any
of the algorithms will converge at all times. This is particularly
apparent for high values ofσp. For this reason, in order to quantify
the algorithmic performance in a meaningful way and have the
right picture of the convergence characteristic, we adopt the idea
followed in [13]; namely to define the MSD butconditionedon

the event thatall the competing algorithms have converged. By
“convergence” we mean thate(jmax) ≤ TMSD. In other words we
consider that an algorithm has converged when its squared error
e(j) at a prescribed maximal iterationjmax is below a certain
threshold levelTMSD.

The second quantity which is of importance is clearly the
percentage of converging (PoC) runs. Therefore we define this
quantity as being the percentage of algorithms that converge up
to a predefined maximal iterationjmax. PoC will be depicted as
a function of the point standard deviationσp which is the most
important factor that affects the performance of all algorithms.

Since it is only natural to prefer an algorithm that converges
quickly with high probability, we propose a third figure of merit
that captures exactly this aspect. Specifically, for characteristic
values ofσp and thresholdsTMSD, we apply the algorithms for
a maximal number of iterationsjMAX . Then we compute the
cumulativePoC achieved by each algorithm asjmax increases
from 0 to jMAX . This third figure of merit is proposed here for
the first time.

In all experiments we use the “Takeo” image as the warped
profile and generate a reference image as was previously de-
scribed. We make 5000 realizations of image pairs and we
add independent and identically distributed, zero-mean Gaussian
intensity noise of standard deviationσi before running the com-
peting algorithms. Although in [13], [19] we find three different
scenarios, here due to lack of space, we only focus in the one
where we add noise to both image profiles (since this is the most
interesting from a practical viewpoint).

B. First Experiment

In this experiment, for the intensity noise, we use a standard
deviation σi which corresponds to 8 gray levels and compare
the convergency characteristics of the competing algorithms for a
maximum number of iterationsjmax = 15 andTMSD = 1pixel2.
Fig. 1(a)-(c) depicts the convergence profiles of the algorithms
for different values ofσp. We observe the appearance of an MSD
floor value in each algorithm which is due to the presence of
the intensity noise. Fig. 1(d) presents the corresponding PoC as a
function of σp.

As we can see each algorithm attains a different MSD floor
value, with our FA-ECC version converging to the lowest one and
with a rate which can be significantly better. Specifically, for weak
geometric deformations all algorithms reach almost comparable
floor values and have comparable convergence rates with FA-
ECC being slightly faster than its rivals. However in the case of
medium to strong deformations, FA-ECC reaches an MSD floor
value which is 3-db lower than the inverse versions and slightly
lower than the LK algorithm. On the other hand convergence is
significantly superior compared to all other algorithms. Regarding
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Fig. 2. MSD in dB as a function of number of iterations for photometrically distorted reference (solid lines) and warped (dashed lines) image under the
presence of noise (σi = 8 gray levels) ; (a)σp = 2, (b) σp = 6, (c) σp = 10. In (d), PoC as a function ofσp for jmax = 15.

our inverse IC-ECC version, as we can see, it has comparable
performance as the SIC algorithm. The same characteristics apply
also to PoC where FA-ECC exhibits a larger percentage of
successful convergences while IC-ECC matches the performance
of SIC. Regarding the third figure of merit, we applied the
algorithms for a maximal number of iterationsjMax = 100. In
order to test the accuracy of the alignment we selected a threshold
valueTMSD = (1/18 pixel)2 (i.e., -25dB) assuring thatTMSD is
higher than the MSD floor value of all competing algorithms.
Fig. 3(a) depicts the corresponding curves for three values ofσp.
As we can see, for weak deformations all algorithms are almost
completely successful after the 10-th iteration. When however the
geometric deformation becomes stronger, FA-ECC outperforms
its competitors significantly. Again IC-ECC is comparable to SIC.
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Fig. 3. PoC as a function of iteration (a) noisy images;σi = 8 gray levels
and (b) noisy (σi = 8 gray levels) and photometrically distorted images

C. Second Experiment

In this simulation we consider the realistic case of photo-
metrically distorted images under noisy conditions. We consider
two different scenarios. In the first we impose the photometric
distortion on the reference image, while in the second on the
warped one. Since all competing algorithms perfectly compensate
for linear photometric distortions, we consider a nonlinear trans-
formation of the formI(x) ← (I(x) + 20)0.9, which is applied
to the intensity of each image pixel. We repeat the same set of
simulations as in the first experiment, only now we impose the
photometric distortion before adding intensity noise.

The results we obtained are shown in Fig. 2. As we can see
the performance of our forward algorithm seems to be almost
unaffected, achieving under both scenarios almost the same and
the lowest MSD floor value. On the other hand, the performance
of both inverse algorithms and FA-LK scheme seems to be vitally
affected. Comparing Fig. 2 to Fig. 1 we observe that under
the first scenario FA-ECC performs even better than before. In
fact the MSD floor value is now 3-dB and 5-dB lower than the
value attained by the FA-LK algorithm and the inverse algorithms
respectively. We should note here, that the MSD floor is due
not only to the intensity noise but also to the photometricmodel

mismatch. Under the second scenario, all algorithms achieve the
same MSD floor value. As far as PoC is concerned we observe
a rather steady and robust behavior for the forward algorithms
under both scenarios while inverse schemes, under first scenario,
exhibit a significant performance reduction as compared to the
second one.

Finally we present the corresponding curves of the third figure
of merit in Fig. 3(b) under the first scenario, since under the
second one both inverse and FA-ECC algorithm exhibited a
similar performance. As in the previous experiment we permit
a maximal number of 100 iterations with a thresholdTMSD =

(1/10pixel)2 (i.e., -20dB), since now we have higher MSD
floor values. Again FA-ECC outperforms the other algorithms.
Comparing Fig. 3(a) with Fig. 3(b) we can also notice a robust
and consistent behavior of FA-ECC with respect to intensity noise
and photometric distortion model mismatch.

In summary, we can safely conclude that our proposed schemes
are preferable to the corresponding variants of the LK algorithm.
Clearly our forward version is more effective than the forward
LK scheme regarding both speed and percentage of convergence.
On the other hand, our inverse version has performance which is
comparable to the performance of SIC which is the best inverse
version of the LK algorithm. However the point that makes our
IC-ECC version preferable to SIC is the reduced computational
complexity which isO(KN) as compared to SIC which requires
O(K(N + 2)2) operations.

We should also mention that we evaluated the algorithms under
diverse uncertainty conditions. Only in the case of zero intensity
noise (in other words when the warped image follows the warping
model exactly), we observed that the performance of both inverse
algorithms and the FA-ECC to be similar and outperforming in all
figures of merit the LK algorithm. This performance difference
can in fact become quite significant if the geometric deformations
are strong (f.e.σp ≥ 6). However due to lack of space we cannot
present these result in more detail.

V. CONCLUSIONS

In this paper we proposed a newl2 based iterative algorithm
tailored to the parametric image alignment problem. The new
scheme aimed at maximizing the Enhanced Correlation Coeffi-
cient function which constitutes a measure that is robust against
geometric and photometric distortions. The optimal parameters
were obtained by solving iteratively a sequence of approximate
nonlinear optimization problems which enjoy a simple closed
form solution with low computational cost. In addition, based on
the inverse compositional update rule we developed an efficient
modification of the forward algorithm. Our iterative schemes
were compared against two variants of the LK algorithm through
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numerous simulations. Under ideal conditions the proposed al-
gorithms and the Simultaneous Inverse Compositional algorithm
exhibited similar performance outperforming the forward LK
algorithm. However in the more realistic case of noisy conditions
and photometric distortions our forward algorithm exhibited a
noticeable superior performance in convergence speed, accuracy
and percentage of convergence.

APPENDIX I
PROOF OFTHEOREM I

The proof of Theorem I relies on the application of Schwartz
inequality. In order to simplify our presentation let is impose the
following change of variables

z = Q1/2
x + Q−1/2

v; ũ = Q−1/2
u; ṽ = Q−1/2

v, (28)

then the function we want to optimize becomes a function ofz

and has the form

f(z) =
(u− ũtṽ) + ũtz�
(v − ‖ṽ‖2) + ‖z‖2

. (29)

Note that conditionv > ‖ṽ‖2 guarantees that the quantity under
the square root, in the denominator, is positive.

Let us first consider the caseu− ũtṽ > 0, then we can define

z̃ = [zt
�

v − ‖ṽ‖2]t; w̃ = [ũt u− ũtṽ�
v − ‖ṽ‖2

]t, (30)

and our objective function becomes

f(z) =
w̃tz̃

‖z̃‖
≤
|w̃tz̃|

‖z̃‖
≤ ‖w̃‖, (31)

with the last inequality being the result of applying the Schwartz
inequality. Now notice that‖w̃‖ is constant constituting an upper
bound to our objective function. This bound is attainable when
both inequalities become equalities. From the Schwartz inequality
we know that we have equality whenever we selectz̃ = λw̃

whereλ some scalar quantity. Under this selection in order for
the first inequality to become equality we needλ > 0. From
z̃ = λw̃ by equating the last vector elements, we conclude that
λ = (v−‖ṽ‖2)/(u−ũtṽ), which is positive only whenu−ũtṽ >

0, yielding z = (v − ‖ṽ‖2)ũ/(u − ũtṽ). It is interesting to note
that whenu − ũtṽ ≤ 0 the upper bound‖w̃‖ is not tight (not
attainable) and therefore this case needs the separate treatment
that follows.

When u − ũtṽ ≤ 0, in order to find the supremum we apply
the following inequalities

f(z) =
(u− ũtṽ) + ũtz�
(v − ‖ṽ‖2) + ‖z‖2

≤
ũtz�

(v − ‖ṽ‖2) + ‖z‖2

≤ ‖ũ‖
‖z‖�

(v − ‖ṽ‖2) + ‖z‖2
≤ ‖ũ‖. (32)

The first inequality is true because of the nonpositivity ofu− ũtṽ

(from our assumption); for the second we applied the Schwartz
inequality in the numerator; finally for the last we used the fact
that the ratio is smaller than 1. We observe that in this case we
end up with a different (smaller) upper bound. In order to verify
its tightness (i.e. whether it constitutes a supremum) we use the
selection prescribed by the Schwartz inequality, that is,z = λũ

again with λ > 0 and compute the corresponding value of the
objective function. By lettingλ→∞ we realize that we converge
to ‖ũ‖. This suggests that for sufficiently largeλ we can approach

the desired upper bound arbitrarily close (but there is no finitez

for which we can attain it exactly!). This concludes the proof.

REFERENCES

[1] S. Periaswamy and H. Farid, “Elastic registration in the presence of
intensity variation,” IEEE Transactions on Medical Imaging, vol. 22,
no. 7, pp. 865–874, 2003.

[2] I. Karybali, E. Z. Psarakis, K. Berberidis, and G. D. Evangelidis,
“Efficient image registration with subpixel accuracy,” inProc. of 14th
European Signal Processing Conference (EUSIPCO), 2006, Florence,
Italy.

[3] G. D. Hager and P. N. Belhumeur, “Efficient region tracking with
parametric models of geometry and illumination,”IEEE Trans. Pattern
Anal. Machine Intell., vol. 20, no. 10, pp. 1025–1039, 1998.

[4] J. Shi and C. Tomasi, “Good features to track,” inProc. of IEEE
International Conference on Computer Vision and Pattern Recognition
(CVPR’94), 1994, Seattle, USA.

[5] M. Gleicher, “Projective registration with difference decomposition,” in
Proc. of IEEE International Conference on Computer Vision and Pattern
Recognition (CVPR’97), 1997, San Juan, Puerto Rico.

[6] C. Fuh and P. Maragos, “Motion dislpacement estimation using an affine
model for image matching,”Optical Engineering, vol. 30, no. 7, pp.
881–887, 1991.

[7] Y. Altunbasak, R. M. Mersereau, and A. J. Patti, “A fast parametric
motion estimation algorithm with illumination and lens distortion cor-
rection,” IEEE Trans. Image Processing, vol. 12, no. 4, pp. 395–408,
2003.

[8] B. K. P. Horn and E. J. Weldon, “Direct methods for recovering motion,”
International Journal of Computer Vision, vol. 2, pp. 51–76, 1988.

[9] P. Anandan, “A computational framework and an algorithm for the
measurement of visual motion,”International Journal of Computer
Vision, vol. 2, no. 3, pp. 283–310, 1989.

[10] B. D. Lucas and T. Kanade, “An iterative image registration technique
with an application to stereo vision,” inProc. of 7th International
Joint Conf on Artificial Intelligence (IJCAI), 1981, Vancouver, British
Columbia.

[11] E. Z. Psarakis and G. D. Evangelidis, “An enhanced correlation-based
method for stereo correspondence with sub-pixel accuracy,” inProc. of
10th IEEE International Conference on Computer Vision (ICCV 2005),
2005, Beijing, China.

[12] R. Szeliski, Handbook of Mathematical Models of Computer Vision,
N. Paragios, Y. Chen, and O. Faugeras, Eds. Springer, 2005, ch. 17.

[13] S. Baker and I. Matthews, “Lucas-kanade 20 years on: A unifying
framework: Part 1: The quantity approximated, the warp update rule, and
the gradient descent approximation.”International Journal on Computer
Vision, vol. 56, no. 3, pp. 221–255, 2004.

[14] M. J. Black and Y. Yacoob, “Tracking and recognizing rigid and non-
rigid facial motions using local parametric models of image motion,”
in Proc. of 5th IEEE International Conference on Computer Vision
(ICCV’95), 1995, Cambridge, MA, USA.

[15] H. Shum and R. Szeliski, “Construction of panoramic image mosaics
with global and local alignment,”International Journal on Computer
Vision, vol. 36, no. 2, pp. 101–130, 2000.

[16] S. Nagahdaripour and C. H. Yu, “A generalized brightness change
model for computing optical flow,” inProc. of 4th IEEE International
Conference on Computer Vision (ICCV’93), 1993, Berlin, Germany.

[17] B. K. P. Horn and B. G. Schunk, “Determining optical flow,”Artificial
Intelligence, vol. 17, pp. 185–203, 1981.

[18] M. J. Black and P. Anandan, “A framework for the robust estimation
of optical flow,” in Proc. of 4th IEEE International Conference on
Computer Vision (ICCV’93), 1993, Berlin, Germany.

[19] S. Baker, R. Gross, and I. Matthews, “Lucas-kanade 20 years on:
A unifying framework: Part 3,” Robotics Institute, Carnegie Mellon
University, Pittsburgh, PA, Tech. Rep.CMU −RI − TR− 03− 35,
Nov. 2004.

[20] B. K. P. Horn,Robot Vision. MIT Press, McGraw-Hill, 1986.
[21] J. R. Bergen, P. Anandan, K. J. Hanna, and R. Hingorani, “Hierarchical

model-based motion estimation,” inProc. of 2th European Conference
on Computer Vision (ECCV’92), 1992, Santa Margherita Liguere, Italy.

[22] P. Hallinan, “A low-dimensional representation of human faces for
arbitrary lighting conditions,” inProc. of IEEE International Conference
on Computer Vision and Pattern Recognition (CVPR’94), 1994, Seattle,
USA.

[23] V. Barnett and T. Lewis,Outliers in Statistical Data. John Wiley and
Sons, 1978.


