
HAL Id: hal-00599342
https://hal.science/hal-00599342v1

Preprint submitted on 9 Jun 2011 (v1), last revised 5 Jul 2012 (v6)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ticket Entailment is decidable
Vincent Padovani

To cite this version:

Vincent Padovani. Ticket Entailment is decidable. 2010. �hal-00599342v1�

https://hal.science/hal-00599342v1
https://hal.archives-ouvertes.fr


Under consideration for publication in Math. Struct. in Comp. Science

Ticket Entailment is decidable

V I N C E N T P A D O V A N I

Equipe Preuves, Programmes et Systèmes
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We answer positively a question raised by Anderson and Belnap, by proving that the

logic T→ of ticket entailment is decidable.

The pure calculus of entailment was introduced by Anderson and Belnap (Anderson and

Belnap 1975) as part of a formal analysis of the notion of logical implication. The system

T→ of ticket entailment is the implicational fragment of entailment based on modus

ponens and the four following axiom schemes:

— I : φ→ φ

— B : (χ→ ψ)→ ((φ→ χ)→ (φ→ ψ))

— B′ : (φ→ χ)→ ((χ→ ψ)→ (φ→ ψ))

— W : (φ→ (φ→ χ))→ (φ→ χ)

The four axioms already appear as early as 1956 in Ackermann’s theory of “strenge Im-

plikation” (Ackermann 1956; Anderson 1960) which according to Anderson and Belnap,

provided the impetus for their study of the notions of relevance and necessity in logic

(Anderson and Belnap 1975; Anderson et al. 1990).

The question of the decidability of T→ (the problem of deciding whether a given formula

is derivable from the axioms of T→ and modus ponens) has remained unsolved since it

was raised in the first volume of Anderson and Belnap’s book, although proofs of the

decidability and undecidability were given for several related systems (Anderson et al.

1990; Urquhart 1984). In 2004, a decidability result for a restricted class of formulas (the

class of 1-unary formulas in which every maximal negative subformula is of arity at most

1) was proposed by Broda, Damas, Finger and Silva e Silva (Broda et al. 2004). The

problem was also significantly investigated by Bimbó (Bimbó 2005). We prove in this

paper that T→ is decidable.
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Survey of the proof

We introduce in section 1 a set of simply typed terms similar to HRM-terms introduced

in (Trigg et al. 1994) and prove that the set of types inhabited by these terms is exactly

the set of all formulas derivable in the logic of Ticket entailement.

In section 2 what we call blueprint of a term M is the partial tree whose domain is the

set of all addresses of subterms of M whose free variables are amongst the free variables

of M , mapping each address to the type of the corresponding subterm. When a term

M has the free variables x1, . . . , xn, not all permutations π of {1, . . . , n} are such that

λxπ(1), . . . xπ(n).M is typable by a derivable formula - for instance λf x.(f x) : (φ→ ψ)→

(φ→ ψ) whereas λf x.(x f) is not typable, even if it is simply typable. Yet it is possible

to effectively compute from the blueprint of M all such permutations. More precisely we

introduce reduction rules which allows one to extract from the blueprint of a term M of

type φ all sequences (χ1, . . . , χk) for which there exists a term N yielded by a renaming

of the variables of M and such that λy1 . . . yk.N is a closed term of type (χ1 . . . χk → φ).

In section 3 introduces the proof-search technique allowing one to decide whether a

given formula is NF-inhabited. We associate with each formula φ an infinite family of

labelled trees called term shadows. To each inhabitant M of φ corresponds a shadow of

same domain as M in which each address a is labelled with a “compressed form” of the

blueprint of the subterm at a in M . We define a relation on those compressed forms

which allows one to safely “pump” the term M whenever satisfied by two labels, yielding

an inhabitant of smaller size. Thus, as proven in section 4, to each inhabitant of φ of

minimal size corresponds a compact shadow, a shadow for which there exists no such pair

of labels. Finally, in section 5 we prove that for each formula φ, the set of all compact

shadows associated with φ is a finite set effectively computable from φ.

1. Lambda calculus

Let x0, x1, . . . be different variables. We write xi < xj when i < j. Throughout the paper,

by term we always mean a term of pure lambda-calculus built over those variables. For

each term M , we write Free(M) the least subsequence of (xi)i∈N in which every variable

free in M occurs. Terms are not identified modulo α-conversion. We adopt however the

usual convention according to which no variable is allowed to be bound more than once

in any given term or simultaneously free and bound. The set of well-labelled terms is

inductively defined by:

— each xi is a well-labelled term,

— if M is well-labelled, then λx.M is well-labelled provided x is the greatest free variable

of M ,

— if M,N are well-labelled, then (M N) is well-labelled provided: M is closed; or M ,

N are open terms and the greatest free variable of M is less than or equal to the

greatest free variable of N .

Let (ωi)i∈N be a sequence in which each ωi is a formula occurring an infinite number of

times. For each strictly increasing X = (xi1 , . . . , xin) we let Ω(X) = (ωi1 , . . . , ωin). The
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judgment M : φ (in words, M is of type φ w.r.t the choice of ω0, ω1, . . .) is inductively

defined as follows:

— if Ω(x) = φ, then x : φ,

— if M : χ, x : φ and λx.M is well-labelled, then λx.M : φ→ χ,

— if M : φ→ χ, N : φ and (M N) is well-labelled, then (M N) : χ.

Note that our definition ensures that each typable term has a unique type. We write NF

the set of all typed terms in β-normal form. We call NF-inhabitant of φ every closed term

M ∈ NF of type φ.

Lemma 1.1. If M : φ then φ is NF-inhabited.

Proof. The term M is a simply typable term, a fortiori normalisable. We leave as an

exercise for the reader to check that M βM ′ implies the existence of M ′′ : φ such that

M ′′ ≡α M ′.

Lemma 1.2. Let M be an NF-inhabitant of φ. The types of the subterms of M and of

the variables free in M are subformulas of φ.

Proof. By an easy induction on M .

1.1. Equivalence between derivability in T→ and NF-inhabitation

In the next lemmas by φ1 . . . φn → ψ we mean the formula (φ1 → (. . . (φn → ψ) . . .)) if

n > 0, the formula ψ if n = 0. We write ⊢T φ the judgment “φ is derivable in T→”.

Lemma 1.3. If ⊢T φ, then φ is NF-inhabited.

Proof. If f < g < x and h < x, then λx.x, λfgx.f(g x), λfgx.g(f x) and λh.(hxx)

are well-labelled terms. For each axiom φ of ticket entailment the variables f, g, h, x can

be chosen so that one of those terms is of type φ. By lemma 1.1, the set of NF-inhabited

formulas is closed under modus ponens.

Lemma 1.4. If ⊢T χ→ ψ, then ⊢T (φ1 . . . φn → χ)→ (φ1 . . . φn → ψ) for all φ1, . . . , φn.

Proof. By induction on n, using B-axioms.

Lemma 1.5. Suppose (i1, . . . , in), (j1, . . . , jm), (k1, . . . , kp) are strictly increasing se-

quences of integers, {k1, . . . , kp} = {i1, . . . , in, j1, . . . , jm}, n = 0 or (n > 0, m > 0,

in ≤ jm). If

1 ⊢T ωi1 . . . ωin → (χ→ ψ),

2 ⊢T ωj1 . . . ωjm → χ,

then ⊢T ωk1 . . . ωkp → ψ.

Proof. By induction on n + m. The proposition is true when n = m = 0. Assume

n+m > 0. Then m > 0.

Suppose (n = 0 and m = 1) or (n > 0 and m > 1 and in ≤ jm−1). Then



V. Padovani 4

(i) ⊢T (χ→ ψ)→ ((ωjm → χ)→ (ωjm → ψ))

(ii) ⊢T (ωi1 . . . ωin → (χ→ ψ))→ (ωi1 . . . ωin → ((ωjm → χ)→ (ωjm → ψ)))

(iii) ⊢T ωi1 . . . ωin → ((ωjm → χ)→ (ωjm → ψ))
where: (i) is a B-axiom; (ii) follows from (i) and lemma 1.4; (iii) follows from (ii), (1)

and modus ponens. If n = 0 and m = p = 1 then ⊢T ωk1 → ψ follows from (iii), (2)

and modus ponens. Otherwise kp = jm and {k1, . . . , kp−1} = {i1, . . . , in, j1, . . . , jm−1}.

By induction hypothesis ⊢T ωk1 . . . ωkp−1
→ (ωjm → ψ).

Suppose n > 0, m > 1 and in > jm−1. Then
(iv) ⊢T (ωjm → χ)→ ((χ→ ψ)→ (ωjm → ψ))

(v) ⊢T (ωj1 . . . ωjm → χ)→ (ωj1 . . . ωjm−1
→ ((χ→ ψ)→ (ωjm → ψ)))

(vi) ⊢T ωj1 . . . ωjm−1
→ ((χ→ ψ)→ (ωjm → ψ))

(vii) ⊢T ωn1
. . . ωnq

→ (ωjm → ψ)
where: (iv) is a B′-axiom; (v) follows from (iv) and lemma 1.4; (vi) follows from (v), (2)

and modus ponens; {n1, . . . , nq} = {j1, . . . , jm−1, i1, . . . , in}; (vii) follows from (vi), (1)

and the induction hypothesis. If jm > in, then (n1, . . . , nq, jm) = (k1, . . . , kp). Otherwise

jm = in, nq = in, (n1, . . . nq) = (k1, . . . , kp) and

(viii) ⊢T ωk1 . . . ωkp−1
→ (ωin → (ωin → ψ))

(ix) ⊢T (ωin → (ωin → ψ))→ (ωin → ψ)

(x) ⊢T (ωk1 . . . ωkp−1
→ (ωin → (ωin → ψ)))→ (ωk1 . . . ωkp−1

→ (ωin → ψ))

(xi) ⊢T ωk1 . . . ωkp−1
→ (ωin → ψ)

where: (viii) is (vii); (ix) is a W -axiom; (x) follows from (ix) and lemma 1.4; (xi) follows

from (vii), (x) and modus ponens; (xi) is ⊢T ωk1 . . . ωkp → ψ.

Lemma 1.6. ⊢T φ if and only if φ is NF-inhabited.

Proof. The left to right implication follows from lemma 1.3. An immediate induction

on M shows that M : ψ, Free(M) = x1, . . . , xn and x1 : χ1, . . . , xn : χn implies ⊢T
χ1 . . . χn → ψ, using lemma 1.5 when M is an application.

2. Blueprints

Let (A ,≤) be the set of all finite sequences of integers ordered by prefix ordering. Ele-

ments of A are called addresses. A partial tree is a function π whose domain is a set of

addresses. We say that π is rooted if ε ∈ dom(π). For all a ∈ dom(π), the relative depth

of a in π is the number of b ∈ dom(π) such that b < a. When the domain of π is a finite

set, the relative depth of π is defined as 0 if π is of empty domain, the maximal relative

depth of an address in π otherwise. For each address a, we let π|a denote the partial tree

c 7→ π(a · c) of domain {c | a · c ∈ dom(π)}. The following notations will be used to denote

partial trees:

— f(π1, . . . , πn) denotes the rooted partial tree π such that π(ε) = f and π|(i) = πi for

each i ∈ [1, . . . , n]. When n = 0, the partial tree π may be written f instead of f() if

this notation is unambiguous.

— for every sequence a = (a1, . . . , ak) of pairwise incomparable addresses, ∗a(π1, . . . , πk)

denotes the partial tree π such that π|ai = πi for each i ∈ [1, . . . , k]. We let ∗(π1, . . . , πk)

denote the tree ∗b(π1, . . . , πk) such that b = ((1), . . . , (k)).
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Let π, π′ be partial trees. Let a be any address. We let π[a← π′] denote the partial tree

π′′ such that π′′
|a = π′ and π′′(b) = π(b) for all b ∈ dom(π) such that a 6≤ b.

A tree domain is a set A ⊆ A such that for all a ∈ A and for every integer i > 0, if

a · (i) ∈ A, then a · (j) ∈ A for each j ∈ {1, . . . , i}. A tree domain A is finitely branching

if and only if for each a ∈ A, there exists an integer i such that a · (i) is undefined. We

call tree every function whose domain is a tree domain.

2.1. Blueprint of a term

Let S be the signature consisting of all formulas and all symbols of the form @φ where

φ is a formula, each formula being of null arity and each @φ being of arity 2. We call

blueprint every finite partial tree α : A → S satisfying the following condition: for each

a ∈ A, if α(a) = @φ, then α|a·(1) and α|a·(2) are of non-empty domains.

We write ∅B the blueprint of empty domain. For each S ⊆ S: we call S-blueprint every

blueprint whose image is a subset of S; we write B(S) the set of all S-blueprints and

Bε(S) the set of all rooted S-blueprints.

In the remainder terms will be freely identified with trees. We identify: x with the tree

mapping ε to x; λx.M with the tree τ mapping ε to λx such that τ|(1) is the tree of

M ; (M1M2) with the tree τ mapping ε to @ such that τ|(i) is the tree of Mi for each

i ∈ {1, 2}.

Definition 2.1. For all M ∈ NF, the stable part of M is the set of all a ∈ dom(M) such

that Free(M|a) ⊆ Free(M) and M|a is a variable or an application.

Remarks. It is easy to check that our conventions - no variable may be simultaneously

free and bound in a term - ensure that the stable part of a term M does not depend on

the choice of bound variables. Since M is in normal form, M is of empty stable part if and

only if it is closed. If Free(M|a·b) ⊆ Free(M) then Free(M|a·b) ⊆ Free(M|a). Consequently

if a · b is in the stable part of M , then b is in the stable part of M|a.

Definition 2.2. For all M ∈ NF, we call blueprint of M the function α mapping each a

in the stable part of M to:

— ψ if M|a is a variable x of type ψ,

— @ψ if M|a is an application of type ψ.

We write M 
 α the judgment “M is of blueprint α”.

Remarks. If M = (M1M2) ∈ NF, M : φ, M1 
 α1, M2 
 α2, then each αi is of non-

empty domain and (M1M2) 
 @φ(α1, α2) - in other words the so-called blueprint of M

is indeed a blueprint. If M|b 
 β and M|b·c 
 γ, then β|c = γ. When M = λx.M1 the

blueprint of M is of the form ∗(α) - the relation between α and the blueprint of M1 in

that case will be clarified by lemma 2.6.

2.2. Blueprint reduction

Definition 2.3. The judgment α ⊲aφ α
′ where α, α′ are blueprints, a is an address and

φ is a formula, is inductively defined as follows:
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Fig. 1. Full reduction of a blueprint.

— φ⊲εφ ∅B ,

— if β2 ⊲
c
φ β

′
2, then @ψ(β1, β2)⊲

(2)·c
φ ∗(β1, β

′
2)

— if b = (b1, . . . , bn), βi⊲
c
φ β

′
i, then ∗b(β1, . . . , βn)⊲bi·cφ ∗b(β1, . . . , βi−1, β

′
i, βi+1, . . . , βn).

We let ⊲φ be the relation defined by: α⊲φ α
′ ⇔ ∃a (α⊲aφ α

′).

Remarks. The blueprint α′ can be seen as α in which the formula φ at a is erased together

with all @’s in the path to a. At each @ this path follows the left branch of @. When

α 6= ∅B there exists necessarily a, φ, α′ such that α⊲aφ α
′. For instance (see figure 2.2):

— @ψ(χ→ ψ,@χ(φ→ χ, φ)) ⊲
(2,2)
φ ∗(χ→ ψ, ∗(φ→ χ, ∅B ))

⊲
(2,1)
φ→χ ∗(χ→ ψ, ∗(∅B , ∅B ))

⊲
(1)
χ→ψ ∗(∅B , ∗(∅B , ∅B )) = ∅B

— @ψ(χ→ ψ,@χ(φ→ χ, φ)) ⊲
(2,2)
φ ∗(χ→ ψ, ∗(φ→ χ, ∅B ))

⊲
(1)
χ→ψ ∗(∅B , ∗(φ→ χ, ∅B ))

⊲
(2,1)
φ→χ ∗(∅B , ∗(∅B , ∅B )) = ∅B

Definition 2.4. For each blueprint α we write F (α) the set of all sequences (φ1, . . . , φn)

such that α⊲+
φn
. . .⊲+

φ1
∅.

Remarks. Either α = ∅B and F (α) = {ε}; or α 6= ∅B , all elements of F (α) are non-

empty sequences and F (α) is the closure under contraction of the set of all (non-empty)

sequences (φ1, . . . , φn) such that α⊲φn
. . .⊲φ1

∅.

Definition 2.5. A contraction of a sequence F is either the sequence F or a sequence

G · (f) ·H where G · (f) · (f) ·H is a contraction of F . Given finite sequences F1, . . . , Fn
we call shuffle of (F1, . . . , Fn) every sequence F 1

1 · . . . · F
1
n · . . . · F

p
1 · . . . · F

p
n such that

F 1
i · . . . · F

p
i = Fi for each i. For each tuple of sets of finite sequences (F1, . . . ,Fn) we

write ⊛(F1, . . . ,Fn) the closure under contraction of the set of shuffles of elements of

F1,× . . . × Fn. Given two finite sequences F1, F2 we call right-shuffle of (F1, F2) every

sequence F 1
1 · F

1
2 · . . . · F

p
1 · F

p
2 where F 1

i · . . . F
p
i = Fi for each i and F p2 6= ε if F1 6= ε.
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For each pair of sets of finite sequences (F1,F2) we write ⊛(F1,F2) the closure under

contraction of the set of right-shuffles of elements F1 × F2.

Remarks. The following properties follow from our definitions and will be used without

reference:

1 If α = ∅B , then F (α) = {ε}.

2 If α = φ, then F (α) = {(φ)}.

3 If α = ∗a(β1, . . . , βk), then F (α) = ⊛(F (β1), . . . ,F (βk)).

4 If α = @φ(α1, α2), then F (α) = ⊚(F (α1),F (α2)).

2.3. Abstraction vs blueprint reduction

Recall that for every strictly increasing sequence of variables X = (xi1 , . . . , xin), we let

Ω(X) denotes the sequence of the types of xi1 , . . . , xin . We now clarify the link between

the blueprint α of a term M and the one of λx.M .when both belong to NF.

The next lemma immediately implies Ω(Free(M)) ∈ F (α). Lemma 2.7 states that for

each sequence of formulas F ∈ Ω(α) and for each sequence Y such that Ω(Y ) = F ,

one can rename the variables of M so that the yielded term N is an element of NF of

blueprint α, of same type as M and such that Free(N) = Y .

Lemma 2.6. For all M ∈ NF of type φ, of blueprint α, the following conditions are

equivalent:

1 λx.M : χ→ φ and λx.M 
 β.

2 x is the greatest free variable of M and there exists α′, a1, . . . , an such that:

— M−1(x) = {a1, . . . , an},

— α⊲a1χ . . .⊲anχ α′,

— β = ∗(α′).

Proof. Let ρM be the least partial function such that: ρM (ε, γ) = γ for all blueprint γ;

if ρM (X, γ) = δ, M−1(x) = {a0, . . . , an} and δ ⊲a0χ . . . ⊲anχ δ′, then ρM ((x) ·X, γ) = δ′.

Note that M−1(x) = {a0, . . . , an} = {b0, . . . , bn}, δ ⊲
a0
χ . . . ⊲anχ δ′ and δ ⊲b0χ . . . ⊲bnχ δ′′

implies δ′ = δ′′, consequently ρM is indeed a function. For each finite sequence of variables

X , let µM (X,α) be the restriction of α to dom(α)∩{a |Free(M|a) ⊆ X}. We shall prove

by induction on M that for all pairs (X,X ′) such that Free(M) = X · X ′, we have

µM (X,α) = ρM (X ′, α). In particular if Free(M) = X · (x), the following property implies

the lemma: the blueprint of λx.M is ∗(µM (X,α)) and ρM ((x), α) = µM (X,α).

The case X ′ = ε is immediate so we may as well assume that X ′ is a non-empty suffix

of Free(M). The case M = x follows immediately from our definitions.

Suppose M = (M1M2), M1 : φ1 M1 
 α1, φ1 = φ2 → φ, M2 : φ2, M2 
 α2. There

exists X1, X2, X
′
1, X

′
2 such that: X1∪X2 = X ; X ′

1∪X
′
2 = X ′; Free(Mi) = Xi ·X ′

i for each

i ∈ {1, 2}. We have α = @φ(α1, α2) and µM (X,α) = ∗(µM1
(X1, α1), µM2

(X2, α2)). By

induction hypothesis µMi
(Xi, αi) = ρMi

(X ′
i, αi) for each i. The sequence X ′ is non-

empty hence the last elements of X ′, X ′
2 are equal. As a consequence ρM (X ′, α) =

∗(ρM1
(X ′

1, α1), ρM2
(X ′

2, α2)) = µM (X,α).
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Suppose M = λx.M1 : χ → ψ1, M1 
 α1. By induction hypothesis µM1
(X,α1) =

ρM1
(X ′ · (x), α1) = ρM1

(X ′, ρM1
(x, α1)) = ρM1

(X ′, µ(X · X ′, α1)) = ρM1
(X ′, α|(1)).

Also µM1
(X,α1) = µM1

(X,µ1(X · X ′, α1)) = µM1
(X,α|(1)). Hence µM1

(X,α|(1)) =

ρM1
(X ′, α|(1)), therefore µM1

(X,α) = ρM1
(X ′, α).

Lemma 2.7. For allM ∈ NF of blueprint α, for all Y such that Ω(Z) ∈ F (α), there exists

N of same domain, of same blueprint and of same type as M such that Free(N) = Y .

Proof. By an easy induction on M , using the implication (2)⇒ (1) of lemma 2.6 when

M is an abstraction.

3. Proof-search

This section introduces the proof-search technique allowing one to decide whether a given

formula is NF-inhabited. The two main definitions of this part are the ones of a shadow

and of a compact shadow (definitions 3.6 and 3.8).

3.1. Blueprint equivalence and transversal compression

Definition 3.1. We let ≡ be the least binary relation on blueprints such that:

— φ ≡ φ,

— if α1 ≡ β1 and α2 ≡ β2 then @φ(α1, α1) ≡ @φ(β1, β2),

— if |a| = |b| = n and αi ≡ βi for each i ∈ [1, . . . n], then ∗a(α1, . . . αn) ≡ ∗b(β1, . . . , βn).

Remarks. Up to some extent this equivalence allows us to consider blueprints regard-

less of the exact values of their adresses. For instance ∗a(α1, . . . αn) ≡ ∗(α1, . . . , αn) ≡

∗(αn, . . . , α1), also ∗(∗(α, β), γ) ≡ ∗(α, β, γ) ≡ ∗(α, ∗(β, γ)), etc. It is easy to check that

α ≡ β implies F (α) = F (β) - this property will be used without reference.

Definition 3.2. For each non-null integer m, we let xm be the binary relation on

blueprints inductively defined as follows:

— if β1 ≡ . . . ≡ βm+1,

then ∗a(γ1, . . . , γk, β1, . . . , βm) xm ∗a·b(γ1, . . . , γk, β1, . . . , βm, βm+1),

— if αxm β then:

– @φ(α, γ) xm @φ(β, γ),

– @φ(γ, α) xm @φ(γ, β),

– ∗a(α, γ0, . . . , γk) xm ∗a(β, γ0, . . . , γk).

We call m-compression of β every α such that α xm β. The width of β is defined as

the least m for which there is no α such that α xm β. We write ⊑m the reflexive and

transitive closure of the union of ≡ and xm. We let ⊑max
m denote the subset of the

relation ⊑m of all pairs with a left-hand-side of width at most m.

Remarks. If β is of width m, then for all address a and for β|a = ∗a(γ1, . . . , γk) the

sequence (γ1, . . . , γk) contains no more than m blueprints ≡-equivalent to γi for each i.

Of course α ⊑m β implies α ⊑j β for all j ∈ [1, . . . ,m] and clearly, α xm β implies

|dom(α)| < |dom(β)| therefore xm is well-founded.
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Definition 3.3. For all S ⊆ S, for all d ∈ N and for all m ∈ N
∗:

— we let B(S, d,∞) be the set of S-blueprints of relative depth at most d,

— we let B(S, d,m) be the set of all blueprints in B(S, d,∞) of width at most m.

Lemma 3.4. For all finite S ⊆ S, for all d ∈ N and for all m ∈ N
∗:

1 The set B(S, d,m)/ ≡ is a finite set.

2 A selector R (S, d,m) for B(S, d,m)/ ≡ is effectively computable from (S, d,m).

Proof. We prove the two propositions simultaneously by induction on d. (A) For each

α ≡ ∗(φ1, . . . , φk) ∈ B(S, 0,m), let σ(α) = (φ1, . . . , φk). Clearly, for each φ ∈ S, there are

no more than m occurrences of φ in σ(α). For all α′ ∈ B(S, 0,m), we have α ≡ α′ if and

only if σ(α) and σ(α′) are equal up to permutation of their elements. As a consequence,

B(S, 0,m)/ ≡ is a finite set and we may define R (S, 0,m) as the set consisting in all

blueprints of the form ∗(φ1, . . . , φk) where each null arity symbol of S occurs at most m

times in the sequence (φ1, . . . , φk).

(B) Let R be the set of all blueprints of the form @φ(φ1, φ2) where @φ ∈ S and

(α1, α2) ∈ R (S, d,m) × R (S, d,m). Let S be the set of all sequences over R in which

every element occurs at most m times. We may define R (S, d + 1,m) as the set of all

blueprints of the form ∗(β1, . . . , βk) where (β1, . . . , βk) is a sequence over R in which

evey element occurs at most m times.

3.2. Shadows

Definition 3.5. For each integer d, for each formula φ, we let R(φ, d) be the set equal to

{∅B} if d = 0, and otherwise equal to R (Σ0, d, d×p), where R is the function introduced

in lemma 3.4, Σ0 is the set of all subformulas of φ and all @ψ where ψ is a subformula

of φ and p is the cardinal of the set of all subformulas of φ.

Definition 3.6. We call φ-shadow every tree Ξ satisyfing the following conditions:

— Ξ(ε) = (∅B , φ),

— each node of Ξ is of arity at most 2,

— for each a ∈ dom(Ξ), let da be the number of b < a such that the node of Ξ at b is

unary; Ξ(a) is of the form (γ, ψ) where ψ is a subformula of φ and γ ∈ R(φ, da)

Definition 3.7. Let ⇑ be least reflexive and transitive relation on B satisfying the

following condition: if a, b ∈ dom(β), a < b and β(a) = β(b), then β[a ← β|b] ⇑ β. We

call shadow ordering the binary relation ⋐ on B defined by α ⋐ β if and only if for all

F ∈ F (α) there exists β′ ⇑ β such that F ∈ F (β′).

Obviously ⇑ is a well-founded partial order and α ⇑ β implies |dom(α)| ≤ |dom(β)|.

Definition 3.8. A shadow Ξ is compact if and only if there exists no a, b such that: a < b,

the nodes of Ξ at a, b are of same arity, Ξ(a) = (γa, ψ), Ξ(b) = (γb, ψ) and γa ⋐ γb.
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4. Compact shadows and NF-inhabitation

We prove in this scetion that a formula φ is NF-inhabited if and only if there exists a

compact φ-shadow of same domain as a NF-inhabitant of φ.

4.1. Blueprint pumping vs term pumping

Definition 4.1. Two terms M,M ′ ∈ NF are of same kind if and only they are both

variables, or both applications, or both abstractions, and if they are of same type.

The next lemma shows that we can safely “pump” a term within its stable part in the

following sense: if M 
 β, a < b and β(a) = β(b), then M [a ← M|b] is not in general

a well-labelled term, yet there exists in NF a term M of same domain, of blueprint

β[a← β|b].

Lemma 4.2. Suppose M : φ, M 
 β and α ⇑ β. There exists a term M ′ ∈ NF of same

kind as M , of blueprint α and such that |dom(M ′)| ≤ |dom(M)|.

Proof. It suffices to consider the case of α = β[a ← β|b] with a, b ∈ dom(β), a < b

and β(a) = β(b). Recall that for all c, c′, if b = c · c′ and M|c 
 γ, then γ|c′ = β|b. We

prove the existence of M ′ by induction on the length of a. The case a = ε is immediate.

Assume a 6= ε.

(1) Suppose M = (M1M2), M1 
 β1, M2 
 β2, a = (i) ·ai and b = (i) ·bi. By induction

hypothesis there exists Ni of blueprint γi = βi[ai ← βi|bi ] = βi[ai ← β|b], of same kind

as Mi and such that dom(Ni) ≤ dom(Mi). Let j = 1 if i = 2, otherwise let j = 2. Let

(Nj , γj) = (Mj , βj). By lemma 2.7 there exists M ′
1,M

′
2 such that (M ′

1M
′
2) is well labelled

and each M ′
i is a term of blueprint γi of same kind and same domain as Ni. Moreover

we may take M ′ = (M ′
1M

′
2).

(2) Suppose M = λx.M1, M1 
 β1, x : χ, a = (1) ·a1 and b = (1) ·b1. As a, b ∈ dom(β),

we have also a1, a2 ∈ dom(β1). By induction hypothesis there exists M ′
1 of same kind as

M1, of blueprint α1 = β1[a1 ← β1|b1 ] and such that dom(M ′
1) ≤ dom(M1). By lemma 2.6

there exists γ1, c0, . . . , cn such that {c0, . . . , cn} = M−1
1 (x), β1⊲

c0
χ . . .⊲

cn
χ γ1 and β = ∗(γ1).

Now, a, b ∈ dom(α) implies that for each i: a1 and ci are incomparable addresses; b1 and

ci are incomparable addresses. So β1[a1 ← β1|b1 ]⊲c0χ . . .⊲
cn
χ γ1[a1 ← β1|b1 ] = β[a← β|b]|(1)

and there exists in F (α1) a sequence of last element χ. By lemma 2.7 there exists a term

N ′
1 of same type and of same domain as M ′

1 such that the greatest variable y free in N ′
1

is of type χ. By lemma 2.6, λy.N ′
1 
 β[a← β|b] and we may take M ′ = λy.N ′

1.

Lemma 4.3. If α ⊑m β, then:

1 F (α) ⊆ F (β).

2 For all G ∈ F (β), there exists in F (α) a subsequence of G.

3 The set of all elements of F (β) of length at most m is a subset of F (α).

Proof. We prove each property by induction on |dom(β)|. Since γ ≡ γ′ implies F (γ) =

F (γ′) and |dom(γ)| = |dom(γ′)|, we may consider all blueprints up to ≡.

(1) Since α ⊑m β implies α ⊑1 β it is sufficient to consider the case where α is ≡-

equivalent to some 1-compression of β. The base case β ≡ ∗(α, α) is clear. The case
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β ≡ ∗(β′, γ) and α ≡ ∗(α′, γ) with γ 6= ∅B and α′ x1 β
′ follow easily from the induction

hypothesis, as well as the case β ≡ @(β1, β2)

(2) As in (1), it sufficient to consider the case where α is ≡-equivalent to some 1-

compression of β. In order to deal with the case of β ≡ @(β1, β2), we need to prove a

more precise property: if β is not empty, then for all G ∈ F (β), there exists in F (α) a

subsequence F of G such that the last element of F and G are equal. Again, the base

case β ≡ ∗(α, α) is clear and the other cases follow easily from the induction hypothesis.

(3) The case β ≡ ∗(β′, γ) and α ≡ ∗(α′, γ) with γ 6= ∅B and α′ xm β′ follow

easily from the induction hypothesis, as well as the case β ≡ @(β1, β2). The base case

is α ≡ ∗(γ1, . . . , γm), β ≡ ∗(γ1, . . . , γm, γm+1) where for some γ we have γ ≡ γi for

all i. Let G = F (γ). For each integer k, let G(k) = ⊛(G1, . . . ,Gk) where Gi = F (γ)

for each i. Let F = (φ1, . . . , φp) ∈ F (β) such that p ≤ m. For each J ⊆ {1, . . . , p},

and for (j1, . . . , jq) equal to the strictly increasing enumeration of all elements of J , let

f(J) = (φj1 , . . . , φjq ). We have F ∈ F (β) = G(m+1), hence there exist J1, . . . , Jm+1 such

that J1 ∪ . . . ∪ Jm+1 = {1, . . . , p}, and f(Ji) ∈ F (γ) for each i ∈ [1, . . . ,m+ 1]. For each

j ∈ [1, . . . , p], let kj ∈ [1, . . . ,m+1] be such that j ∈ Jkj . Then Jk1∪. . .∪Jkp = {1, . . . , p},

so F ∈ ⊛({f(Jk1)}, . . . , {f(Jkp)}) ⊆ G(p) ⊆ G(m) = F (α).

Lemma 4.4. If α ⇑ β ⊑1 β
′, then there exists α′ such that α ⊑1 α

′ ⇑ β′.

Proof. (1) An immediate induction on the sum of the lengths of all addresses in dom(β′)

shows that if α = β[a ← β|b] and β ≡ β′, then there exist (a′, b′) such that α ≡ α′ =

β′[a′ ← β′
|b′ ]. Consequently an immediate induction on the length of the derivation of

α ⇑ β shows that the lemma holds if β ≡ β′.

(2) Another induction on the sum of the lengths of all addresses in dom(β′) shows

that α ⇑ β x1 β
′ implies the existence of α′ such that α x1 α

′ ⇑ β′. The only non

trivial case is β′ = ∗a·b(γ1, . . . , γk, β1, β2), β = ∗a(γ1, . . . , γk, β1) with β1 ≡ β2 and

α = ∗a(δ1, . . . , δk, α1) where α1 ⇑ β1 and δi ⇑ γi for each i. By (1), α1 ⇑ β1 ≡ β2
implies the existence of α2 such that α1 ≡ α2 ⇑ β2. Hence α = ∗a(δ1, . . . , δk, α1) x1

∗a·b(δ1, . . . , δk, α1, α2) ⇑ ∗a·b(γ1, . . . , γk, β1, β2) = β′.

(3) Using (1) and (2), the lemma follows by induction on the length of an arbitrary

sequence (β0, . . . , βn) such that β0 = β, βn = β′ and βi−1 ≡ βi or βi−1 x1 βi for each

i ∈ [1, . . . , n].

Lemma 4.5. For all formula φ, we have ⊢T φ if and only if there exists a compact

φ-shadow of same domain as an NF-inhabitant of φ.

Proof. The right to left implication follows trivially from lemma 1.6. Suppose ⊢T φ. By

lemmas 1.6 there exists in NF a closed M of type φ of minimal size. For each a ∈ dom(M):

— let αa, φa be respectively the blueprint and the type of M|a,

— let (a1, . . . , am) be the sequence of all prefixes of a strictly increasing w.r.t <, let

(λx1, . . . , λxn) be the subsequence (M(a1), . . . ,M(am)) of all binders; we let Λ(M,a) =

(x1, . . . , xn).
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Without loss of generality we may assume that all Λ(M,a) are strictly increasing se-

quences of variables, so that Free(M|a) is a subsequence of Λ(M,a) for each a. Let p be

the cardinal of the set of all subformulas of φ.

(1) Suppose there exists a ∈ dom(M) such that αa is of relative depth n > |Λ(M,a)|×p.

Let b1, . . . , bn, c ∈ dom(αa) such that b1 < . . . < bn < c. For each i, let Xi = Free(M|a·bi),

let φi be the type of M|a·bi. We have Xn ⊆ . . . ⊆ X1 ⊆ Λ(M,a). By lemma 1.2, each

ψi is a subformula of φ. Hence there exists i, j such that i < j and (Xi, ψi) = (Xj , ψj),

that is, M|a·bi and M|a·bj are applications of the same type and with the same free

variables. The term M ′ = M [a · bi ←M|a·bj ] is then NF-inhabitant of type φi such that

|dom(M ′)| < |dom(M)|, a contradiction.

(2) According to (1) each αa is of depth at most |Λ(M,a)| × p, hence there exists

for each a a blueprint γa ∈ R(φ, |Λ(M,a)|) such that γa ⊑max
|Λ(M,a)| αa. The function Ξ

mapping each a ∈ dom(Π) to (γa, φa) is therefore a (φ, 0)-shadow. Assume by way of

contradiction that this shadow is not compact. There exists a, b ∈ dom(M) and γa, γb
such that a < b, M|a, M|b are of same kind, γa ⊑max

|Λ(M,a)| αa, γb ⊑max
|Λ(M,a·b)| αb and

γa ⋐ γb. Let Xa = Free(M|a). By lemma 2.6, Ω(Xa) ∈ F (αa). We have Xa ⊆ Λ(M,a),

therefore |Ω(Xa)| ≤ |Λ(M,a)|. By lemma 4.3, Ω(Xa) ∈ F (γa). By assumption there

exists δb such that δb ⇑ γb ⊑1 αb and Ω(Xa) ∈ F (δb). By lemma 4.4 there exists α′
b

such that δb ⊑1 α
′
b ⇑ αb. By lemma 4.3, Ω(Xa) ∈ F (α′

b). The conjuction of lemmas 4.2

and 2.7 implies the existence of N ∈ NF of blueprint α′
b, of same kind as M|b, such that

|dom(N)| ≤ |dom(M|b)| and Free(N) = Xa. Then M ′ = M [a ← N ] is an NF-inhabitant

of φ such that |dom(M ′)| < |dom(M)|, a contradiction.

5. Finitness of the set of compact φ-shadows

Our last aim will be to prove that for each formula φ, the set of all compact φ-shadows

is a finite set effectively computable from φ. We shall prove that for each finite S ⊆ S

(in particular when S is the set of all subformulas of φ and all applications tagged with

a subformula of φ), the relation ⋐ is an almost full relation (Bezem, Klop and de Vrijer

2003) on B(S). This result will be proven with the help of Melliès’ Axiomatic Kruskal

Theorem (Melliès 1998)

5.1. Almost full relations and Higman’s theorem

Definition 5.1. Let U be an arbitrary set. An almost full relation (AFR) on U is a

binary relation ≪ such that for every infinite sequence (ui)i∈N over U , there exists i, j

such that i < j and ui ≪ uj .

Proposition 5.2.

1 If ≪ and ≪′ are AFRs on U , then ≪ ∩≪′ is an AFR on U .

2 Suppose ≪U is an AFR on U and ≪V is an AFR on V . Let ≪U×V be the relation

defined by (U, V )≪U×V (U ′, V ′) if and only if U ≪U U
′ and V ≪V V

′. Then ≪U×V

is an AFR on U × V .

Proof. See (Melliès 1998).
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Definition 5.3. Let U be a set, let ≪ be a binary relation. We let S(U) denote the

set of all finite sequences over U . The relation ≪S induced by ≪ on S(U) is defined by

(U1, . . . , Un) ≪S (V1, . . . , Vm) if and only if there exists a strictly monotone function

η : {1, . . . , n} → {1, . . . ,m} such that Ui ≪ Vη(i) for each i ∈ {1, . . . , n}.

Theorem 5.4. (Higman) If ≪ is an AFR on U , then ≪S is an AFR on S(U).

Proof. See (Higman 1952; Kruskal 1972; Melliès 1998).

5.2. From rooted to unrooted blueprints

Lemma 5.5. Let S be a finite subset of S. Let S@ be the set of all binary symbols of

S. For all β ∈ B , for all G ∈ F (β), there exists α ⇑ β of relative depth at most Σ
1+|S@|
i=1 i

such that F (α) contains a subsequence of G.

Proof. Call S-linearisation every pair (γ,H) such that γ ∈ B(S) and H ∈ F (γ). Call

starting address for (γ,H) every address b for which there exists φ, γ′ such that γ ⊲bφ γ
′

and H ∈ ⊚(F (γ′), (φ)). Call path to b in γ the maximal sequence (b1, . . . , bn, bn+1) over

elements of dom(γ) such that b1 < . . . < bn < bn+1 = b.

Given an arbitrary S-linearisation (β,G), we prove simultaneously by induction on the

sum of |S@| and the sum of the length of all addresses in dom(β) the two properties:

1 There exists an S-linearisation (γ,H) such that :

(a) γ ⇑ β and H is a subsequence of G,

(b) γ is of relative depth at most 1 + Σ
|S@|
i=1 i

2 There exists an S-linearisation (α, F ) such that :

(a) α ⇑ β, F is a subsequence of G, and the last elements of F,G are equal,

(b) for each starting address b of (α, F ) of path (b1, . . . , bn, bn+1),

the values α(b1), . . . , α(bn) are pairwise distinct,

(c) for all c incomparable with each starting address for (α, F ),

(α|c) is of relative depth 1 + Σ
|S@|
i=1 i

Note that the conjunction of (2.b) and (2.c) implies that every address d in α is of

relative depth at most |S@| + 1 + Σ
|S@|
i=1 i = Σ

1+|S@|
i=1 i. The cases β = ∗a(β′) with a 6= ε

and β = ∗a(β1, . . . , βn) with n > 1 follow easily from the induction hypothesis. Suppose

β = @ψ(β1, β2).

(1) Let d be an address of maximal length in β−1(@ψ). Let δ = @ψ(δ1, δ2) = β|d.

By assumption ε is the only element of δ−1(@ψ). As G ∈ F (β), there exists in F (δ) a

subsequence G′ of G, and (G1, G2) ∈ F (δ1) × F (δ2) such that G′ ∈ ⊚({G1}, {G2}). By

induction hypothesis there exists an (S−{@ψ})-realisation (H1, γ1) statisfying conditions

(1.a), (1.b) w.r.t (δ0, G1), and an (S − {@ψ})-realisation (γ2, H2) satisfying conditions

(2.a), (2.b), (2.c) w.r.t (δ2, G2).

Let γ = @ψ(γ1, γ2). We have γ ⇑ δ and β(ε) = δ(ε) = γ(ε), hence γ ⇑ β. Each γi

is of relative depth at most Σ
|S@|
i=1 i, therefore γ is of relative depth at most 1 + Σ

|S@|
i=1 i.

Now H2 is a subsequence of G2 of same last element, so there exists in ⊚({H1}, {H2}) ⊆

F (@ψ(γ1, γ2)) a subsequence H of G′. Thus (γ,H) satisfies (1.a) and (1.b) w.r.t (β,G).
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(2) As G ∈ F (β), there exists G1 ∈ F (β1), G2 ∈ F (β2) such that G ∈ ⊚({G1}, {G2}).

By induction hypothesis there exists an S-linearisation (α1, F1) satisfying conditions

(1.a), (1.b) w.r.t (β1, G1), and an S-linearisation (α2, F2) satisfying conditions (2.a),

(2.b), (2.c) w.r.t (β2, G2).

Let α0 = @ψ(α1, α2). We have α0 ⇑ β. Since F2 and G2 are of same last symbol and

⊚({F1}, {F2}) ⊆ F (α), there exists in F (α) a subsequence F0 of G, of same last element

as G. Hence (α0, F0) satisfies (2.a). For all c incomparable with each starting address

for (α0, F0), either c = (1) · c′ and c′ ∈ dom(α1), or c = (2) · c′′ and c′′ ∈ dom(α2) is

incomparable with each starting address in α2. As a consequence, the choice of α1, α2

ensures that (α0, F0) satisfies (2.c).

If (α0, F0) satisfies (2.b), then we may take (α, F ) = (α0, F0). Otherwise some starting

address b for (α0, F0) does not satisfy condition (2.b). Let (b1, . . . , bn, bn+1) be the path

to b in α. We have b1 = ε, and for each i > 0, there exists di such that bi = (2) · di. The

sequence (d2, . . . , dn+1) is then a path to d = dn+1 in α2, and d is a starting address for

(α2, F2). The values α2(d2), . . . , α2(dn) are pairwise distinct, so there must exists i > 1

such that α(bi) = @ψ. Since bi is in the path to b, there exists in F (α2|di) a subsequence

F ′
0 of F0 of same last element as F0. For α′

0 = α0[ε ← α2|di ], we have α′
0 ⇑ β and

F ′
0 ∈ F (α′

0). The existence of (α, F ) follows then from the induction hypothesis.

Definition 5.6. For each tuple (S, β,G, α) satisfying the conditions of lemma 5.5, we

call S-residual of β each α0 such that α0 ⊑max
1 α.

Lemma 5.7. Let S be a finite subset of S. Suppose:

— β = ∗a(β1, . . . , βn) ∈ B(S),

— β′ = ∗b(β
′
1, . . . , β

′
n, β

′
n+1, . . . , β

′
n+k) ∈ B(S),

— (β1, . . . , βn) ⋐S (β′
1, . . . , β

′
n),

— the sets of S-residuals of β, β′ are equal.

Then β ⋐ β′.

Proof. For each i ∈ [1, . . . , n], let Gi ∈ F (βi). Let G ∈ ⊛({G1}, . . . , {Gn}). By assump-

tion there exists for each i ∈ [1, . . . , n] a δi ⇑ β′
i such that Gi ∈ F (δi). As a consequence

G ∈ F (∗(δ1, . . . , δn)). By lemma 5.5, the set of S-residuals of β is not empty. By assump-

tion there exist α, α0 and for each i ∈ [1, . . . , n+k] a blueprint α′
i such that: α0 ⊑1 α ⇑ β;

F (α) contains a subsequence F of G; α0 ⊑1 ∗b(α
′
1, . . . , α

′
n+k) ⇑ β′. By lemma 4.3, there

exists in F (α0)∩F (∗b(α
′
1, . . . , α

′
n+k)) a subsequence of F . Hence, for each i ∈ [1, . . . , n+k],

there exists in F (α′
i) a subsequence of G. Let δ = ∗b(δ1, . . . , δn, α

′
n+1, . . . , α

′
n+k). Then

δ ⇑ β′, G ∈ F (∗(δ1, . . . δn)), and for each j there exists in F (α′
n+j) a subsequence of G.

As a consequence G ∈ F (δ).

Lemma 5.8. Let S be a finite subset of S. Let Bε be a subset of Bε(S). Let B =

{∗a(β1, . . . , βn)| ∀i ∈ [1, . . . , n], βi ∈ Bε}. If ⋐ is an AFR on Bε, then ⋐ is an AFR on B.

Proof. For each γ ∈ B, the set of S-residuals of γ is a subset of R = B(S,Σ
1+|S@|
i=1 i, 1)

closed under ≡. By lemma 3.4, the setR is finite up to ≡. For each γ = ∗a(γ1, . . . , γn) ∈ B

where a is increasing w.r.t the lexicographic ordering of addresses, let σ(γ) = (γ1, . . . , γn).

By theorem 5.4, ⋐S is an AFR on the set of all {σ(γ) | γ ∈ B}. Let ≪ be the relation on
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B defined by γ ≪ γ′ if and only if σ(γ) ⋐S σ(γ′) and the sets of S-residuals of γ, γ′ are

equal. By lemma 5.2.(1), ≪ is an AFR on B. The conclusion follows from lemma 5.7.

5.3. Axiomatic Kruskal theorem and main key-lemma

Definition 5.9. An abstract decomposition system is an 8-tuple

(T ,L,V ,�T ,�L,�V ,
·
−→,⊢)

where:

— T is a set of terms noted t, u, . . . equipped with a binary relation �T ,

— L is a set of labels noted f, g, . . . equipped with a binary relation �L,

— V is a set of vectors noted T, U, . . . equipped with a binary relation �V ,

—
·
−→ is a relation on T × L× V , e.g. t

f
−→ T

— ⊢ is a relation on V × T , e.g. T ⊢ t.

For each such system, we let ⊲T be the binary relation on T defined by

t⊲T u⇐⇒ ∃(f, T ) ∈ L × V , t
f
−→ T ⊢ u

An elementary term t is a term minimal w.r.t ⊲T , that is, a term for which there exists

no u such that t⊲T u.

Theorem 5.10. (Melliès) Suppose (T ,L,V ,�T ,�L,�V ,
·
−→,⊢) satisfies the following

properties:

— (Axiom I) There is no infinite chain t1 ⊲T t2 ⊲T . . .

— (Axiom II) The relation �T is an AFR on the set of elementary terms.

— (Axiom III) For all t, u, u′, f, U ,

if t �T u′ and u
f
−→ U ⊢ u′, then t �T u.

— (Axiom IV-bis) For all t, u, f, g, T, U ,

if t
f
−→ T and u

g
−→ U and f �L g and T �V U , then t �T u.

— (Axiom V) For all W ⊆ V , for W⊢ = {t ∈ T | ∃T ∈ W , T ⊢ t},

if �T is an AFR on W⊢, then �V is an AFR on W .

If furthermore �L is an AFR on L, then �T is an AFR on T .

Proof. See (Melliès 1998).

Lemma 5.11. For each finite S ⊆ S, the relation ⋐ is an AFR on B(S).

Proof. According to lemma 5.8, it is sufficient to prove that ⋐ is an AFR on Bε(S). Let

(T ,L,V ,�T ,�L,�V ,
·
−→,⊢) be the abstract decomposition system defined as follows.

— The set T is Bε(S); we let α �T β if and only if there exists an address c such that

α ⋐ (β|c) and α(ε) = (β|c)(ε).

— The set L is the set of all elements of S of non null arity, the relation �L is the

identity relation on this set.

— The set V is equal to B(S)× B(S).

The relation �V is defined by (γ1, γ1) �V (δ1, δ2) if and only if γ1 ⋐ δ1 and γ2 ⋐ δ2.
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— The relation
·
−→ is defined by α

@φ

−→ (γ1, γ2) if and only if α = @φ(γ1, γ2).

— The relation ⊢ is the least relation satisfying the following condition. If V = (γ1, γ2),

i ∈ {1, 2} and γi = ∗a(α1, . . . , αn) then V ⊢ αj for each j ∈ [1, . . . , n].

(A) For all T ′ ⊆ T , the relation ⋐ is an AFR on T ′ if and only if �T is an AFR on

T ′. Indeed, consider an arbitrary infinite sequence α over T ′. This sequence contains an

infinite subsequence (α)i∈N such that all αi(ε) are equal. Clearly αi ⋐ αj implies αi �T

αj . Conversely, if αi �T αj , then there exists c such that αi ⋐ αj |c and αi(ε) = αj(c).

For all F ∈ F (αi), there exists γ such that γ ⇑ αj |c and F ∈ F (γ). Now the relation ⇑

is such that γ(ε) = αi(ε) = αj(ε) = αj(c), so γ ⇑ αj |c ⇑ αj . Hence αi ⋐ αj .

(B) We now check that all axioms of theorem 5.10 are satisfied. Axiom I is clear. The

set of elementary terms is the set all α ∈ Bε(S) such that dom(α) = {ε}. Since S is

a finite set, the relation �T is of course an AFR on the set of elementary terms, that

is, axiom II is satisfied. Axiom III is immediate. If (γ1, γ2) �V (δ1, δ2) then γ1 ⋐ δ1
and γ2 ⋐ δ2 implies @ψ(γ1, γ2) ⋐ @ψ(δ1, δ2), a fortiori @ψ(γ1, γ2) �T @ψ(δ1, δ2), hence

Axiom IV-bis is satisfied. We now prove that Axiom V is satisfied. Let W ⊆ V , let

W⊢ = {β ∈ T | ∃(γ1, γ2) ∈ W , (γ1, γ2) ⊢ β}. Assuming �T is an AFR on W⊢, we prove

that �V is an AFR on W . By (A), ⋐ is an AFR on W⊢. Let B = {∗a(β1, . . . , βn)| ∀i ∈

[1, . . . , n], βi ∈ W⊢}. By lemma 5.8, the relation ⋐ is an AFR on B. MoreoverW ⊆ B×B.

By lemma 5.2, �V is an AFR on B × B, therefore an AFR on W

Lemma 5.12. For each formula φ, the set of all compact φ-shadows is a finite set

effectively computable from φ.

Proof. For each compact φ-shadow Ξ and for each address a such that a is a leaf in

Ξ, call step-continuation at a of Ξ every compact φ-shadow Ξ′ such that dom(Ξ′) ⊆

dom(Ξ)∪{a · (1), a · (2)} and Ξ,Ξ′ take the same value on dom(Ξ). Let be the relation

defined by Ξ  Ξ′ if and only if Ξ′ is a step continuation of Ξ. By proposition 3.4 and

the fact that the set of subformulas is a finite set, for all Ξ, the set of all Ξ′ such that

Ξ Ξ′, is a finite set, effectively computable from Ξ. Moreover the set C of all compact

φ-shadows is clearly equal to the closure under of {(ε 7→ (∅B , φ))}, hence it suffices to

prove that C is a finite set. Assume by way of contradiction that C is infinite. Then there

exists an infinite sequence Ξ1  Ξ2  . . . over C. By König’s lemma, Ξ∞ = ∪i>0 Ξi
contains an infinite path a1, a2, . . .. Now, each Ξ∞(ak) belongs to B(Sφ)×Fφ where Fφ
is the set of all subformulas of φ and Sφ is the union of Fφ and the set of all binary

elements of S tagged with elements of Fφ. Since each Ξi is compact, there is no i, j, ψ

such that i < j, Ξ∞(ai) = (γi, ψ), Ξ∞(aj) = (γj , ψ) and γi ⋐ γj . A contradiction follows

immediately from lemmas 5.2 and 5.11.

Remarks. The proof of lemma 5.10 being non-constructive, lemma 5.12 gives no infor-

mation about the complexity of our proof-search method.

6. From the shadows to the light

Theorem 6.1. Ticket entailment is decidable.

Proof. By lemmas 4.5 and 5.12.
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