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R4sumd. En utilisant la notion de d6rivde matdrielle de la mdcanique des milieux continus et une

mdthode de variable adjointe, pour des problbmes magn6tiques non lindaires bidimensionnels, la

forrnule de sensibilit£ est ddrivde sous forrne d'une intdgrale de contour sur la surface de

modification. Les coefficients de sensibilitd sont numdriquement dvalu6s avec les variables d'dtat

et adjointes calculdes h partir du logiciel existant d'dl£ments finis. Pour vdrifier cette mdthode, le

problkme d'optimisation de forrne d'un quadripble est d6crit

Abstract. Using the material derivative concept of continuum mechanics and an adjoint variable

method, in a 2-dimensional nonlinear magnetostatic system the sensitivity formula is derived in a

line integral form along the shape modification interface. The sensitivity coefficients are

numerically evaluated from the solutions of state and adjoint variables calculated by the existing
standard finite element code. To verify this method, the pole shape design problem of a quadrupole

is provided.

Introduction.

Magnetic devices usually consist of an iron, a current coil, an air and permanent magnet and

many of them are designed to operate in the saturation region of iron. This paper presents a

procedure of exact sensitivity formula derivation for the geometrical design of a nonlinear

magnetic system using the material derivative concept of continuum mechanics and an adjoint
variable method [1, 2] just as in the linear magnetic system [3, 41. The derived sensitivity
formula is expressed only with respect to the geometrical variation of design interface, the both

sides of which can be any two among an iron, a current, an air and a permanent magnet. In the

formula in the form of line integral, the integrand is a function of state and adjoint variables.

However, since it is almost impossible to obtain the exact state and adjoint variables, its

approximate values are calculated using an existing finite element code. With the approximate

ones the derived sensitivity formula is numerically evaluated by Gaussian quadrature. This

method does not depend on a discretization model and does not require a differentiation of

stiffness matrix and forcing vector as is needed in that that is based on a finite element method

[51.
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Since nonlinearity characteristics in a magnetic system arise usually in the permeability of

iron, in this paper we will derive only the sensitivity formula with respect to the interface with

different permeability characteristics. By adding the obtained nonlinearity term to the general
sensitivity formula of linear magnetic system, the general sensitivity formula in a nonlinear

magnetic system is obtained.

Nonlinear magnetostatic system in variational form.

In a nonlinear magnetic system, the variational form of a goveming equation for the magnetic

vector potential is obtained as follows, by multiplying, by virtual variable li, both sides of the

Ampere's law in the differential form and integrating them over the analysis domain

lv(B~)B(A)~B(A)dD
lJl

dD
=

v(82)B~(A)A dr forall ]
e 4~ (1)

n n r

where v is reluctivity, B ( ) curl operator to its argument and 4~ the space of an admissible state

variable. The right-hand Side of (I) is zero with Dirichlet and homogeneous Neumann

boundary conditions. The variational equation (I) is rewritten with another notation

a~ and I as

a~(v (B~), A, I )
=

I (ji) for all ]
e 4~ (2)

where a~ v
(B~ ), A, ] )

= v (B~ ) B (A )~ B (A ) dD and / (A )
=

IJA dD

n n

Note that since
v

in ( I ) is a function of flux density, a~ is neither linear to A nor symmetrical to

A and ji. In (2), a small variation of state variable provides the following relation

a~(vo + Au, Ao + AA, A)
=

I (A) for all A e 4~ (3)

where v
(B~)

= vo + Au and A
=

Ao + AA. By linearizing (3) at Ao, it is approximated as

(v~B(AA)TB(1)+2~B(A~)TB(AA)B(A~)TB(i))dn
=

n

=

1(A a~(vo, Ao, A for all A e 4~ (4)

where
K =

dv/dB~. (4) represents Newton-Raphson algorithm expressed in the variational

form. Since the left-hand side of (4) was linearized to AA, the left-hand side of (4) is linear to

AA and ]. Here, we define another bilinear form a~ for later use in the next section as

a~(C,©)= (vB(C)~B(©)+2KB(A)~B(C)B(A)~B(©))dD (5)

n

where v, K
and A are given. Note that a~ is bilinear and symmetrical to its arguments.

Sensitivity formula derivation in nonlinear magnetostatic system.

The material derivative concept and the material derivative formulas can be referred to [2, 41.

But some relations used in this paper for the sensitivity formula derivation have been rewritten.

The point-wise material derivative of the state variable is expressed as

~i
=

w'+vw~v(x) (6)



N° it CONTINUUM SENSITIVITY ANALYSIS IN NONLINEAR MAGNETICS 2047

where 4' is the partial derivative to time t, V the gradient operator and V (x ) the velocity field.

The point-wise material derivative of the virtual variable can be taken as

~=~'+v~~v(x)=o. (7)

When an integral function F is defined as

F
=

lf~(x~)dD,
fl~

its material derivative at fl is proved [21 to be

F
=

lf'(x) dD + f(x) V~
n dr (8)

fl r

where r is the boundary of D and n is the outward normal vector on L

To derive the sensitivity formula to interface variation, consider in figure I two regions with

different permeability characteristics'along interface y. The variational goveming equation is

expressed as follows with Dirichlet b,c, on
r° and homogeneous Neumann b.c. on

~mi

a~(v, A, A )
=

I (A for all A e 4~ (9)

where

a~(v,A,d)= v*(B~)B(A*)~B(a*)dD+ v**(B~)B(A**)~B(a**)dD,
n, n~

I(])=lJ*ji*dD+ J**]**dD

n~ n~

and

4~
=

(]
=

(ji*, ji**),]* =ji**on
y and ji**

=

00nr°).

n

,
r

~m,
~~

Q~

Fig. I. Interface problem.
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Consider an objective function defined inside a region tli in figure I as

F
= lg(B(A**))m~dD (10)

n~

where g is a differentiable function and m~ is constant on D~ and zero outside of

D~.

Firs;, the material derivative of system equation (9) with (6, 7, 8) and V
=

0 on r gives

where

a((A, Al
= I(v*B(A*)~B(VA*~ V) + 2

K
*B(A*)~B(I*)B(A*)~B(VA*~ V)) dD

nj

-j (v**B(d**)~B(VA**~V)+2K**B(A**)~B(d**)B(A**)~B(VA**~V))dD
n~

-lv*B(A*)~B(Vl*~V)dD-j v~"B(A**)~B(Vji**~V)dD
n~ n~

(v*B(A*)~B(]*)- v**B(A**)~B(ji**))V~ndr (12)

y

and a~(A, A)
=

a~(A*, it)
+ a~(A**, A). (13)

Using the fact J
=

0 on y, the right-hand side of (11) is expanded as

I(ji)=-lJ*VA*~VdD- J**VA**~VdD. (14)
n, n~

For later use, (11) can be rewritten as

a~
(I, 1 )

=

(I a( IA, I for all I
e 4~ (15)

If A and V are given, (15) is a variational equation for I.

Secondly, the nJaterial derivative of the objective function (lo) with (6, 7) and

mj
=

0 and m~ =

0 on y gives

fl
=

lg~(A**)~B(I**) m~ da g~(A**)~B(VA**~ V )nt~dD. (16)

n~ n~

Thirdly, to express (16) in terms of velocity field V, the first integral of (16) must be

rewritten. For that, by replacing I by a virtual variable I and equating it to the bilinear form

a~ in .J and I,
an adjoint variable equation is introduced as [21

a~ (a
,

A
=

lg~ (A * * )~ B (I * * ) m~ da for all A e 4~ (17)

n~

where the left-hand side can be expanded using the definition (5).
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Next, to express (16) with V instead of d,
we couple (15) and the first integral of (16). For

that, (17) is evaluated at I
=

I since A e 4~ to give

an(A, A)
=

gB(A**)~B(li**)mp da. (18)
Q2

Similarly, (15) is also evaluated at ]
=

A since A e 4~ to give

an(a, h)
=

I(h)-ai(A, h). (19)

One sees in (18) and (19) that their left-hand sides are equal from the fact that

a~ is symmetrical to its arguments from the definition (5). Thus, we have the following relation

lg~(A**)~B(I**)m~dD =I(A)-a((A,A). (20)
n~

Using (20), (16) is expressed as

# =I(A)-a((A,A)-lg~(A**)~B(VA**~V)m~dD (21)

n~

(21) can be expanded with the relations (12) and (14). But it still has region integrals. To

transform them to the surface integrals on y, we need the following procedure. The adjoint

variable equation (17) in the variational form is equivalent to the differential equation

V x P (A *
=

0 on D
j

(22)

V x P (A **)
=

V x (gB (A ** m~) on D~ (23)

with b,c. A **
=

0 on
r° and P~(A * *

=

0 on
r~

where p (A )
= v B (A + 2 ~ B (A )T B ( A ) B (A (24)

And the interface condition for A is P~(A *)
=

P~(A **) and B~(A *)
=

B~(A **) on y.

In (17), since the geometrical symmetry is also conserved for A, the same Neumann

condition is applied to r~ and since there is no extemal source for A, the Dirichlet condition on
r° is zero. And since the source term in (23) is defined inside of D~, continuity to the

tangential component of P is satisfied as the interface condition. Using the relation (1), (22)
and (23) are transformed to the variational form as

lP
(A * )T B (I * ) da

=
P ~(A * ) I * dr for au I * e 4~ (25)

n, y

j (P(A**)~B(I**)-g~(A**)~B(I**)mp)dD=

1-
=

(P ~(A * * ) A * * (gB (A * *
)~ m~ * *) dr for all A * * e 4~ (26)

y

By substituting for the region integrals of (21) the results of (25) and (26) evaluated at

*
=

VA *~ V and A **
=

VA **~ V and ones of (I) evaluated at A *
=

VA *~ V on
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Dj and I**
=

VA **~ V on D~, (21) is rewritten as

fl
=

(P~(A*)VA*~V -P~(A **) VA**~V
y

+ v*B~(A*)VA *~V v**B~(A**)VA**~V)dr+

+I(v*B(A*)TB(A*)- v**B(A**)TB(A**))vTndr. (27)

y

Using the interface conditions for A and A and the definition (24), the sensitivity formula is

obtained from (27) as

l~ 2~*
~F

=

(v*-v**)B(A*) (B(A**))+~B(A*)B~(A*)B~(A**) V ndr.

~
v

(28)

In many shape design problems of nonlinear magnetostatic system, only one side of

interface is nonlinear and the other side is linear. In this case, if we choose Dj as a linear

region,
K

* becomes zero and the sensitivity formula is the same as that in linear magnetostatic
problems. In the nonlinearity term of (28), only the tangential components contribute to the

variation of reluctivity. It is because the normal ones are continuous on the interface.

Numerical evaluation of Sensitivity formula.

After the Sensitivity formula iS obtained, one calculates its numerical value aS in the following
procedure

(I) Solve the system equation (2) for the state variable (magnetic vector potential) by the finite

element code for nonlinear analysis.
(II) Calculate the adjoint load in (17) with the result of (I).
(III) Solve the adjoint equation (17) for the adjoint variable by the finite element code.

(IV)Calculate the sensitivity coefficients by numerical line integration for the derived

sensitivity formula (28).

In (I), one solves the system equation of nonlinear system iteratively. But in (III), since the

system matrix of the adjoint equation is the same as the converged one after enough iteration in

(I), we do not have to solve it iteratively but we can solve it directly once. In (IV), one

evaluates the sensitivity coefficients by a numerical line integration. In the above numerical

procedure one can see that the sensitivity calculation can be done extemally to a finite element

code and so the use of this algorithm will make it possible to do the structured programming for

the entire shape optimization procedure.

Numerical example.

The pole shape design problem of a quadrupole is provided to verify this continuum approach
in a nonlinear magnetostatic system. An analysis model is shown in figure 2 where the

objective is to obtain a linear distribution of flux density on the x-axis by optimizing the pole

shape of the quadrupole. The objective function is defined as

F
=

If
(B/X~, S~ )~ 3 (X X~, )I dD (29)

n~, j
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where nn is the number of measure points, X~, is I-th measure point, S~ the target slope of flux

density and 3 (x) the Dirac-delta function at the original point. The adjoint load in the adjoint
variable equation is provided from the material derivative of the objective function (29) and the

adjoint variable equation is

a~ (A
,

I )
=

2
(

1(B/X~, S~ )/X~, B~(I 3 (X X~, )i dD (30)

n~
, j

In this problem, since the air region on the interface can be taken as Dj, we use the same

sensitivity formula as that of linear magnetostatic problems. The design variables are defined

as the y-components of all the node positions on half the pole surface. In an optimization
technique, the steepest descent is used as a search direction and the step-size in the line search

is determined by the ratio of the objective function value to the norm of the sensitivity vector.

Figure 3 shows the convergence history of the objective function with an iteration number. The

final shape of the quadrupole compared to that in linear magnetostatic case is shown in figure 4

where the nonlinear result is more projected than the linear one to compensate the saturation

effect of iron. At the final shape the flux density distribution is shown in figure 5 where the

maximum relative deviation to the target value is 0.06 fb. Above results are almost the same as

in [51. The sensitivity formula is exact, but since its numerical values depend on accuracy of

numerical analysis, under the same conditions of modelling almost the same results as in [51

are expected.

Conclusion.

By exploiting the variational equation which is not discretized, the exact sensitivity formula is

derived and it is expressed as a line integral of a function of state and adjoint variables along
the movable interface. Results presented in this paper show the feasibility and numerical

efficiency of software implementation of the theoretical design sensitivity analysis with

~ o-ii

o-i

©.ae

y

c

O-OS

a-m

A

~
o z , . . to

number of teratwn

Fig- 2. Fig. 3.

Fig. 2. Analysis model.

Fig. 3. Objective function with iteration.
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Fig. 4. Initial and final shape of quadrupole.
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Fig. 5. Flux density distribution on x-axis (-) target, (+) initial, (O) final.

existing finite element code. An important advantage of the method is that one can do

sensitivity evaluation outside an existing code and one does not have to embed sensitivity
analysis program into an existing finite element code. The variational method and the adjoint
variable method used in this paper does not require a differentiation of system matrix and a

forcing vector as in that based on finite element discretization [51.
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