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Abstract : Classical plasticity (dislocation motion) coupled to deformation due to lattice 
changes (phase transformation) occurs in several materials where interfaces are moving under 
external forces (TRIP (TRansformation Induced Plasticity) steels, even shape memory alloys). In 
the case of steels (transformation induced plasticity) the internal stress associated with the phase 
change induces a large additional plastic flow inside austenite and martensite. We propose a 
micromechanical modelling of such a phenomenon based on a decomposition of strain rate into 
an elastoplastic part and a given lattice inelastic strain rate field. Using usual Green functions 
method, a concentration tensor for the total strain rate field is obtained. The self consistent 
approximation allows to determine the behavior of the equivalent material and the equivalent 
transformation strain rate. Applications in the case of cooling under constant applied stresses and 
isothermal loading give results in good agreement with Finite Element calculations and 
theoretical results. 

1. INTRODUCTION 

In the case of TRIP steel the determination of the global behavior during phase transformation is 
more complicated than in the case of shape memory alloys since the response of the material to an 
external thermomechanical loading is not only due to a large scale orientation of the transformation strain 
of martensite [I] but also to a large scale orientation of plastic flow in austenite [2] and martensite due to 
irreversible strains at the microscopic scale. The aim of this paper is to clarify these different points with 
a new rate approach of the problem. 

In the last ten years most of the authors [3][4][5][6] have used, for numerical simulations, a 
phenomenological law which gives the macroscopic transformation strain (additional macroscopic strain 
ETR, see [7]) or strain rate ( BTR) versus the volume fraction of martensite f (two-phase steel) that is : 

E: = CStg(f) f 
where C is a scalar, St is the deviatoric part of the macroscopic stress X i .  The justification of such a law 
will be referred here as the first problem. 

In all cases the authors do not deal in general with the second problem which divides into two questions: 

- to express the law which gives the volume fraction f of martensite versus loading (controlling) 
external parameters (stress or strain and temperature) : 

f =()%+()T 
Only [8] made an attempt in this direction based on physical assumptions refined later [9]. 
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- to give the mean value of the transformation strain (or strain rate) over all the different 
martensite variants : 

that is to solve the problem posed by [I]. 

The complete resolution of a structure undergoing a martensitic transformation is therefore an 
open question since it requires the knowledge of the oriented volume fraction of martensite versus 
external loading (and some internal parameters too!) at a microscopic scale and the mean value of the 
transformation strain over these martensite variants ; this so-defined second problem will not be treated 
here. 

We shall focused here on the first problem where f and zB are supposed to be known ; it has 
been already treated in a secant moduli approximation [lo] and refined in a rate formulation [I 11 using a 
self-consistent approach. Here only the basis of the modelling are recalled and used to explain the 
response of incompressible and isotropic materials to several thermomechanical loading paths. 

2. MICROMECHANICAL MODELLING 

2.1. General problem 

We consider a macroscopic element of matter (V) containing two phases. Under a 
thermomechanical loading one part (previously austenite) has been transformed into martensite, i.e. a 
lattice transformation has ocurred defined locally (and completely) by the deformation gB1 and the 
rotation oB1 in the 1st variant or lath of martensite. The deformation eB' is called the Bain strain. The 
microscopic total strain is assumed to be small and can therefore be decomposed into elastic, plastic and 
Bain strain as : 

where e(r, t )  = ee(r,  t )  + gP(r, t )  and e l ( r ,  t )  is defined by : 

where v,' is the 1st martensitic volume. The problem governing equations are then : 

- quasi-static equilibrium (no volumic forces) : 

- boundary conditions (velocities for example) : 

- kinematic relations : 

v. . = e.. +dB 
1.1 11 11 

- elasto-plastic constitutive equations : 

bu(r)  = luk,(r, e)e,..(r). 



In addition usual assumptions of symetries for lW are made, which are : 
1.. =1..  =1.. = I  
qkl jrkl qlk klij 

2.2. General equations in the case of incompressible isotropic materials 

Using a selfconsistent approach together with a local approximation detailed in [ l  11 one finds the 
governing equations for the previous problem. In the case of incompressible isotropic materials with a 
uniform behavior in each phase these equations reduce to : 

for an uniaxial loading (compression or tension), where i, is the macroscopic stress rate in the x 
direction. The effective tangent shear modulus p, is given by : 

where y, and y, are the tangent shear moduli in austenite and martensite (which are supposed to be 
known) and f the volume fraction of martensite. The macroscopic transformation strain rate in the x 

direction, E:, is given by : 

One can compare this expression of the macroscopic transformation strain rate with that given in the 
introduction and referred as the first problem. Since ,u, I ,urn in general (martensite is the hardest phase in 

steels) one can see that E: 2 f .Fz which can be seen as a generalization of the TRIP effect - as 
introduced in [2]. In this formula .F: is the mean Bain strain over a representative domain of surface S 

with unit normal n' and interphase velocity w : 

The rate of the volume fraction of martensite f is given by : 

Equations (a), (9) and (10) allow to determine the overall behavior in various (uniaxial) situations 
where y, , prn , .F: and f are given. 

3. ANALYTICAL RESULTS AND DISCUSSION 

3.1. Cooling under constant macroscopic applied stress 

In a lot of experimental studies of transformation plasticity, the stress applied during the 
transformation is kept constant (the registered strain is then the macroscopic transformation strain E ~ ~ ) ,  
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small (notably lower than the yield stress o: in the weakest phase, here austenite) and uniaxial, the 
specimen being cooled so to study the influence of f .  

Due to the small stresses, authors [12] usually assume that the martensite remains elastic 
(p, =pe')  while austenite is plastifying (because of the transformation). In this case one can easily find 

p, by solving equation (9) assuming y, << ye', where ye' is the elastic modulus of martensite ; it comes: 

for f = 0,4 only a complete solution can be given. In the case of an ideal-plastic austenite (pa  = 0)  it 
finally comes after integration of (10) : 

Figure 1 shows analytical E:( f )  curves obtained for a A.508 steel [12], whose characteristics are 

o: = 145MPa, CS; = 95OMPa with both phases ideal plastic. 

Figure - 1 : transformation plastic strain for a stress equal to 50 MPa : 0 : 
theoretical model [12] ; O : Finite Element calculations [12] ; O : selfconsistent 
model with .FD( f ,  Z,) = 0,3% constant 



In spite of very crude approximations (leading to enlightening analytical equations) one can see 
on fig. 1 the good agreement of this model with theoretical and FE calculations as well as the resulting 
TRIP effect : EZ > f ZL. 

3.2. Isothermal stress-strain curves. Dynamic softening 

The model is used here to describe the dynamic softening which appears in metastable austenitic 
steels exhibiting TRIP effect at the beginning of the inelastic macroscopic flow (see figure 2). 

TRUE PLASTIC STRAIN, c 

Figure 2 : experimental macroscopic flow stress (tensile test) and volume fraction 
of martensite vs plastic strain for a metastable austenitic steel from [13]. Dashed 
curve represents the stable austenite and martensite flow stress 

0,' As long as the austenite is elastic, that is for E, < ---, no martensite is supposed to appear (one 
3,u 

doesn't deal here with stress-assisted rnartensite). For E > *, that is for f 2 0 ,  one shall now 
= - 3pe' 

compare the ratio 5 which represents the macroscopic hardening to 3,ua which describes the 
En 

hardening in the austenite. Considering that martensite remains elastic (C., = or) and assuming the ratio 

&- to be small (see figure 2) as well as the amount of martensite (only the beginning of the stress-strain 
ye' 
curve is of interest here) equations (9) and (10) reduce to : 

2 
EL' = 
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- z J  
-B  

gives the slope of the dynamic softening at the beginning of the strain-induced transformation. Since 5 
En 

is always positive as well as f ,  5 can be less than 3p. according to the relative values of E~ and 
En 

f .G: -, so that the model may include dynamic softening. 
f 

4. CONCLUSION 

In spite of strong approximations leading to the simple analytical results presented here : 

- Two phase approximation 
- Incompressibility and isotropic behavior 
- First order simplification giving analytical results (elastic martensite) 

the model allowed to reproduce qualitatively and quantitatively the main effects of solid phase 
transformation on the behavior of TRIP steels : 

- TRIP effect 
- dynamic softening 

The next step of the modelling is to describe the transformation itself (so-called second problem). 
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