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ABSTRACT

We present measurements of the fractal dimensions associated to the ge-
ometrical clusters for Z4 and Z5 spin models. We also attempted to measure
similar fractal dimensions for the generalised Fortuyin Kastelyn (FK) clusters
in these models but we discovered that these clusters do not percolate at the
critical point of the model under consideration. These results clearly mark a
difference in the behaviour of these non local objects compared to the Ising
model or the 3-state Potts model which corresponds to the simplest cases
of ZN spin models with N = 2 and N = 3 respectively. We compare these
fractal dimensions with the ones obtained for SLE interfaces.

1 Introduction

The geometrical description of phase transitions has a long history [1]. The existence of
exactly solved models and, most importantly, the richness of the conformal symmetry in
two dimensions (2D), make the two-dimensional statistical systems an ideal framework
to study this problem. The critical points of 2D systems can be classified using confor-
mal field theories (CFTs) which also provide a powerful approach to compute exactly
correlation functions of local operators. The first major breakthrough in the study of
conformally invariant interfaces in 2D critical models has come from the introduction
of the so-called Coulomb-gas (CG) formalism [2]. When a model is provided with a
CG description, the combination of CG and CFT techniques allow the exact computa-
tion of geometrical exponents which characterize the fractal shape of critical interfaces.
This has been done for a variety of critical statistical models as critical percolation, self-
avoiding walks, loop erased random walks, etc. All these models are associated to the
so called minimal CFTs or equivalently to the critical phases of O(n) models [2]. Using
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the CG description of the O(n) model, the fractal dimension (and more generally all the
multi-fractal scaling exponents) of critical interfaces has been exactly computed [3, 4].
A remarkable recent development in the study of critical interfaces in 2D systems came
with the introduction of a conceptually new approach based on the so called Schramm-
Loewner evolutions (SLEs), which are growth processes defined via stochastic evolution
of conformal maps [5, 6, 7]. Again, the SLE approach, which provides a geometrical
description of CFT, is completely understood only in the case of minimal CFTs [8,9,10].

The minimal CFTs are constructed by demanding the correlation functions to satisfy
the conformal symmetry alone and they represent a small set of CFT theories. There
are many other interesting CFTs, called extended CFTs, which describe many condensed
matter and statistical problems which are characterized in general by some internal sym-
metry such as, e.g., the SU(2) spin-rotational symmetry in spin chains [11] or replica per-
mutational symmetry in disordered systems [12, 13]. Despite all the recent activity and
progress, the geometrical properties of such extended CFTs are in general not understood.
In this respect some progress has been done by studying the connection between SLE and
Wess-Zumino-Witten models, i.e. CFTs with additional Lie-group symmetries [14, 15],
and by defining loop models associated to some extended CFTs [16, 17, 18, 19, 20]. In
this direction of investigation, a very interesting family of critical models are the ZN

spin models (defined below) i.e. a lattice of spins which can take N -values. The nearest-
neighbor interaction defining the model is invariant under a ZN cyclic permutation of
the states. For N = 2 and N = 3 these models correspond to the well known Ising and
three-states Potts model whose critical points are described by minimal CFTs. For N ≥ 4
instead, the models admit critical points described by parafermionic theories which are
extended CFTs where the role of the Z(N) symmetry beside the one of conformal sym-
metry must be taken into account. The geometrical properties of ZN spin models are for
many aspects unknown and their study are expected to provide general deep insights on
the geometrical description of extended CFTs.

In a recent work [21] one of the authors proposed an extension of the concept of
SLE to the case of the ZN parafermionic theory. An SLE interface is associated to the
(conformal) boundary condition which generates it. Considering the ZN spin model on
a bounded domain, say the half-plane for instance, and specifying a particular boundary
condition, an SLE interface was identified as the boundary of the geometrical cluster
connected to the negative axis [21]. By the term geometrical cluster we mean the cluster
which connects spins with equal value. This interface was further studied in [22] where
the corresponding fractal dimension has been shown to be in agreement with the CFT
predictions in [21]. Nevertheless by considering other boundary conditions, we obtained
different results for the fractal dimensions of the corresponding interfaces in the case of
the ZN spin model with N ≥ 4 [23]. This is at odd from results for the Potts models for
which a single fractal dimension for the geometrical interface (i.e. the boundary of the
geometrical cluster) is obtained [24].

The present work is thus motivated by determining the bulk fractal dimension, i.e.the
fractal dimension associated to finite clusters in the model. To be more precise, we will
consider in this work the fractal dimensions obtained by constructing the distribution of
all the finite closed geometrical clusters. As we will show later, the geometrical clusters
do percolate at the critical point of the ZN spin model in the sense that there is a one
large cluster which span the entire lattice at the critical point. The distribution of the
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smallest clusters can then be used to define a set of exponents as is the case in percolation
theory and from these exponents one can determine the fractal dimension.

At this point, one needs to provide some explanation on why we concentrate on the
geometrical clusters. It is well known that while the geometrical clusters do percolate
at the critical point in two dimensional Potts models, they do not contain the physical
information of the model considered. For example the exponents obtained from the
geometrical clusters of the two dimensional Ising model are not the exponents of the
Ising model [25,26]. These exponents are in fact encoded in some other objects, the FK
clusters. Obviously, the FK clusters must also percolate at the critical point. That the
geometrical clusters percolate for the same critical temperature as for the FK clusters
is true for the Potts models in two dimensions but is not a general result. In three
dimensions for the Ising model, the percolation of the Ising model occurs at a different
temperature [27,28]. In fact, one has no reason to expect that the geometrical clusters do
percolate at the critical point for any two dimensional model. That it is the case for the
Potts models can be traced back to the existence of some duality relation. In particular,
in the correspondent CG formulation of the Potts model, this duality is expressed in terms
of an electric-magnetic duality transformation, also called T-duality in the literature [29].
The T-duality relate the descriptions of the dilute and dense phase of the correspondent
O(n) model and it is at the basis of the Duplantier duality [4].

The natural question for the parafermions is then to see which are the relevant clusters.
The answer, that we will explain in great details in this paper, is that i) the geometrical
clusters percolate at the critical point and the associated exponents do not correspond
to the corresponding model. ii) the FK clusters do not percolate at the critical point.

We will provide some details of the cluster algorithms that we employed in this study.
Cluster algorithms have been first employed on the Potts model. The Potts model for
any number of states is a two level local energy model on a lattice. The energy between
two spins is either zero or a fixed value (β). Then the clusters are defined, for a fixed
configuration of spins, as a problem of percolation. On all geometrical clusters which are
build as neighboring spins taking the same value and connected with a term of energy β,
one connects each pairs of spins with a probability p = 1− e−β. The resulting clusters of
connected spins are the Fortuyin Kastelyn clusters which are used to build the dynamics
of the model but also to measure observables like the magnetisation or the magnetic
susceptibility.

For the Z(N) parafermionic theory that we will consider here, the situation is more
complicated. The local energy can take more than two values for N ≥ 4 and a di-
rect consequence is that the generalised clusters can connect spins with different values.
Moreover, while for the Potts models it was possible to defined some quantities as the
size of some FK clusters, this will not be the case here.

2 Definitions

One consider a model of spins variables Si which can take N values, Si = 1, · · · , N and
are located on a square lattice of linear size L with periodic boundary conditions on both
directions.
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We consider the model defined on a square lattice with spin variable Sj = exp i2π/Nn(j)
at each site j taking N possible values, n(j) = 0, 1, · · · , N − 1. The most general ZN

invariant spin model with nearest-neighbor interactions is defined by the reduced Hamil-
tonian [30, 31]:

H [n] = −

⌊N/2⌋
∑

m=1

Jm

[

cos

(

2πmn

N

)

− 1

]

, (2.1)

where ⌊N/2⌋ denotes the integer part of N/2. The associated partition function reads:

Z =
∑

{S}

exp

[

−β
∑

<ij>

H [n(i) − n(j)]

]

. (2.2)

For Jm = J , for all m, one recovers the N−state Potts model, invariant under a per-
mutational SN symmetry while the case Jm = Jδm,1 defines the clock model [32]. For
N = 2 and N = 3 these models coincide with the Ising and the three-state Potts model
respectively, while the case N = 4 is isomorphic to the Ashkin-Teller model [33, 34].
Defining the Boltzmann weights:

xn = exp [−βH(n)] , n = 0, 1, · · · , N − 1 , (2.3)

the most general ZN spin model is then described by ⌊N/2⌋ independent parameters xn

as x0 = 1 and xn = xN−n. The general properties of these models for N = 5, 6, 7 have
been studied long time ago (see e.g. [35] and references therein). The associated phase
diagrams turn out to be particularly rich as they contain in general first-order, second-
order and infinite-order phase transitions. For all the ZN spin models it is possible to
construct a duality transformation (Kramers-Wannier duality). In the self-dual subspace
of (2.1)-(2.2), which also contains the Potts and the clock model, the ZN spin model are
critical and completely integrable at the points [36, 37] :

x∗
0 = 1 ; x∗

n =

n−1
∏

k=0

sin
(

πk
N

+ π
4N

)

sin
(

π(k+1)
N

− π
4N

) . (2.4)

There is strong evidence that the self-dual critical points (2.4), referred usually as Fateev-
Zamolodchikov points, are described in the continuum limit by Z(N) parafermionic the-
ories [38]. Very recently, a further strong support for this picture has been given in [39]
where the lattice candidates for the chiral currents generating the ZN symmetry of the
continuum model has been constructed.

3 Cluster algorithm

In this section, we explain how we can generalise the notion of FK clusters to the case of
the ZN spin model. We will consider configurations on a square lattice of linear size L
with periodic boundary conditions for which we need to generate independant samples.
The most convenient way to generate these samples is to use a cluster algorithm. The
most effective cluster algorithm for discrete spin models is the Wolff [40] algorithm which
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is based on the construction of the Fortyuin Kastelyn [41] clusters. We first recall how
this algorithm works in the simple case of the N -states Potts model. Starting from

Z =
∑

{S}

eβ
P

<i,j> δSiSj , (3.1)

where the first sum {S} is on all the spins Si = 1, · · · , N while the second sum < i, j >
is on the first neighbor spins on the lattice, one easily gets

Z =
∑

{S}

∏

<i,j>

eβδSiSj = (eβ)M
∑

{S}

∏

<i,j>

((1 − e−β)δSiSj
+ e−β) , (3.2)

with M the total number of bonds on the lattice. Defining p = 1 − e−β, the partition
function is

Z = (eβ)M
∑

{S}

∏

<i,j>

(pδSiSj
+ (1 − p)) . (3.3)

From there, one can read the rules to build the FK clusters. In a given configuration, for
two neighbouring spins i and j such that Si = Sj, one will put a bond with probability
p and no bond with probability 1 − p.

In the case of the parafermions the situation is a little bit more complicated. The
partition function (2.2) can be written as

ZN =
∑

{S}

∏

<i,j>

(x∗
0)

δn(i),n(j)(x∗
1)

δn(i),n(j)±1 · · · (x∗
[N/2])

δn(i),n(j)±[N/2] , (3.4)

the delta function being defined modulo N , ie δa,b = 1 if a ≡ b (N). A decomposition
similar to the one of (3.3) is

ZN =
∑

{S}

∏

<i,j>

(1 − x∗
[N/2])δn(i),n(j) + (x∗

1 − x∗
[N/2])δn(i),n(j)±1

+ · · ·+ (x∗
[N/2]−1 − x∗

[N/2])δn(i),n(j)±([N/2]−1) + x∗
[N/2] . (3.5)

Note that due to the definition of the x∗
i , cf eq.(2.4), the x∗

i ’s will be ordered and positives,
1 = x∗

0 > x∗
1 > · · · > x∗

[N/2] > 0. From there, one can read the construction of the
generalised FK clusters. For each pair of neighbouring spins Si and Sj, one will put a
bond with probability

p|n(i)−n(j)| =
x∗
|n(i)−n(j)| − x∗

[N/2]

x∗
|n(i)−n(j)|

(3.6)

and no bond with probability 1−p|n(i)−n(j)|. These FK clusters will be used to construct a
cluster algorithm of Wolff type [40]. A lattice update consists in selecting one spin in the
lattice at a random location then building the FK cluster containing this spin and then
changing the color of this cluster by changing each spin of the lattice as Si → Si + j(N)
with a random value 1 ≤ j ≤ N − 1.

It is important to note that for the parafermions, the FK cluster will connect spins
with different values which is not the case for the Potts model. One important conse-
quence is that the resulting FK clusters can not be associated directly to some physical
quantities like it was the case for the Potts models. For these models, the FK clusters
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Figure 1: Main panel: Magnetization vs. L for the Z4 spin model. The magnetization
has been computed in three different ways: from eq. (3.7) and from the average of the
largest geometrical and FK clusters. In the inset, the same plot for Z5 spin model.

are the basic ingredient for building an update algorithm but they also encode all the
informations associated to the critical behavior of the model under consideration. For
example, the average size of a cluster build from a random site (Wolff algorithm) is equal
to the magnetic susceptibility. Or the average size of the largest FK cluster divided
by the volume is equal to the magnetization of the system. Or the two point spin-spin
correlation function is equal to the probability that the two spins are in the same FK
cluster. All these relation can not be valid any more in the case that we consider here.
Still similar quantities can be defined. For example, if one defines for each cluster k

ρk = |
∑

i

< e
2iπn(i)

N > | , (3.7)

the sum being restricted to all the spins in the cluster k, then the magnetisation is
associated to the maximum ρk along all the clusters. This is a simpler generalisation of
the Potts model for which each FK cluster contains only spins with identical sign, thus
in that case ρk is the volume of the FK cluster. We numerically compared the quantity
mag1(L) = (max(ρk)/L

2) with the real magnetisation obtained as a weighted sum on all
the lattice

mag(L) =
1

L2
|

∑

i=1,L2

< e
2iπn(i)

N > | , (3.8)

the agreement being perfect for both the Z4 and the Z5 spin models. In the main
panel of Fig.1, we plot for the Z4 spin model, the magnetisation obtained from eq. (3.7)
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Figure 2: Autocorrelation time vs. L for the Z4 spin model. We show the data for the
Wolff algorithm as well as for ordinary Monte Carlo updates. The Wolff algorithm show
a much better efficiency in the range of lattice sizes explored.

which is compared to the value of the average largest FK cluster and the average largest
geometrical cluster (in both cases divided by L2). The scaling is perfect for the magne-
tization given by eq. (3.7) with an exponent in very good agreement with the expected
one, β/ν = 1/8 [36]. For the geometrical cluster, we also observe a good scaling but
with stronger finite size corrections. Due to these corrections, it is difficult to give a
definite exponent associated to the geometrical clusters, we obtain for the largest sizes
β/ν = 0.110(1). Since this value is increasing with the size, one can speculate that in
the infinite size limit this value will converge towards the magnetic exponent β/ν. We
also observe that the largest FK cluster will occupy a finite fraction of the lattice in the
large size limit, which corresponds to the case where the percolation threshold has been
exceeded. We will come back on this point in the next section.

In the inset of Fig.1, we show similar data for the Z5 spin model. We also obtain an
excellent agreement between the exponent obtained from eq. (3.7), the real magnetisation
eq. (3.8) and the exact result β/ν = 4/35 [36]. We see that the geometrical cluster
exponent is again affected by strong finite size effects and it will become larger than the
magnetic exponent already for the simulated sizes (note the crossing between this curve
and the one corresponding to the magnetization from eq. (3.7)). As for the Z4 case, the
largest FK cluster do not present a scaling law at the critical point.

Even if we expect that the FK clusters are not the natural object to compute the
critical exponents of the ZN spin models, we can still use them to build cluster algorithms.
In Fig. 2 we plot the autocorrelation time for the Wolff algorithm in the Z4 spin model
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Figure 3: Distribution of cluster lengths for the Z4 spin model and different lattices
sizes. While the geometrical clusters show a nice power law distribution, the FK cluster
distribution falls away from a power law. In the inset, we show similar data for the Z5

spin model and L = 160.

and we compare it to the autocorrelation time for standard heat bath Monte Carlo.
We observe that the Wolff algorithm is much more effective than the Monte Carlo one.
The autocorrelation time for the Monte Carlo algorithm scales as τ(L) ≃ LzMC with
zMC = 2.1(1). The dynamical exponent z is much smaller for the Wolff algorithm at
small sizes (zW ≃ 1.2(1)) but then it increase for larger sizes. This effect will be explained
in the next section. For the sizes that we can simulate, L ≤ 1280, the Wolff algorithm
will always be more efficient than Monte Carlo. This is also the case for the Z5 spin
model.

4 Percolation and critical properties

In this section, we present results for the properties of both geometrical and FK clusters
in the Z4 and Z5 spin models. We show that the distribution of cluster lengths in the
critical point is a power law for geometrical clusters but not for FK clusters. Furthermore
we show that the geometrical clusters percolate at the critical point, while the FK clusters
do not. We also perform a first determination of the fractal dimension of the geometrical
clusters by using the exponent associate to the distribution of cluster lengths.

First, we consider the distribution of the length 1 of contours for the finite size clusters

1As explained in the next section, there exist two natural ways to define a length. Both methods
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Figure 4: Percolation test for Z4 spin model. The right part corresponds to the geomet-
rical clusters, which percolate right at the critical point. The left corresponds to the FK
clusters, which do not percolate at this point.

at the critical point. In Fig.3, we present this distribution for both geometrical and FK
type of clusters in the Z4 spin model for L = 160 and 640. For both lattice sizes,
we observe a nice scaling for the geometrical clusters with a distribution which is well
described by a power law N(l) ≃ l−τg characteristic of a percolation critical point [42]
with τg ≃ 2.5(1). We expect that τg is related to the fractal dimension by the following
relation df = 2/(τg −1) ≃ 1.33(10) which is of the same order of what is measured in the
SLE context [22,23]. In the next section, we will present more precise measurements for
the fractal dimensions of the geometrical clusters. For the FK clusters, it is clear that the
scaling is not satisfied. The distribution is better described by N(l) ≃ l−τfk exp (−l/ξ)
with some finite correlation length ξ with a value of order 2500 lattice units for the Z4

spin model.

This provides a first evidence that the FK clusters do not percolate at the critical
point of the Z4 spin model. This is confirmed in Fig.4, where we present the probability
of having a percolating cluster vs. the ratio β/βc (which measures the distance to the
critical point), for both the geometrical and the FK clusters. The probability is computed
for increasing lattice sizes. Converging crossing points indicate a critical point. This
is clearly observed for the geometrical clusters with a critical point close to β = βc.
For the FK clusters we do not observe a clear convergency and the lines cross around
β ≃ 0.995βc. This corresponds to the finite correlation length previously observed for the
distribution of FK clusters length. To convince the reader that such a small deviation,

converge to the same result in the large size limit.
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Figure 6: Distribution of FK cluster lengths for the Z4 spin model and L = 320 for
different values of the parameter β very near the critical point.

|β − βc|/βc ≃ 0.005, is in fact important, we show in Fig.5 a comparative plot for the
3-states Potts model. For this model, both types of clusters percolate at βc. For the
larger lattice size, we see that the deviation is near two order of magnitude smaller than
it was for the Z4 spin model. The percolation value β ≃ 0.995βc is also confirmed in
Fig. 6 where we plot the distribution N(l) of the FK clusters for various value of β and
for L = 320. We observe a nice power law close to β = 0.995βc.

In the case of the Z5 spin model we obtain similar results. The distribution of geo-
metrical cluster lengths shows a power law scaling, while the length distribution of FK
clusters presents a finite correlation length ξ with a value of order 5000 lattice units. See
the inset of Fig. 3. Furthermore, geometrical clusters percolate right at the critical point
β = βc, while FK clusters percolate at β = 0.9975βc.

5 Fractal dimensions in the bulk

In this section we present a more accurately computation for the fractal dimensions of
the geometrical clusters for both Z4 and Z5 spin models.

As explained in the previous section, the fractal dimension can be obtained from the
distribution N(l) ≃ l−τ via the relation df = 2/(τ − 1). This method turns out not to
be very precise since there exist very strong finite size corrections in the determination
of τ . Here we present another method which provides a better precision by computing
the average area of the cluster as a function of the interface length around the cluster.
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details) on the geometrical clusters of the Z5 spin model.

We will consider two different definitions of the cluster interface length. The first one,
which we will call the link length corresponds to the number of bonds which are broken
around the cluster. For example, for one isolated spin, the length is ll = 4. The second
definition, which we will call the hull length, counts the number of spins on the border of
the cluster. For an isolated spin, one has lh = 1.

The fractal dimension is defined as l = Rdf with R the radius of gyration of the
cluster. A more direct measurement is given by computing the average area as a power
law of l with A(l) = R2 ≃ l2/df . In Fig. 7 we show the data for the Z5 spin model. In
this plot, we present A(l) for two definitions of l, the hull and the link one. We get a
nice scaling law over a large range of l’s. The asymptotic limit is similar for the two
definitions of lengths (hulls and links). A fit of the data gives a value of df ≃ 1.44(1),
but such a fit does not provide a good precision since it is very difficult to take in account
the small and large size corrections. Note that there is a bending in both of these curves
for small sizes. These bendings, which are due to small size corrections, are in opposite
directions for the two definitions of lengths that we employ. This fact will be very useful
for the extraction of a precise fractal dimension and motivate the measurement of the
two lengths.

A better estimate is obtained in the following way: in Fig. 8 we show a similar plot
after a rescaling l → l/Ldf and A(l) → A(l)/l2/df . The rescaling is motivated by the fact
that Ldf corresponds the length of a cluster who fills the lattice, i.e. A = (Ldf )2/df = L2.
We observe a collapse for the large size clusters. There still exists strong finite size
corrections, for both small and large cluster lengths, but we see that a plateau appears
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spin model with df = 1.450 for the hull cluster length and df = 1.444 for the link cluster
length. This plot show the accuracy on the determination of the fractal dimension.

which correspond to the region where scaling works. The optimal values are df = 1.450(2)
for hulls and df = 1.444(2) for links. In Fig. 9 we check the accuracy of our estimation
for the Z5 fractal dimension. By plotting A/l2/df vs. l, the good value of the fractal
dimension should correspond to straight and perfectly horizontal lines. As shown in the
figure, this is obtained for an optimal value of df = 1.446(2) (which correspond to the
average of hull and link fractal dimension).

For the Z4 spin model, we can perform similar measurements. We show in Fig. 10,
values obtained for df for Z4 and Z5 and for both definitions of the length. This figure
contains the main results of our work. As a final result for the fractal dimension of the
geometrical clusters, we obtain df = 1.438(2) for the Z4 spin model and df = 1.446(2)
for the Z5 spin model.

6 Summary and conclusions

In this paper we studied by Monte Carlo methods the geometrical properties of the ZN

spin model. The samples were generated by using a cluster algorithm which generalize
the notion of FK clusters to the case of the ZN spin model. For N ≥ 4 the FK clusters
will in general connect spins with different values. This is not the case for N = 2 and
N = 3, respectively the Ising and three-states Potts model. The cluster algorithm allows
to track both geometrical and FK clusters and the distribution of all the finite closed
geometrical and FK clusters can be studied.
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Figure 10: Estimations of the fractal exponents for both hull and link lengths, in the Z4

and Z5 spin models as a function of the lattice size.

In particular we have shown that the geometrical clusters percolate at the critical
point and the associated exponents do not correspond to the exponents given by the
unitary Kac table of the associated ZN parafermionic field theory. Note that this is also
true for the geometric clusters for N = 2, 3. We have determined the fractal dimension of
the boundaries (interface) of the geometric clusters. By measuring the distribution in size
and area of the geometrical clusters, we determined the fractal dimension df = 1.438(2)
for N = 4 and df = 1.446(2) for N = 5. It is important to note that these values
are different from the ones proposed by one of the authors in [21] for SLE interfaces in
parafermionic theories and measured numerically for some particular type of boundary
condition in [22]. Still the fractal dimension obtained by numerically studying interfaces
related to certain different types of boundary conditions are in good agreement with the
one determined here in the bulk [23].

We have also shown that, although the cluster (Wolff) algorithm show a much better
efficiency in the range of system lengths studied, the FK clusters do not percolate at the
critical point for N ≥ 4. This is the reason while computed the fractal dimension only
for the geometrical clusters.

The results we obtained point out important differences in the behavior of the geo-
metrical and FK clusters between the case N = 2, 3, where the system can be described
by a minimal CFT model, and the case N ≥ 4, described in the continuum limit by
an extended CFT. This can be traced back to the fact that, for N ≥ 4 the internal ZN

degrees of freedom play a fundamental role. This calls for further analytical studies of the
bulk geometric properties of the parafermionic theories. One way to tackle this problem

14



would be to provide a Coulomb gas description for parafermionic theories which would
allow to identify the operators associated to the geometric interface and to compute the
associated fractal dimensions.
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