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Abstract

Cellular automata are classically synchronous: all cells are simulta-
neously updated. However, it has been proved that perturbations in the
updating scheme may induce qualitative changes of behaviours. This pa-
per presents a new type of asynchronism, the β-synchronism, where cells
still update at each time step but where the transmission of informa-
tion between cells is disrupted randomly. We experimentally study the
behaviour of β-synchronous models. We observe that, although many
effects are similar to the perturbation of the update, novel phenomena
occur. We particularly study phase transitions as an illustration of a
qualitative variation of behaviour triggered by continuous change of the
disruption probability β.

Keywords: asynchronous cellular automata, discrete dynamical sys-
tems, robustness, phase transitions, directed percolation

1 Introduction

Cellular automata are a parallel, spatially-extended, model of computa-
tion, which has been studied as an alternative to the sequential computing
models, for instance Turing machines. By their very structure, they are
well-suited for modelling natural phenomena and for the design of mas-
sively parallel algorithms. These mathematical objects have been mostly
considered in the synchronous case, that is, when all their components are
simultaneously updated. However, this hypothesis of perfect synchrony is
somehow inadequate when modelling systems that are subject to noise or
non-ideal information transmission, as often met in various natural sys-
tems or in asynchronous parallel computing devices. This is why authors
tackled the question of whether a cellular automaton is robust to non-
ideal updating, either without changing its local transition rule (e.g. [4]),
or by adding adapted constructs (e.g. [8]).

The aim of this paper is to study the robustness of cellular automata
by taking into account the possibility of disruptions in the transmission of
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information between cells. To this end, we describe the updating process
of the system in the frame of cellular cycle. This cycle consists of two
steps: (a) the local computation and (b) the transmission of the updated
state of a cell to its neighbours. This dichotomy induces two possible
types of asynchronism: the update-wise asynchronism, or α-synchronism,
which disrupts step (a) and a novel type of asynchronism, the influence-
wise asynchronism or β-synchronism, which disrupts step (b) and perturbs
the interaction between a cell and its neighbours.

The α-synchronous updating is now a relatively well-studied perturba-
tion, whose effect can either be “inoffensive” or trigger drastic qualitative
changes, such as phase transitions [2, 3, 6]. Our goal is now to examine
β-synchronism on simple cellular automata, in particular, comparing its
effects to α-synchronism. We aim at extending the range of perturbations,
in order to gain insight on how complex collective behaviour emerges from
numerous simple local interactions.

On the formal side, this type of asynchronism leads us to extend the
cell state space in order to distinguish the eigenstate, the actual state of
the cell, and the perceived state, the state of the cell which is perceived
by its neighbours. These new definitions are introduced in Sec. 2 while
experimental observations are presented in Sec. 3. We then analyze more
particularly the occurrence of phase transitions in Sec. 4 and proceed to
bring discussion in Sec. 5.

2 Asynchronous Cellular Automata

2.1 Cellular Automata

A synchronous cellular automaton is a discrete dynamical system defined
by A = {L, Q,N , f} where :

• L ⊂ Zd the array of the cellular space, where an element of L repre-
sents a cell.

• Q is a nonempty finite set of states.

• N ⊂ L is the neighbourhood, which associates to a cell the set of its
neighbouring cells.

• f is the local transition rule, which defines the next state of a cell
according to the states of that cell and the ones of its neighbours.

A configuration xt represents the state of the automaton at time t; it
is defined as a function xt : L → Q which maps each cell to a state.
Classically, cellular automata are synchronously updated, meaning that
at each time the local transition rule is applied simultaneously of all cells.
The global transition function is therefore defined as xt+1 = F (xt), so
that, for N = {n1, ..., nk}:

∀c ∈ L, xt+1(c) = f
(
xt(c), xt(c+ n1), ..., xt(c+ nk)

)
.

Without loss of generality, we assume that the neighbourhood N does not
contain the cell itself. This hypothesis is necessary to explicitly represent
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Figure 1: Representation of a cell cycle, for a cell with two neighbours, de-
noted by indices L and R. A triplet represents a cell with its state (y) and the
perceived states of its neighbours (x for left cell and z for right). The prime
sign indicates states that are updated. Solid arrows show the updates of states,
otherwise states are conserved from the previous step. In α-synchronism, the
local transition update applies with probability α and in β-synchronism, the
information transmission is applied with probability β. The lower arrow is the
local transition update, which performs y′ = f(x, y, z) when applied. The fork-
ing upper arrow is the information transmission, which performs z′L = y′ and
x′R = y′ when applied.

the flow of information between a cell and its neighbours. Note that this
does not restrict the expressiveness of f since the current state of a cell
xt(c) is always a parameter of f , possibly not taken into account in the
transition calculus.

2.2 Asynchronism as a disruption of cell activity

Cell cycle. The update of a cell can be represented by a cell cycle,
which we decompose into two steps (see Fig. 1):

• the state update step, where a cell changes its states according to the
local transition function.

• the information transmission step, where the cell transmits the up-
dated state to its neighbours.

We give an example of the cell cycle for the different updating schemes
on Fig. 2. The update-wise asynchronous updating in cellular automata,
or α-synchronism [3], is defined as follows: at each time step, each cell
is updated with probability α, or else left unchanged. We introduce a
new type of asynchronism, the β-synchronism, where each cell is always
updated but the transmission of the new state to the neighbourhood is
realized with probability β, thus allowing us to model outdated informa-
tion. As a result, both perturbations consist in applying one of the steps
of the cell cycle with a probability defined as the synchrony rate.
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Figure 2: Example of the time cycle for a 3-cell sample for synchronous (left), α-
synchronous (middle) and β-synchronous (right) updating schemes (0 is denoted
by a white space, 1 by black). The rule is ECA50 (see Sec. 2.3) but is not
important here.

α-synchronism. Formally, we introduce a selection function ∆ : N→
P(L) which returns for time t the subset of cells to be updated. When α =
1 the updating is fully synchronous and the system is deterministic. As α
decreases, the updating becomes more stochastic. The global transition
function becomes ∀t ∈ N, ∀c ∈ L, N = {n1, ..., nk}:

F∆(xt(c)) =

{
f(xt(c), xt(c+ n1), ..., xt(c+ nk)) if c ∈ ∆(t)

xt(c) otherwise.

β-synchronism. To define this new asynchronism, we need to extend
the classical definition of cellular automata by taking into account the
difference between the eigenstate of a cell, and the perceived state.
Let us consider a cellular automaton A = {L, Q,N , f}. From A we derive
a new cellular automaton A′ = {L, Q′,N , f ′} where :

• Q′ = Q2 is the new set of states.

For a given configuration xt, a cell state is denoted by xt =

(
xte
xtp

)
with xte : L → Q the eigenstate of the cell, and xtp : L → Q the state
of the cell perceived by its neighbourhood.

• the local transition function f ′ is splitted into two parts to decom-
pose its action: state update and information transmission.

Therefore, we write f ′ = ft ◦ fu, so that:

• fu : Q′k+1 → Q′ is the update function, which computes the new
state of the cell based on its eigenstate and the perceived state of
the neighbours:

fu

((
e
p

)
,

(
.
p1

)
, ...,

(
.
pk

))
=

(
f(e, p1, ..., pk)

p

)
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• ft : Q′ → Q′ is the transmission function, the effect of which is the
transmission of the eigenstate by replacing the perceived state:

ft

((
e
p

))
=

(
e
e

)
.

We use the same function ∆ introduced for α-synchronism and define the
global transition function as, ∀t ∈ N, ∀c ∈ L, N = {n1, ..., nk}:

F∆(xt(c)) =

{
ft ◦ fu

(
xt(c), xt(c+ n1), ..., xt(c+ nk)

)
if c ∈ ∆(t)

fu

(
xt(c), xt(c+ n1), ..., xt(c+ nk)

)
otherwise.

2.3 Models studied

Now that we defined our different updating schemes for cellular automata,
we choose to study their effects on two well-studied models.

The Game of Life. This 2-dimensional cellular automaton is ex-
pressed in our formalism as AGL = {L,N , {0, 1} , f} where:

• L = {Z/LZ} × {Z/LZ} is a square grid of size L with periodic
boundary conditions.

• N = {c ∈ L, ||c|| = 1} represents the 8-cell neighbourhood.

• the local transition function f : Q9 → Q is outer-totalistic,that is, it
can be written f(xt(c), xt(c+ n1), ..., xt(c+ n8)) = δ(xt(c), s) where
s =

∑
c′∈N x

t(c′).

If xt(c) = 0, then δ(xt(c), s) =

{
1 if s = 3

0 otherwise.
(Birth rule)

If xt(c) = 1, then δ(xt(c), s) =

{
1 if s ∈ {2, 3}
0 otherwise.

(Survival rule)

Elementary Cellular Automata (ECA). An ECA is a 1-D bi-
nary cellular automaton with nearest-neighbourhood, whose transition
function is determined according to Wolfram’s notation W . In our for-
malism, ECAs are denoted by AE = {L,N , {0, 1} , f} where:

• L = {Z/LZ} is a 1-dimensional ring.

• N = {−1,+1}, i.e. the 2 nearest neighbours.

• the local transition function δ is determined by its code
W = f(0, 0, 0).20 + f(0, 0, 1).21 + ...+ f(1, 1, 1).27.

3 Qualitative observations

We now observe qualitatively the effect of β-synchronism. We are in
particular interested in knowing whether the effects will differ from α-
synchronism. In the rest of this paper, random initial conditions are
constructed, for each cell, with a perceived state equal to the eigenstate,
and chosen uniformly in {0, 1}.
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α = 1 α = 0.95 α = 0.85 α = 0.5 α = 0.1

β = 1 β = 0.95 β = 0.85 β = 0.5 β = 0.1

Figure 3: Game of Life configurations for different values of α and β (0 is
denoted by a white space, 1 by blue). These are obtained with the software
FiatLux for identical initial states, for a transient time t ≈ 1000. The first row
shows the different behaviors obtained with different values of α-synchronism.
The second row displays them for the same values of β-synchronism.

3.1 The Game of Life

Figure 3 shows sample configurations appearing for random initial con-
ditions after a transient time of 1000, which was observed sufficient for
reaching a steady state. We observe that the behaviour separates into
two phases for both types of asynchronism: the system converges to a
fixed point for values of the synchrony rate α or β above 0.9, whereas a
labyrinth-like pattern appears for values below 0.9.
Our experimentations for the Game of Life rely on several macroscopic
parameters that aim at quantifying the behavioral changes:

• the density d is the ratio of cells with state (or eigenstate) 1.

• the activity a is the ratio of instable cells. A cell is said instable at
time t if a synchronous update would modify its state (or eigenstate).
This definition cannot be readily transposed for β-synchronism: what
does a synchronous update mean for a cell whose eigenstate and
perceived state are desynchronized? As neighbourhood knowledge
is always absolute in synchronous cellular automata, we reckon that
it should also be the cases for the estimation of activity. Therefore,
using the notations defined in Fig. 1, we define a cell as instable if
y 6= f(yL, y, yR).

Figure 4 compares the two types of asynchronism through the activity
parameter at steady state as a function of the synchrony rate. At first
sight, the β-synchronous Game of Life seems to react in a similar way to
its α-synchronous counterpart.

1. A singularity occurs for activity in the synchronous case (α, β = 1).
This phenomenon has been explained for α-synchronism as the loss
of stable periodic patterns when a noise is introduced no matter
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Figure 4: Activity a∞ for Game of Life in the continuous state (here t ∈
[10000, 11000]) with synchrony rates ãnd β, averaged over sample of 50 au-
tomata of size L=100. Inset: a closeup for values α, β ∈ [0.9, 1].

how small (i.e. α < 1) [1]. The same explanation stands for β-
synchronism. This means that the traditional construct to make
the Game of Life Turing-universal no longer holds. Nevertheless,
the question of the Turing-universality of the asynchronous Game of
Life still stands.

2. The macroscopic behaviour confirms the phase separation for a crit-
ical value of the synchrony rate αc (resp. βc). For values α > αc
(resp. β > βc), the system converges to a stable fixed point of
low density, which constitutes a passive phase. However, for values
α < αc (resp. β < βc), the system enters an active phase, charac-
terized by the labyrinth pattern (though less regular in β- than in
α-synchronism).

The comparison of both types of asynchronism reveals a similar reaction of
the Game of Life, but this calls for a close observation of the characteristics
of the phase transition.

3.2 Elementary Cellular Automata

Through the search of reflexive and complementary symmetries, it is pos-
sible to reduce the number of ECA to study from the 256 possible models
to 88 inequivalent ECA.

Our experimentations for these 88 ECA rely on several macroscopic
parameters that aim at capturing the behavioral changes between different
systems:

• the density d, as defined above.

• the 01 block density (00, respectively) is the ratio of successive cells
with states 0− 1 (resp., 0− 0).

A great range of results were obtained from the comparison of both types
of asynchronism applied to the 88 minimal ECA1. Although these pertur-
bations have similar effects on most models, some surprising divergences
of behaviour appeared, for example rules ECA6, 22, 50, 72 and 200. For

1for the complete results: http://www.loria.fr/~boure/results/ecaparambeta/
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Figure 5: Plots of asynchronous behaviour in continuous state for different ECA
and parameters. Values are taken for a grid of size 1000, after a transient time
of Tt = max(10000, 1000/α) (β respectively) and averaged over a sampling time
Ts = max(1000, 100/α) (resp. β).

the sake of conciseness, we choose to focus on a single rule, namely ECA50.
An exhaustive study of the phenomena is planned for future work.

The case of ECA50. A notable phenomenon appears for β-synchronous
ECA50. The study of density parameter (see Fig. 5a) shows a similar plot
profile for both α- and β-synchronism, including a phase transition, which
suggests that ECA50 reacts in a similar way to these perturbations.

However, a difference of behaviour is observed with the visual inspec-
tion of the evolution of the automaton over a few time steps (see Fig. 6).
For the same synchrony rate at 0.75, β-synchronism patterns appear much
closer to the synchronous automaton than α-synchronism. In particular,
in the long run clusters of 0-states are smaller and less frequent, and
clusters of 1-states inexistent.

This can be explained for values of β close to 1 with the following
observations:

• the checkerboard regions (i.e. alternated 0s and 1s) are robust to
β-synchronism, that is, the few anomalies (regions of 0s) that dis-
turb the regularity of the region are quickly restored to the original
pattern.

• the pairs (i.e. 00 and 11 pairs) follow a non-biased random walk,
and annihilate when they meet.

This example illustrates the qualitative differences that may occur
between α- and β-synchronous cellular automata. Although this specific
case calls for further analysis, we note that ECA50 is more regular for
β-synchronism than for α-synchronism. This regularity can be “seen” as
the proximity between rule ECA50 and the inversion rule ECA51, which
differ only by one bit in their transition table. As the rule ECA51 is
insensitive to β-synchronism (the inversion rule is independent from the
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α=0.75 β=0.75 α=0.95 β=0.95 synchronous

Figure 6: Configurations for ECA50 under different updating schemes (0 is
denoted by a white space, 1 by blue).

Table 1: Table of probabilities for updated states to become 1 after an β-
synchronous transition of ECA51 (inversion rule). Each column represents a
possible state for a cell and its neighbourhood (upper box) and the associated
probability to become a 1 for the output of the transition function (lower box).
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neighbours state), there also seem to exist a proximity in terms of global
behaviour between ECA50 and ECA51 for the β-synchronism. One may
thus wonder what is the origin of such radical difference between the
two updating schemes for such models, difference that we try to explicit
through stochastic cellular automata.

Stochastic cellular automata. By its very nature, it is possible to
describe an α-synchronous ECA in terms of an elementary stochastic cel-
lular automaton, that is, to define it with a function fα : {0, 1}3 → [0, 1]
which associates to each neighbourhood state (x, y, z) the probability to
update to 1. Indeed, the local rule fα is simply obtained as the barycentre
of the transition function f and the identity Id with weights α and 1−α,
respectively.
By contrast, β-synchronism requires us to extend the state space in order
to differentiate eigenstate and perceived state. As a result, the number of
inputs of the transition table is doubled to take into account whether the
two states are synchronized, that is, if the eigenstate and the perceived
state are identical.
As said before, ECA51 is insensitive to β-synchronism. However, this par-
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ticular property of ECA51 does not appear readily on its transition table
(see Table 1). This makes the stochastic table all the more “cryptic”, as
the divergence from synchronism cannot be deduced from the reading of
the table, unlike α-synchronism. This shows that the difference between
the two types of asynchronism is non-trivial, and justifies the expertimen-
tal approach as well as calls for further in-depth analysis.

4 Study of phase transitions

The occurrence of phase transitions is probably one of the most remarkable
phenomena that arises in asynchronous cellular automata: there exists
a non-trivial value of the synchrony rate, the critical threshold, which
separates two distinct qualitative behaviours of the system. We are now
interested in in measuring quantitatively this phenomenon.

4.1 The Game of Life

How to quantify the modification undergone by some cellular automata
for a critical synchrony rate? As pointed out in Sec. 3.1, the activity
parameter reveals the existence of two distinct phases in the α- and β-
synchronous Game of Life. For the α-synchronism, the phase transition
has been proved to be second-order [1], that is, if the macroscopic mea-
sures that describe the behaviour are continuous, their derivative curve is
discontinuous for a critical value of the synchrony rate.

How to determine the critical synchrony rate αc or βc? A simple
method to determine its value would consist in estimating the singularity
point where the slope jumps from null to infinity, but this technique is
rather imprecise as it introduces systematic biases. In order to reduce the
biases, we follow a different protocol (see e.g. [5]):

1. We fix β, start from a random initial condition and let it evolve for
a fix number of steps.

2. We monitor the evolution of the order parameter for a long simula-
tion until we observe a sub-critical or super-critical behavior; In a
log-log plot, a concave curve occurs for the passive phase (activity
converges to zero) and a convex curve for the active phase (activity
converges to a non-zero value). As we expect the order parameter to
follow a power law K.t−δ near criticality, its evolution for the critical
synchrony rate should appear as a straight line of slope −δ.

3. We repeat the experiment with a value closer to the critical point
until a satisfactory precision is reached (here 10−3).

For the α-synchronous Game of Life, it has been measured that αc =
0.9083 and that the evolution of the order parameter of this value fol-
lowed a power law in the form K.t−δ with δ = 0.451 [3], which is the the-
oretical critical exponent for the directed percolation universality-class in
2+1 dimensions [7]. Figure 7 shows that the measures for β-synchronous
updating. They also confirm the directed percolation hypothesis, with
βc = 0.945.
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Figure 7: Transition phases analysis for the Game of Life (top) and ECA50
(bottom). The straight lines follow a power law f(t) = K × t−δ. For the Game
of Life, measures are averaged over a sample of 25 automata of size 800× 800.
The straight line gives the critical exponent δ = 0.451. For the ECA50, measures
are averaged over a sample of 10 automata of size 20000. The straight line gives
the critical exponent δ = 0.1595.
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4.2 Elementary Cellular Automata

Among the 88 minimal ECAs, it has been observed that several ECA dis-
play second-order phase transition in their α-synchronous version. These
rules were proved to belong to the directed percolation class [2], and have
been divided into 3 distinct subclasses:

• rules 18, 26, 50, 58, 106 and 146 are the DPhi class, for which the
active phase of density (respectively the passive phase) occurs for
α > αc (resp. α < αc).

• rules 6, 38 and 134 are the DPlow class, where active and passive
phases are inverted.

• rule 178 is the sole element of the DP2 class, where the density is
stable but a phase transition appears for the 01-block-density.

As seen on Fig. 5, these subclasses react differently to β-synchronism:

1. The rules of the DPhi class have shown little behavioural change be-
tween the two types of asynchronism: the phase transition appearing
for the density parameter in Fig. 5 is conserved.
For α-synchronism, the same protocol than for the Game of Life
was previously applied [2] to ECA50, and estimated the critical syn-
chrony rate at αc = 0.6282, showing good evidence that the phase
transition belongs to the directed percolation universality class.
For β-synchronism (see Fig. 7), we measure βc = 0.601, and estimate
that the behaviour at critical synchrony rate is in good agreement
with a power law of critical exponent δ = 0.1595, which is the theo-
retical value for the directed percolation in one dimension.

2. Surprisingly enough, no phase transition was observed for the rules
of the DPlow class in β-synchronism (see ECA6 in Fig. 5), leaving a
constant null-density convergent phase for any value of β.

3. Finally, the ECA178 (DP2 class) reproduced a similar plot profile
for the 01-block-density (see ECA178 in Fig. 5).

These first results show how rich the study of β-synchronism can be, and
that asynchronism in cellular automata cannot be trivially reduced to the
simple perturbation of the local update.

5 Discussion

This paper presented a formalism for a new type of asynchronous up-
dating in cellular automata, the β-synchronism, based on the disruption
of information transmission between cells. We compared this perturba-
tion to α-synchronism and observed from a macroscopic point of view
that α- and β-synchronism had similar effects. It was observed that β-
synchronous updating also produces phase transitions, but for a smaller
set of rules than α-synchronism. We remarked that there was no phase
transition for the ECA of the DPlow class but we have no explanation for
this phenomenon so far.
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By studying ECA50 more closely, we could exhibit an example for
which the macroscopic behaviour was similar for both types of asynchro-
nism but for which additional properties were observed.

This extension is a first step towards a unified view of asynchronism,
based on the idea of cell cycles. There exist plenty of other ways the cel-
lular activity can be pertubed. This raises the question of how the space
of perturbations can be described.
An interesting lead also lies in the application of these types of asynchro-
nism to collective systems, so that their robustness to different pertur-
bations are studied with regard to expected properties. This may help
us characterize the robustness of natural systems and lead to a better
understanding of spatially-extended computing models, such as cellular
automata.
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