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Abstract:

This paper presents a method for interactively rendering complex repetitive
scenes such as landscapes, fur, organic tissues, etc. It is an adaptation to Z-buffer
of volumetric textures, a ray-traced method, in order to use the power of exist-
ing graphics hardware. Our approach consists in slicing a piece of 3D geometry
(one repetitive detail of the complex data) into a series of thin layers. A layer is a
rectangle containing the shaded geometry that falls in that slice. These layers are
used as transparent textures, that are mapped onto the underlying surface (e.g. a
hill or an animal skin) with an extrusion offset. We show some results obtained
with our first implementation, such as a scene of 13 millions of virtual polygons
animated at 2.5 frames per second on a SGI Os.

1 Introduction

Visual complexity is part of the realism of a scene, especially for natural scenes like
landscapes, fur, organic tissues, etc. When represented explicitly with facets, these com-
plex -and often repetitive- details lead to very high rendering time and aliasing artifacts.
In some cases these details are flat enough to be represented with flat textures. However
in many case they are really three-dimensional, i.e. showing view-dependent appear-
ance and parallax motion (e.g. trees on a hill). Moreover, mesh decimation algorithms
are of no help on such complex objects. The situation is even worse in the scope of
interactive rendering, where only very low complexity scenes can usually be dealt with
in the available time.

The fact that a detail is not flat does not imply it has to be represented by a com-
prehensive - and costly - 3D representation such as a mesh. Indeed, the 3D impression
is a progressive notion: it includes several properties, such as view-dependent contour,
view-dependent apparent location, parallax motion, occlusion, shadowing, diffuse re-
flection and highlights, etc. Depending on the size of the object (or the detail) on the
screen, some of these properties can be sufficient to convey a 3D impression. A means
to do efficient rendering with few aliasing artifacts is thus to use a representation that
refers to the minimum amount of information that is sufficient to reproduce what can
be seen.

1.1 Related work

Volumetric textures, introduced in 1989 by Kajiya and Kay [4] and extended by us [8,
9], consider three different embedded scales to represent the information (see figure 1):
- large shape variations such as the surface of a hill or an animal skin are encoded
using a regular surface mesh,
- the medium scale such as grass or skin, which is concentrated in the neighborhood
of this surface, is encoded using a reference volume stored once and mapped several
times in the spirit of textures (instances are named texels),

* IMAGIS is a joint research project of CNRS/INRIA/UJF/INPG.
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Fig. 1. Volumetric texture specification (cross-section).

- the small scale, consisting of the microscopic shape of individual objects, is encoded
by a reflection model stored in each voxel. In the multiscale extension of volumetric
textures, this scale also corresponds to the pixel size.

To relate this to the progressive 3D impression mentioned before, one can see that
explicit geometry is used only to specify the largest scale; volume data is sufficient! to
reproduce occlusions and parallax effects at middle scale (i.e. a few pixels), while the
illumination model stored in the voxels simulates the geometry below pixel size.

Texel rendering has some similarities with volume rendering, a previously costly
ray-tracing method family. In 1994 Lacroute and Levoy introduced a new approach [5]
adapted to graphics hardware, which makes volume rendering interactive. This ap-
proach consists of factoring the voxels by considering slices of the volume, that can
be encoded by textured transparent faces. Volume rendering thus consists of superim-
posing these transparent slices. Since common 3D graphics hardware can deal with
textures and transparency at no extra cost, rendering cost is now only proportional to
the number of slices.

1.2 Overview

This paper presents a method for interactive rendering of complex repetitive geometry.
The idea is to adapt the volumetric textures presented above [8, 9] to Z-buffer graph-
ics hardware, using the same sort of approach that was used for volume rendering by
Lacroute and Levoy [5]. We thus expect to obtain the same kind of complex scene as
the first, with the same kind of interactiveness as the second.

Contrary to volume rendering the size of the volumes used in our method is small.
We can thus render a relatively large number of such volumes interactively. For instance,
a volume encoded with 64 slices can be rendered with a cost of 64 quadrilateral faces
(i.e. 64 x 2 triangles), while the represented shape is built from a model that might have
at least a thousand faces (and often ten or a hundred times more). Moreover, this cost is
independent of the slice resolution.

On the other hand, using graphics hardware brings some limitations: with hardware
rendering one cannot compute shading nor shadows for each individual texture pixel
(i.e. for each volume cell), while ray-tracing can do this. Only color is stored in the
volume, so the shading and shadows - if any - have to be captured inside the pattern
at the creation stage, and will not be updated according to the main surface orientation
and light position.

! Because of the concentration of the data complexity within the surface neighborhood, and the
small volume resolution necessary to provide 3D location effect, in our context a volume is an
efficient and compact way to store and render data.



The remainder of this paper is structured as follows. In section 2, we deal with the
basic representation and rendering of interactive volumetric textures, that will be ex-
tended in section 4. In section 3 we describe how to encode the shape of a detail into a
texel, in particular by converting existing representations. Animation approaches avail-
able for the ray-tracing method [7] are still usable for ours. We review these approaches
in section 5. We discuss the results in section 6.

2 Basic representation and rendering

In this section, we present our method to encode a complex object made of repetitive
details lying on a surface, and explain how to render the representation obtained. The
modeling of the content is the object of the next section.

2.1 Data structure

In the same way as ray-traced volumetric textures [8], the specification of an object
consists of a triangular mesh with (u,v) texture coordinates and a height vector at the
vertices, plus a volumetric texture pattern. The height vectors control the direction and
thickness of the third dimension of the texture (see figure 1).

The volumetric part of the model is different to the one used for the ray-traced
version: it consists of a set of RGBA textures, representing infinitely thin horizontal
slices of the volume. Empty parts have A = 0 (i.e. the slice is transparent there), and
opaque parts have A = 255.

Fig. 2. A texel is drawn using extruded textured triangles.

2.2 Rendering

The rendering is done using a standard hardware-accelerated 3D graphics library
(OpenGL [6], in our implementation), by drawing textured extruded facets above each
geometric facet of a “volumetrically textured” surface. The three vertices of an extruded
facet (corresponding to a slice) are obtained by linearly interpolating the position along
the three height vectors at the three vertices of the surface facet (as illustrated in fig-
ure 2). Hardware MIP-mapping [13] can be used to deal with aliasing at grazing view
angles and distant location. Notice that texture, transparency and MIP-mapping come
at no extra rendering cost? on various 3D graphics cards.

It is known that transparency does not work well with a Z-buffer; correct trans-
parency would require storing several Z, alpha and color values per pixel. As long as
the alpha value A is 0 or 255, this is not a problem: transparent texture pixels are not
drawn, and opaque texture pixels hide what is behind them. However a problem occurs
when semi-transparent texture pixels exist, either because the content is smoothed or
the MIP-mapping feature is on. To deal correctly with this problem, one has to draw the
slices from back to front. This is easy to achieve within a single texel, but this would also
require to sort the faces with Z, which is costly. Thus, we do not allow semi-transparent
data in our implementation. However we do draw the slices from back to front, since
this avoid the artifacts that may occur due to the lack of resolution in Z between slices.

% To a certain extent, beyond which hardware bottlenecks occur.



To choose the drawing order, it is sufficient to test the dot product of the normal to the
surface facet and the view direction, assuming that the texel is not too distorted by the
height vectors.

Each volume location is treated by the Z-buffer as a regular pixel fragment (i.e. it
has its own Z-value), thus the intersection of two texels is dealt with correctly, which
was not the case in the ray-tracing version. This important property is illustrated in
figure 10(right) in the results section 6.

3 Modeling the pattern

In this section we describe how to encode in a texel one repetitive detail of a complex
object. This detail is created using an existing modeling tool. However, using a textural
approach to repeat the detail brings some constraints to the pattern shape: the 3D texture
pattern, i.e. the reference volume of the volumetric texture, corresponds to the cubic
box between (u,v) = (0,0) and (u,v) = (1, 1) in the texture space. The mapping will
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Fig. 3. Left: Pattern with torus topology. Right: Isolated pattern.

generate the (virtual) copies of the detail according to the (u,v) texture coordinates
at the vertices. For the result of the mapping to appear continuous, the cubic pattern
content has either to obey torus topology, or to consist of a disconnected shape that
does not reach the borders of the reference volume, as shown in figure 3.

Once an appropriate shape has been chosen or modeled for the detail, it has to
be encoded in the volume (i.e. the set of texture slices) in such a way that the texel
reproduces the same visual effect. This leads to several stages in the encoding:

- slicing the 3D description,

- evaluating the shading at each location,

- filling the inside of the shape.
The last issue is a key point: if the description is a surface, and not a solid, each slice of
it is a contour (see figure 4(left) ), so gaps would appear between slices when the view
direction is not orthogonal to the surface. Thus the shape has to be solid, or to be turned
into solid if the description is a surface3. Some inside slice pixels are visible between
two contours* as shown in figure 4(middle). We need to propagate the surface color
toward the inside, in such a way that the image appears as continuous as possible.

This approach is not sufficient for grazing view angles, because the gap between
slices appears, as illustrated in figure 4(right). This problem is solved in section 4.
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Fig.4. Left: Contours. Middle: Filled contours. Right: Gaps appearing between slices at grazing
view angles.

3 Of course, this does not concern shapes made of sparse polygons, e.g. foliage.
4 Here, we only deal with opaque solids.



3.1 Slicing and shading the pattern shape

In the case of a standard surface description (e.g. an Openlnventor database), one can
use a standard renderer (e.g. OpenGL) to do the slicing and shading at the same time.
The view point is set at the top of the 3D pattern, a bounding box is defined by the
user, then the front and back clipping planes are successively set around each slice (as
illustrated in figure 5). Each resulting RGBA image is stored as a texture slice (including
the alpha value, which is crucial), and the slices set is stored on disk.
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Fig. 5. Slices construction using a regular rendering tool.

A ray-tracer may be used as well for the rendering of the slices, which would allow
for shadows. However, as for the shading, one has to keep in mind that the considered
light directions will be fixed at this construction stage.

3.2 Filling the inside

For surface descriptions, the slices are empty contours, that need to be filled. Worse,
these contours are incomplete. Thus the filling comprises three stages:

- closing the contours,

- marking the inside (i.e. where to propagate the color),

- performing the color propagation within a slice.
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Fig. 6. Cross-section of the slices. The contours are bold. Note that there is sometimes a gap of

several slices. This means that the intermediate slices have unclosed contours at this location.

The contours are generally not closed because the drawing of polygons viewed at a
grazing angle (typically on the shape silhouette) generates consecutive pixels that can
fall in very distant slices, i.e. their step in z is greater than the 2 interval between slices.
This results in the contour not being drawn on the intermediate slices (see figure 6). To
cope with this, we have to close the discretized shape surface by filling the gaps: let us
call a column the set of pixels at a given location (x,y) through the set of slices. We
now consider the volume as a set of columns. The segments in a column that fall inside
the shape are made of uncolored pixels marked ‘inside’ bounded by two colored pixels,
as shown in figure 6(right). A gap in the surface occurs when some of the uncolored
column pixels directly neighbor the outside, because one or more of the four neighbor
columns are empty at that position. Call exposed (i.e. to the outside) this part of the
column. The problem of closing the contours is thus equivalent to filling these exposed
voxels. Several algorithms are available for closing and the shape filling [10]. We have



implemented a basic algorithm for our tests, which we present in appendix. Note that
the contour completion process has also to get color values for the contour pixels added,
to be obtained by interpolating the surrounding colors.

Once the inside is marked and the surface is closed (i.e. there are closed contours
in every slice), we fill the contours by iteratively propagating the colors. If a pixel is
marked as inside and uncolored, and at least one pixel in its neighborhood is marked
as colored, then the pixel is painted. The used color is the average of the colored pixels
of the neighborhood (it is drawn in a separate buffer to avoid bias due to the order of
scanning).

3.3 Other kinds of shape specification

Implicit surfaces

Implicit surfaces [1] are easier, because they directly specify solid objects: a pixel
is inside if the implicit function is greater than one, and the shading is obtained using
the gradient of the function as a normal. Since the construction of the texture pattern
does not especially need to be efficient (it is a precomputation), we simply evaluate the
implicit function at each volume location along the slices, and thus no filling is required.
Hypertextures [12] can be handled exactly the same way.

Height fields

Height fields are a popular way of specifying the details of a surface. We consider a
2D grey-level image with [0, 255] range values. Each image (z, y) location corresponds
to a column in the volume: we set the pixel of the slice that fits the z value encoded by
the intensity of the image at that location. Thus, the slicing stage is trivial. The normals
can be computed from the height gradient in the neighborhood and used with the Phong
shading to get a color.

We have used Perlin noise [11] to produce grey-level images to be used as height
fields (see figure 12 in section 6). Since this function is continuous, we prefer to directly
use its gradient to get the normals, thus we provide directly to the height fields voxelizor
an image of the shading in addition to the image of depth. We also incorporate in this
image information such as color and darkness (proportional to the depth).

The filling is similar to the process done in section 3.2 (and detailed in appendix 7)
for shapes specified by their surface. It is simpler however, since each column has only
one segment, with the top given by the image and the bottom at the volume bottom. The
inside corresponds to all the voxels that are below the given z value. The contours have
to be closed as explained in section 3.2, with fewer special cases. The final color filling
of the slices is exactly the same.

4 Dealing with grazing view angles

When coping with grazing view angles, typically on the silhouette of the underlying
surface on which the texels are mapped, horizontal slices are no longer satisfactory
because the gap between slices appears, as illustrated in figure 4(right). In this section,
we introduce quality criteria to decide if the appearance of a texel is correct or not, and
we additionally store alternate directions of slice sets to get a correct appearance for
any view direction. This also provides some hints for optimizations.

4.1 Quality criteria

When the view direction has an large angle from the vertical (of a texel), one can may
be able to see through the sliced shape, because the projections on screen of two con-
secutive slices are not superimposed (see figure 4(right) ). This depends on the angle a,



on the length h between slices, and on the (horizontal) thickness of the filled contours
in the slices (call e the narrowest slice), as represented in figure 7(left). This provides
a first quality criterion, htan(a)/e < 1, that indicates when such an artifact does not
occur. This criterion can be used either to choose the number of slices to use to repre-
sent correctly a detail up to a given limit view angle, or to switch to an alternate slicing
direction as describe in subsection 4.2.

However, as stated in section 3, the image may look degraded even for smaller view
angles, because when the view direction is not orthogonal to slices one can see some
pixels that are inside the contours. At some point an inside color differs from that of
the surface. This provides for another quality criterion: if the user does not tolerate
that the inside can be seen “deeper” than a constant d (see figure 7), the criterion is
htan(a)/d < 1. A maximum value for d is e/2: since the shading of two opposite
sides often has the opposite contrast, at some point (when closer to the other side of
the contour) the deepest visible inside pixel color is closer to the opposite contrast than
to the color of the border whose is should appear continuous (see figure 7(right) ). The
smallest contour thickness being e, this gives the limit of penetration e/2. Once again,
such a criterion helps in choosing a correct number of slices. E.g. if one wants to allow
view angles up to @ = 7/3 and the narrowest horizontal part of the shape is e = 3
texture pixels wide, then the distance between slices should be less than 0.9 times the
length of a texture pixel.

Fig.7. Left: Slicing characteristics. Right: Limit for the second criterion: half of the inside of the
narrowest slice is visible.

4.2 Alternate slice directions

To deal with grazing view angles (relative to the main slice set, called ‘horizontal’, i.e.
parallel to the underlying surface), we also store the same volume as a set of slices in
the two vertical slice directions (see figure 8).

Fig. 8. The three slicing directions.

At rendering time, the dot product ¢; of the three directions and the view direction
indicates which of the three sets to use (a classical solution when one has to draw objects
organized along a 3D grid or an octree [3]). As suggested in the previous subsection,
one should choose the slices direction that has the smaller quality criterion value. The
tangent of the view angle is \/1 — ¢ /¢;, so that the direction to use is the 4 for which
(1/c? — 1) % h? is minimum, with h; the slice density for direction 4, i.e. the size L; of
one texel in this direction divided by the number N; of slices in this direction®, Thus, a

5 However in our early implementation, we simply choose the direction for which the absolute
value of ¢; is maximal.



volume can be visualized correctly from any direction.®

4.3 Optimizations

Rendering a complex scene modeled with volumetric textures finally consists in draw-
ing several thousands of textured polygons. There are two aspects in the rendering cost:
- the number of textured polygons that are drawn,
- the efficiency of the rendering process.

The number of polygons
There are two ways of decreasing the number of polygons to render: not drawing
invisible texels (or slices), and using the minimum slice density for each texel.

The first issue is not easy to solve, since a texel lying on a back face can have some
parts that are visible, so that culling is not trivial in general. A possible improvement
would be to first draw (and temporarily) the bounding box of the texel, to check if at
least one screen pixel was affected (e.g. using the stencil planes), and to proceed the
rendering of this texel only in this case (quite like in [14] for visibility culling).

The second issue can be dealt with by deriving the minimum number of slices N; to
get a correct image from the quality criterion: h; tan(a)/d < 1, so N; > L; tan(a)/d.
This provides at the same time the direction and the number of slices to get a correct
result with the lowest cost.

Another criterion can be used to decrease the number of slices with the distance:
if one wants that the apparent distance between slices be less than p pixels on screen
(p < 1), the criterion is hszlfn](ca) <p.

To avoid aliasing, we proceed quite similarly to MIP-mapping [13]: the number of
slices in each set is a power of two, and we precompute several sets of slices. The
criteria provide an optimal number of slices, which we round up to a power of two, that
gives the set number to use. (None of these optimizations were used when running the
tests presented in the result section.)

The efficiency of rendering

The effective rendering cost is strongly linked to the fact that the various graphics
system bottlenecks can be avoided. In our case, a crucial one is the saturation of the
texture cache. To minimize the potential texture cache faults, we use an alternate texel
rendering method, that first draws all the occurrences of a given texel slice (in order
to satisfy the back-to-front drawing requirement, the slices of front facing and back
facing texels are drawn separately). Notice that this is valid only as long as there is no
semi-transparent data, which would need to draw the back texels before the front texels.

5 Animating volumetric textures

Three ways of animating volumetric textures are mentioned in [7], that also correspond
to three scales (illustrated on figure 9):
- deforming the underlying surface (e.g. for a flag or the skin of an animal),
- deforming the texture mapping, particularly the height vectors orientation (e.g. to
simulate the wind on grass or fur),
- using several cycling volume contents along time, as for cartoons (e.g. for local
oscillations).



texel content modification
Fig. 9. The three modes of animation, that also correspond to three scales.

These methods are still usable with our interactive rendering. Surface vertices or
height vectors modifications need to recompute few items at each frame, which can be
done using physical models (see [7]). Time constraints are the same as for any near
real-time animation of simple surfaces. Cycling a volume set has some consequences
on memory if different volumes of the set are visible in the same frame. Notice that the
texture memory on SGI Oy is the same as the main memory, so that this is not really
a limitation on the machine we use for our tests. However this can be a problem on
other platforms, thus the drawing of the instances of a given pattern has to be grouped
together, so that the texture cache changes only once per kind of pattern.

6 Results

‘.

Fig. 10. A single pear texel at resolution 643. Right: Surperimposition of two texels.

The first example is an Inventor database of a pear, having about 1000 faces. The
figure 10 shows a single texel at resolution 64 x 64 x 64 from various viewpoints (using

6 Notice that SGI has 3D texture facilities that also consist of a color volume, which can be
indexed more easily (a single set of slices is sufficient). We have chosen not to use this feature
because it is not available on most graphics hardware (in contrast to textures and Z-buffer), and
because we want to control the texture memory usage to avoid swapping.



different slices directions). On the right, the figure illustrates that the superimposition of
texels works correctly. In figure 11(left) we present the mapping of 96 pears on a sphere
mesh having 192 triangles. At video size, this scene is refreshed at 2 frames per second
on an SGI O,. Since one texel representing the pear is rendered with 64 x 2 triangles,
while the geometric model contains 1000 triangles, the rendering gain is about 7.5 times
with equal visual complexity. Note that the pear is a simple model; the gain would be
more when using a more complicated model. Oppositely, it is clear that our method is
not interesting if the complexity of the pattern is less than 64 faces.

Fig. 11. Left: Mapping of 96 pear texels on a sphere. Right: Mapping of 16 bushes.

The second example is based on an AMAP [2] generated bush of 3,500 triangles.
Since the data consists in sparse triangles, no filling is done. The texels have a 256 x
256 x 64 resolution. The rendering of 16 instances shown in figure 11(right) is done at
6 frames per second. Note that because the number of instances is tuned at the mapping
level, the cost would be the same even with many more bush instances.

Fig. 12. Cyclical Perlin noise used to generate the height field, and the illumination computed
from its gradient.

The third example uses an height field created with a cyclical Perlin noise. The
noise and the illumination computed from its gradient are figured in 12. A single texel
at resolution 256 x 256 x 64 (i.e. with 64 slices) is shown on figure 13, with various
deformations obtained (in real-time) by modifying the height vectors. Such an height
field should be geometrically represented with 256 x 256 x 2 = 131, 072 triangles, while
using this texel it is rendered with 64 x 2 triangles, with equivalent visual complexity.
Here, the gain in polygon drawing is about 1000 times. Note that some artifacts occur
on the top left of the deformed texel, where the quality criterion is not satisfied (by
evaluating the criteria at the facet center, one assumes the deformation is small).

Image 15 (see color section) represents the mapping of 96 texels on a sphere mesh



Fig. 13. Left: A texel at resolution 256 x 256 X 64 created from the height field. Middle and right:
Deformation of the texel by modifying the height vectors.

of 192 triangles. The frame rate is about 1.3 frames per second on an SGI Os. The ren-
dering of this scene could be optimized a lot, as suggested in section 4.3: no back-face
culling is performed. Moreover, half of the texels appear on the sphere silhouette, thus
10% of the image represents 50% of the drawing, and 66% of the cost (because verti-
cal slicing that is more dense due to the texture resolution is used near the silhouette).
This is a waste, because on the silhouette keeping a lot of slices is useless considering
the criteria seen in section 4.1. We thus expect to multiply the frame rate by about 5
by doing these optimizations. The figure 16 (see color section) illustrates the mapping
of 100 texels on a jittered plane at 2.5 frames per second. This last scene has a visual
complexity of 13 million of triangles.

7 Conclusion

We have presented a way to considerably increase the visual complexity of scenes dis-
played in the scope of interactive rendering, by adapting the ray-traced volumetric tex-
ture method [8, 9] to the graphics hardware features typically available on today’s 3D
graphics cards. Each texel mapped on a surface is rendered by drawing a set of extruded
faces covered with transparent textures. The extrusion is controlled by height vectors
located at the vertices (which can be animated). We propose several ways to build the
texture content from various 3D descriptions (meshes, implicit surfaces, height fields).

Compared to the ray-tracing version, the rendering quality is of course lower (shad-
ows and illumination are fixed). But compared to the low complexity of the scenes
usually displayable at an interactive rate, our method brings a large improvement as
shown by our results: the apparent complexity can be of 13 million polygons. The re-
alism induced by the amount of visible details was previously totally unavailable for
virtual reality applications. Among possible applications, we aim at introducing these
apparent details in a surgery simulator we are working on. The main organ surfaces are
reconstructed from scanner data, and only these surfaces are taken into account in the
physical simulation of deformations. The 3D details added by the volumetric texture
simply enrich the image by “dressing” these surfaces.

As future work, we want first to improve the frame rate by implementing the opti-
mizations mentioned in section 4.3, and optimizing the OpenGL code, in order to get
closer to real-time. We are currently working on the algorithm which uses an adaptive
number of slices. Another issue is the development of a less naive filling algorithm to
deal with more complicated patterns. We are also investigating ways of generating local
illumination on the fly, possibly in the spirit of bump-mapping textures using high-end
graphics capabilities.
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Appendix: Filling the shapes

Marking the inside of the shape

This stage prepares the color propagation stage (and can also help the contour closing stage), by
indicating where to propagate. It is thus a regular filling problem. We simply consider the parity
of surface crossing between the current location and the top: for each (x, y) horizontal location,
we traverse the ‘volume’ along z (i.e. the successive slices) from top to bottom, assuming that the
top is outside the shape, and we flip a flag each time an opacity transition is found at a voxel (i.e.
a texture pixel of a slice). Thus the inside area of each slice is marked. This method was easy to
implement for our tests, but is known to fail for complicated shapes. A better filling method like
non-recursive connectivity filling [10] should better be used in general.

Closing the contours

‘We have seen in 3.2 that this is equivalent to filling the exposed part of a column. We interpolate
the color in the intervals defined by the top of the current column segment and the top of the
neighbor columns segments that start below it (and we do the same for the bottom). We compute
this interpolation for each direction in which the column is exposed to the outside (i.e. up to four),
and we store the mean of these, thus coloring the missed contour pixels (see figure 14(left) ). If
the surface is vertical, the column has no neighbor in one direction. Then we we interpolate the
color from the top to the bottom of the segment (see figure 14(right) ).
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Fig. 14. Filling of the exposed part of the column. Right: Segment with one or two colored ends.



Fig.16. Mapping of 100 texels on a jittered
plane made of 200 triangles.

Fig.15. Mapping of 96 texels on a sphere.



