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Abstract. To investigate the influence of fluctuation effects on conditions of microphase
separation in two-component incompressible molten block copolymers of complicated chemical

structure an altemative and more general fornlulation of the weak crystallization theory is

developed using a new variational principle for the calculation of the free energy. Unlike the

Fredrickson-Helfand theory, ours accounts for a given angular dependence of vertex functions

more rigorously and enables us to evaluate correlation functions in both disordered and

supercrystal states. A comparison of phase diagrams constructed by means of both our and the

FH theories is made for the case of star copolymers (A~)~ (B~)~. The numerical minimization of

free energies corresponding to supercrystal and homogeneous states was carried out with account

of exact expressions for higher correlators of these systems calculated by us early. It is shown that

both theories are in good agreement within the limit of strong fluctuation effects whereas the FH

theory underestimates moderate fluctuation effects in crossover region.

1. In«oducdon.

The theoretical investigation of microphase separation (formation of domain structure,

supercrystallization) in two-component incompressible melts of block copolymers on the basis

of detail microscopic consideration within the framework of the so-called weak crystallization

theory [1-4] was first done by Leibler [5] in the mean field approximation. Some Other results

conceming the problem were obtained in this approximation in references [6-12]. Meanwhile

the importance of the question about conditions of applicability of the Leibler mean field

approximation in block copolymer systems seems very important in view of Brazovskii paper

[3] (see also [4]). It was shown that due to interaction of fluctuations the system, instead of

undergoing phase transition from the liquid state to a supercrystal one, can stay in metastable

state with short-range ordeRng having anomalously large radius of correlation. One should

note that the state cannot be described in the framework of the mean field approximation. It

is not clear, however, whether the situation takes place in polymers where the problem is

complicated Owing tO interference of configurational set (set of conformational stales most

probable under given conditions) of macromolecules and correlation of fluctuations [9].
Apart from this physical difference one encounters two Other difficulties in accounting for
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fluctuation effects at microphase separation in blockcopolymers. The case is that unlike the

situation investigated in reference [3] in polymer systems so-called higher vertex functions

(see below) have some angular dependence as well as dependence on Order parameter value

which may be different in different coexisting phases. Thus, here one cannot use the results of

[3, 4] literally.
The first attempt to construct a phase diagram of molten diblock copolymer taking

fluctuation effects into account was done by Fredrickson and Helfand in reference [13] (see
also Ref. [14]). By means of some witty trick (see below) the problem of describing a real

diblock polymer system was reduced in references [13, 14] to the problem of describing a

model system similar to both original polymer system and a system studied by Brazovskii. It

was shown, as consistent with references [3, 4], that the fluctuation effects can change the

phase diagram qualitatively. The result is very important and we justify it in this paper.

However, as will be shown below, some basic approximation used in references [13, 14] to

implement the aforementioned trick is not applicable in the crossover region of moderate

fluctuation effects. In this region the phase diagrams obtained using the approximation may

differ considerably from the actual ones. Besides, there are some quantities (say, correlation

functions, energy of screened interaction and sO on) which cannot be calculated exactly using
the method of Brazovskii-Fredrickson-Helfand.

So, to calculate the thermodynamic and correlational characteristics of block copolymer

systems of complicated chemical structure we present in this paper a general method allowing
for fluctuation effects in both homogeneous and supercrystal states and apply it to consider

the influence Of these effects on conditions of phase transitions in the systems. In section 2 we

present a general consideration of fluctuation effects in polymer systems and derive a new

diagram technique which enables us to calculate corresponding corrections to quantities
obtained within the frameqork of mean field approximation, Using the diagram technique we

give in section 3 an altemative and more general formulation of Brazovskii's theory on the

base of a field-theoretical vaRational pRnciple, which can be used for a quantitative
description of systems with an arbitrary number of components. In section 4 we apply this

pRnciple to the most simple case of two-component incompressible molten copolymers. The

numerical comparison of phase diagrams obtained in the framework of both the FH theory
and ours is presented in section 5 for star copolymers of kind (A~B~)~ (the case of

k
=

I corresponds to ordinary diblock copolymers).

2. Coarw#rained Hamiltonian (density funcdonal) description and diagram technique for

calculation of fluctuation effects in polymer systems.

It seems, by analogy with the well known case of the scaling theory of polymer solutions, that

the most straightforward way to understand a relation between mean field and fluctuation

approximations of weak crystallization theory is to describe free energy of block copolymer

systems as a coarse-grained Hamiltonian and then to use well-known field-theoretical method

of functional integration followed by applying diagram methods of resumming corresponding
perturbative terms. The first version of this approach was given in reference [15] (see also

Refs. [16, 17]) ; ideas, which are similar to ours in many respects, were advanced by many

other authors (see Refs. [5, 8, 10, 13, 14, 18]) too. However, it seems useful to give in this

section another way to implement the idea which is a development of the approach of

reference [15].
So, let us consider a polymer system which is confined in the volume V and has the number

N~ of (macro)molecules defined by a certain structural chemical forrnula s in a volume unit.

As was discussed in references [5-14], to describe the system state as a whole one should

know, apart from its molecular-structural distribution (MSD) (N~), also a smoothed spatial



distribution of local densities (p,(r)), p, being the number of particles of type I in a unit

volume. (As particles we shall refer to both links of macromolecules and small molecules of

solvent if any, two particles are said to be of the same sort when they are indistinguishable by
character of their short-range interaction.) Let the free energy of the system with a given
distribution (p, (r )) be some functional F (p ;(r )), (N~), T) which will be further referred

to as virtual free energy. Then, as consistent with general principles of statistical physics [19]
(see also Refs. [17, 20]), the system will be in a state with given distribution (p, (r)) with a

probability

W( (P,(rl) I
= exP (- F( jp,(r)j, jN~j, Tj/Tl/Z( (Ns), Tl (1)

the normalization constant Z( (N~), T) being the partition function which can be written as

the following functional integral over all distributions (p,(r))

Z( (N~), T)
=

&p,(r) exp(- F( (p,(r)), (N~), T)/T~ (2)

Thus, the total free energy F( (N~), T) of the system under consideration and any observable

quantity a which, evidently, is an average taken with probabilistic measure (I) can be written

as follows

F( (N~), T)
=

TIn Z (N~), T)

Tin &p,(r)exp(-F(jp,(r)j, jN~j, T)/Tl (3)

&P,(r)a((P,(r)), T) exp(- F(jp,(r)j, jN~j, T)/Tl

~
~

&p,(r)exp(- F( (p,(r)), (N~), T)/T~

Calculating the free energy F by means of deepest descent method within so-called pre-

exponential accuracy we arrive at the following well known expression

F( (N~), T)
=

min F( (p, (r)), (N~), T) (5)

which corresponds to conventional mean field approximation, an average (4) acquires the

form

&
=

a( (p,(rj), T). (6j

The designation p,(r) is used for the density distribution at which the virtual free energy

F( (p,(r)), (N~), T) reaches its minimum.

To obtain an explicit expression for quantity F beyond this approximation one should,
strictly, define the notion of functional integral (2) more clearly, say, by means of the

collective variable method. The problem does not arise, however, in calculating average
quantities of type (4). Indeed, let us consider the expansion of the virtual free energy

F( jp, (r )j, jN~j, T)
=

Fo( if, ), T) +
"jj (r in) ~P n)/n 1(4) (7)
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/

near its minimum on powers of fluctuations

~Pa(r)
=

Pa(r) Pa(r). (8)

(Like in Landau theory of second kind phase transitions we keep in (7) only members up to

4th order and use the following notation

1'=n(ri~i ffi~)
=

£ rlj[I.
a

~(Xl,
..,

X n) fl ~Pa,(X,) dX, (9)

~l.. ~n) '"

Here the integration over each of the coordinates ~ is carried out over all the system volume

and the summation is implied over all rearrangements (a,,...,a ~) of indices a;,

a;. The indices encounter values from I to m, m being the total number of different types of

particles pertaining to the polymer system considered. (For melts of two-component
copolymers that will be considered in the paper m =

2.) Further we will use the Einstein rule

, =m

of summation over all repeated indices £ u, v;
= u~ u;.

, i

Let us substitute the expansion (7) in definition (4) and divide numerator and denominator

of the latter by the same quantity

Zo
=

~P
;
(r ) exp (- Ho/n

Here

~0
"

~fi
I (X> ( l~j~~( '~l X2 )

)< j
~fi

j
(X2)/2

~
(/~

j3
~'~~~ ~/~~~ ~~~~~~~ ~~~~~ ~~~~~

where 4~ ;
(q

=

dx ~P, (x) exp (iqx and r( (q
=

dx (r)~)(
x )),

j exp (iqx are corre-

sponding Fourier components and r((q) is a symmetric matrix, all eigenvalues of each are

positive, choice of the matrix will be made further. (Here and below we introduce a rule of

integration over repeated coordinates: dxA(x)B(x) =A(x)B(x), the integral being

taken over the whole system volume, which is analogous to the beforementioned Einstein rule

of summation over all repeated indices.) Then we obtain

a( la, (r)j, T) exp ~- £ (rim> ~P n)jTn fl 3 ~P;(r)
=~

exp
rj2) ~P 2) /2 T~ fl ~P, (r

a
=

~ ~

(lo)

exp £ (r in an) /Tn fl ~P, (r

n
~

exp(- (rj2> ~P2)/2 Tl fl &~P,(r)

Because of dividing by normalization multiplier Zo both the numerator and the denominator

of the ratio (10) are quite definite quantities very familiar to the theory of phase transitions



(see Refs. [17, 20] ; the denominator, in particular, is just the partition function of a system
described by conventional Landau Hamiltonian

H
=

"jj (rim> ~Pn)/n (i1)

with a bare matrix propagator (Green function) g(xi, x~), its components g;~(x,,x~)
=

(g(x,, x~));j being related to matrix vertex rl~l(x,, x~) by means of the following integral

equation :

~ij(X>, X')(l~j~~(X' X2))jk
"

~ik ~ (X> X2) (12)

Note, however, that in the case of ordinary second kind phase transitions higher vertices

r)~~(_
~

(xi,
..,

x ~) (n
=

3, 4 are local, otherwise they have the form

, nrjj((.
a

~

(xi,
,

x n)
=

fl 3 (x, x) dx
,

(n
=

3, 4 )

, i

whereas in our case they are non-local functions related to the chemical structure of the

copolymer systems under investigation by means of some explicit expressions (see Refs. [5-
i iii.

Let the fluctuations ~P, be small. Then we can neglect in the Hamiltonian H all terms but

first nonvanishing term in powers of ~P,

H
=

HRp~
=

~P, (x, r,)~l(x,, x~)
~P~

(x~)/2 (13)

In the approximation (13), which is just the random phase one, all integrals of type (10) are

Gaussian and can be calculated exactly.
The following step is to consider higher terms in Landau Hamiltonian as a perturbation :

H
=

HRPA + H,nt Hjnt
"

(ri~~ ffi ~)/3 +
(r'~~ ffi~j/41 (14)

Substituting representation (14) into definition (10), expanding on powers of H~n~ integrands
of both the numerator and the denominator of the latter and calculating each term of the

expansions as a Gaussian integral we obtain an expression for any observable quantity as a

sum of an infinite series of corresponding Feynman diagrams. In particular, the denominator

of ratio (10) can be represented as follows :

3 a,(r exp
~( (rim ~P n)/Tni

~
~

3 a, (r) exp()[rj2) a2)/2 T~

~ ~~~ ~~~'~ ~~~~

To calculate the so-called generating function VW of all connected diagrams S consisting of

unlabelled vertices of second, third and forth orders one should use the following well-known

rules (see, for example, Refs. [21-24]) :

1. Let us choose a set of Nj(~~~ vertices of second order, N)(),_,
~

vertices of third order

and N)()
~ ~

vertices of forth orier, each vertex of n-th order being represented as a little

circle having
n shoots, to each of the shoots a coordinate x, and a colour a, being assigned

(I
=

I, n, a, =
I,

,

m
), and connect all their shoots in one way or another by solid lines

to build a connected graph (diagram).

2. Let us assign a) the function Ar~~ ~~(xj, x~)
=

(r)~~( xi x~ ))~~
~~

rj(~~~(xi, x~) to

each vertex of second order (a little circle having 2 shoots with coordinates x,,
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x~ and colours a,, a~, b) the vertex function (- r)(~__
~

(x,,
,

x ~)) to each vertex of n-th

order with n >
2 and c) the bare Green function g~,

~~
(x,,

y~
defined by equation (12) to solid

line connecting shoots of a, and a~ colours with coordinates x, and y~.
3. Now the contribution W of a diagram is an integral, its integrand being the product of all

multipliers assigned to vertices and lines of the diagram as stated above, the integral being
taken over all coordinates of vertices shoots over all the volume of the system.

4. Having defined in this way rules of diagram technique we can calculate the function VW

as the sum of all these contributions divided by symmetry index r(S) of corresponding
diagram S

vw
=

z w( jrj~j)
~

~(x,,
,

x
~)j, jArjj)~~(x,, x~) j, s)/r(s) (16)

The sum (16) is to be taken at first over all ways of combination of vertex shoots at a certain

set (N)~)__
~

~) and then over all the sets and is, evidently, the sum of an infinite series. So, in,

order to calculate it explicitly we have, first, to know explicit expressions for all vertex

functions r)~])_,~ ~(x,,.., x ~) and, second, to decide which diagrams are to be taken into

account and which ones can be neglected. Note that it is just the choice of relevant diagrams
which distinguishes various approximations.

The first problem is resolved easily for those systems in which distribution of smoothed

densities (p,(r)) differs from spatially homogeneous one only slightly. In considering the

systems one should expand the virtual free energy in a power series on deviations of density

distribution from the homogeneous state of the system :

1°a (r)
= pa (Ti pa (~), (8~)

p~
= lp~(r)dV being a value of corresponding average density. In this case the vertex

functions are known to be related to some structural correlators of macromolecules calculated

from the assumption that their conformational behaviour is Gaussian (ideal) (for a thorough
discussion of the relation and explicit expressions of vertex functions for various block

copolymer systems see Refs. [5-11]). The second problem will be addressed to in the next

section.

3. Variational principle : a general consideration.

To make another step in accounting for the fluctuation effects let us recale the definitions of

two most important observables an average order parameter

@~(r)
=

(~P~(r)) (17)

and the correlation function (renormalized Green function)

G(rl, ~2)
~

(G,j(rl, ~2)
"

(~fik(~l) ~fii(~2)) (~fik(~l)) (l~i(~2)) (18)

a(j~Pi(r)j )exp ~-
~f (rim) ~Pn)jTn fl 3~P~(r)

(a( ( 4Si(r)) ))
=

~ ~~

"
~ (19)

exp ~- £ (T~~)
S~)/Tnj)

fl 3~p,(r).

n=2
,



Now, to calculate these observables let us consider the auxiliary quantity
AF jr l~

~)
,

(h (r )) defined as follows :

CXP AF I l~ ~~ ~l
,

IA (r )I )/ T)
"

exp (h, a ) + £ (rim) ~Pn)/n IT fl 3 ~P, (r j

~

=~

~~~~

exP(- (r]~~ ~fi~)/2 Tl fl 3 ~fi,(r)

Taking corresponding variational (functional) derivatives of the quantity having an obvious

meaning of free energy of the investigated system as affected of some extemal field

h(r) one can easily make sure that the following equalities are valid :

(3/3h(r)) AF
=

@;(r) (21)

(3/3 (r~~~(r>, r~))ki) AF
=

(~fik(r>) ~fii(r~))/2
=

@k(r>) @i(r~)
+ Gki(r>, r~))/2 ;

(22)

On the other hand the quantity W
=

AF/T has the meaning of a generating function of all

connected diagrams calculated using rules similar to those defined above when introducing
the functional (16). The only difference is that now diagrams having some free shoots

(otherwise, first order vertices) are allowed, the multiplier (- h~(r)/T~ being assigned to a

free shoot having a coordinate
r and a colour

a.
Considering corresponding diagrams one can

obtain the following equalities

@; (r
=

(GRP~ (r, r' )),~ (316 @, (r' ))
~r

h (r' )/ T) (23)

(G -'(r,, r~)),~
=

(r(2)(r,, r~)),~ 2(3 /3G,~(r,, r~))
~r

(24)

Here G~~~(r, r') is calculated in the framework of random phase approximation matrix

Green function which is related to second order vertex function as follows (see Refs. [20-
22])

(G~~~ (x,, x')),~ (rl~~(x' x~))j~
=

3,~ 3 (xi x~) (25)

The functional

tr( (4~i(r)), (G(x,, x2))
"

=

£ W( (~Pi(r)), (Tj,(1
~

(xi,..
,

x
~)), (G(x,, x~)), S)/r(S) (26)

is calculated using rules similar to those defined above when introducing the functional (16)
but with the following differences

I. The surf appearing in the definition (26) is to be taken over all the so-called 2-

irreducible diagrams (see Fig. I). (Remember that a diagram is referred to as n-irreducible

provided that it contains no those parts that can be separated from the rest of the diagram by

means of removing no more than n solid lines.) Vertices having free shoots (I.e. unconnected

with any other ones) are allowed.

2. To the solid line connecting shoots of a, and a~ colours with coordinates x, and

y~ one should assign the full (renormalized) Green function G~
~

(x,,
y~

) defined by equation
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~ T §/ 8 9
fi~ Q

a) b) c) d) e) f) g)

h) I)

Fig. I. Typical diagrams appearing in perturbative approach al and b) vertices of forth and third

order, c)-e) the only diagrams to be accounted for in Brazovskii's approximation, 0 and g) first of

diagrams to be accounted for in the regime of very strong fluctuations beyond Brazovskii's

approximation. Diagrams a)-g) are 2-irreducible ones, 2-reducible diagrams hi and ii are typical
addenda contributing to cl and d) respectively, bold fines corresponding to full (renorrnalized)

propagator G and solid lines corresponding to the bare propagator g.

(18) instead of bare Green function g~,~~(x,,y~) defined by equation (12) ; the function

@~(x) is assigned to a free shoot of j-th colour with coordinate x.

Note that equation (24) is obtained from the well known Dyson equation

(G(X,, X')),
j

(l~ ~~~(X' X2))jk ~ijk(X', X2)
"

~
<k

~ (X> X2) (2~)

using the following relation between the functional (26) and the so-called mass operator

2j~(x, y) which is the sum of contributions of all 2-irreducible diagrams having exactly two

free shoots and calculated as consistent with rules of calculation of the functional (16) :

2y(r>, ~21
"

2(&1&G,j(r,, r2))
t'

(28)

equations (23, 28) being obtained using diagram methods similar to those derived in the

theory of simple fluids (see Refs. [19, 23]). Its derivation is omitted here for the sake of

brevity.
Now we can obtain an expression for the change of the free energy of the system under

consideration (when its «bare» parameters h and rl~~
are changed) by means of the

following straightforward integration along a path in the corresponding Hilbert space from a

point (ho, r(~l) to a point (h,, r)~~) :

AF(h,, r)~~) AF (ho, r(~~)
=

=

j&h,(r) AFj&h,(rj +
(r12)(r,, r~))~i AFi& (r12>(r,, r~))~ij (29)

Let us substitute in the r.h.s. of equation (29) for functional derivatives of AF their values

obtained from equations (23, 24) and integrate the equation by parts. Then, assuming that in

the initial state the extemal field is absent (ho
=

0) we arrive at the following expression :

AF/T
=

I(
(l~,j~~(Xl X2) ~,j (Xl, X2) ~j< (X>, X2)

Sp (In G (x,, x~) In g(x,, xii dx, dxj2 ~( @i(r)), (G(xi, x~))

+ @, (xi ) r,)~l(xi x~) @~(x~) dxi dx~/2 hi (x) @I(x) dx (30)



where (@I(r )) and G (xi, x~) must satisfy equations (23, 24). (The spur of matrix-function

Ln G(x,, x~) is calculated in the Appendix). On the other hand, equations (23, 24) are just
extremal equations describing the conditions under which the functional 30 takes its nfinimal

(generally speaking, extremal) value. Otherwise,

AF
=

Tmax W( @I(r j), (G(x,, x21), (hf(rl), (l~~~~(X>, X2)) ) (311

where -W is the functional written at the r.h.s. of equality (30) and the minimum is to be

sought with respect to functions G;~ (x,, x2) and at (r considered as independent variables at

fixed h and r l~~ So, to evaluate free energy one can choose a certain set of relevant diagrams

in (30) and calculate the corresponding contRbutions using for @I(r) and G,j(x,, x~) some

trial functions ~P)~(r) and G)((x,, x~) which depend on some parameters a,. In minimizing

obtained in this way function AF( (a, with respect to parameters a; we arrive at the best (on

this class of trial functions) estimate of the free energy.

Note that the idea of presented derivation of the vaRational principle (31) is essentially the

same as the oRginal one of reference [3] with exception that we included additional peculiar

order parameter G,~ (x,, x~) (apart from the usual one
@i(r)). However, as will be shown in

the next section, our variational principle (31) is much more convenient than the oRginal one

of references [3, 4] in order to treat systems with strong angular dependence of higher vertex

functions (otherwise, the systems in which Fourier components

I, =n

r)j,I[ a~(q>,
,

q n)
~

r)il' an(X>,
,

X n) fl CXP (iq< X,) dX<

, =1

are dependent essentially on angles between momenta q,). Besides, minimization of the

functional (30) gives the absolute value of fluctuation contribution to free energy of a

considered phase, whereas variational principle of reference [3] (see also Refs. [4, 13, 14])

enables us to obtain only the difference of free energies of coexisting phases provided that the

vertex functions in the phases are the same. The property of the functional (30) will be of

great advantage in calculating phase diagrams of three and more component block copolymer

and polyelectrolyte systems (see Ref. [25]).

4. Variational principle and modified Brazovskii approximation for two-component molten

blockcopolymers.

Now, for the sake of simplicity we will show in this paper how the variational principle (31)

works for the case of molten block copolymers consisting of two sorts monomers in the

incompressibility limit

v(p,(ri + p~(ri) =1, (32)

v being an excluded volume which is assumed to be the same for monomers of both sorts. The

advantage of this case is that now all arguments of the functional ~ are scalar functions instead

of vector and tensor ones. For example,

lP>(X)
"

V(P>(ri P>i
"

fb (X)
~~~~

4~2(X)
"

V(P2(~i P2)
"

fb (X)

Besides, it is convenient to take as the bare propagator the correlation function
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Go(q) of athermal molten block copolymer system having the same chemical structure as the

one considered :

Go(q)
"

dX g(<X X'< ) Cxp(iqx)
=

(rl~~(q))~' (34)

g,i(q) + g22(q) + 2 g12(q)
l~~~~(~)

"
~~ ~j~~(~' ~~~~~~~~~~

g,,(q) g~~(q) g~2(~)

Explicit expressions for structural correlators g;j(q for various systems were derived early by

many authors (see Refs. [5-11]). For the sake of brevity we shale not wRte them here as well

as explicit expressions for higher vertex functions of these systems given in references [1, 7].
Note only that consistently with references [5, 6, 26, 27]

~~~~(q)
=

r)~~(q) 2 x (35)

x being the conventional Flory parameter (see Refs. [26, 27]).

Now the partition function and the free energy of the system considered can be written as

follows :

~b (r ) exP

"i
r in1 ~ n) /Tni

Z
=

Zo " 2
~~

Fo + AF

~ (r ) exp (- (r)~l ~ ~)/2 T~

~
~

~~ ~~~

AF/T
=

nfin
I(

(rl~~(xi x~) G ~'(x,, x~) G (xi, x~)

(ln G (x,, x~) In g (x,, x~) ) dx, dxj2 ~ ( (~ (r )), (G (x,, x~))

+ ~§ (x, ) rl~~(x, x~) ~§ (x~) dx,
dx~/21(36)

where

, =4

~ ( ( ~b
(X)I' (G (X,, X2) )

"
l~ ~~~(X>, X 4) fl ~b (X> dX< ~~

,=i

, =3

l~~~~(X,,
,

X 3) fl ~b (X,) dX< /31

, =1

, =4

r~~~(x,,..
,

x ~) G (x, x~) ~§ (x~) ~§ (x4) fl dx, /4

, i

, 4

rl~~(xj,
,

x ~) G (x, x~) G (x~ x4) fl dx, /8 (37)

, i

Here the terms on the r.h.s. correspond to diagrams a, b, c and d of figure I respectively. The

contribution of the diagram I e is proportional to
'~§(x) dx which is the change of the

average concentration of the system under microphase separation (see the definition (33)).

Because of the incompressibility condition the change is equal to zero for monodisperse block



copolymer considered further. (However, it is not the case for many component and/or

polydisperse systems like those considered in Ref. [6] where micro- and macrophase
separation can proceed simultaneously.) Other diagrams are neglected here consistently with

approximation of references [3, 4]. In order to write out the conditions of validity of the latter

let us use the following considerations.

For many two-component block copolymer systems r(~~(q) has a minimum at a certain

value of modulus q equal to qo, the region of stability of the system with respect to

infinitesimal spatial fluctuations of the order parameter ~§ (xi being limited by a spinodal
defined as follows (see Refs. [5, 6, 26, 27]) :

r =

r12)(qo)
=

rj2>(qoj 2 x =

2 (xc x =
0 (381

(Following Eq. (38) the quantity
r can be considered as an effective temperature

characterizing the proximity to phase transition point.) So, the fluctuations having wave

vectors qo should be the largest near the spinodal. Tl1erefore, minimizing (36) one can use the

following trial function for ~§(x)

~§ (x)
=

£ A, exp iq, x/n"~ (39)

q,I =w

where the sum is carried out over all those vectors q, of an inverse lattice conjugated to some

Bravais lattice which have the same modulus <q< = qo, n being the number of different

vectors q,,
Furthermore consistently with reference [3] we will suppose that fluctuation effects result in

renornlalizing the effective temperature value only and do not influence the value of critical

wave vector qo. (Actually, one should take into account fluctuation renornlalizing of

qo beyond the scope of Brazovskii's approximation.) It follows that a suitable trial function for

renornlalized propagator can be written as follows

G-'(q)
=

c((,q, -qo)2)
+r (40)

the constant C being defined as follows

C
=

@~r)~~(qo)/@q~< /2.

(The approximation (40) is correct provided that the condition r/qjc
« I is valid,) Now,

substituting the trial function (40) for renornlalized propagator in the functional (36) and

using Fourier transformation in calculations of corresponding integrals one can easily notice

that the moduli of all relevant vectors q of Fourier space are close to qo. So, it is convenient to

adopt Leibler's, notation for the Fourier transfornlation of higher vertex functions :

n 4

l~~~~(~>,
,

~ 4)
"

l~~~~(Xi,
,

X n) fl ~XP (1~0 ~n Xn) dXn

n i

= y l~~(h,, h ~) (e, + e~ + e~ + e4)
,

n 3

l~ ~~~(ql, ~ 2, ~ 3)
"

l~ ~~~(X,, X2, X3 fl ~Xp (1q0 ~n Xn) dX~

n i

= y l~~(I (e, + e~ + e~)

where h,
=

(ei + e~)~, h~
=

(e, + e~)~ and ei, e~, e~, e~ are some unit vectors.
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Now we can evaluate perturbation parameters of the series (37) generated by the functional

integral (lsa). To this end one should compare with each other contributions of diagrams
retained in the series and omitted ones. To facilitate this task let us reduce it first to proper

dimensionless variables taking into account that vertex functions r)()___,~ ~(qi,,,,q~)
occurRng in expansion (7) have the following form in the case of monodisperse molten

copolymers (see Refs. [5, 7~) :

l~aj,.. a~(~>, ..,~ n)
" P l~aj,, o~(P>, ..,P n)/~.

Here p =
p, + p~

=

v~' is the total monomer density of incompressible molten copolymer
having degree of polymerization N and p =

q/qo is a dimensionless coordinate of Fourier

space, The quantity qo defined above has a value of the order of the gyration radius

(a ~N/6)"~ of corresponding one-chain copolymer macromolecule

qj
=

x~/Na~

both values of
x and fl[((

,

~(p,,
,

p ~) being of order of unity and depending on the actual

copolymer structure. Reducing to desired dimensionless variables is executed by means of the

following substitution :

q ~ pq0, 4~ ~~p)
"

(~q]/N)
~b

~(q), +
"

N(xC x )
,

Z "
V/Q~ N"~,

Y " i~ii~..
a

~(P>,
..,

P 3)(X~Z)~~~, ~
" i~~~..

o
~(P>,

..,
P 4)(X~ Z)

One can write the following expressions for whole (including symmetry multiplyers)
contRbutions of some of diagrams which are generated by reduced in this way functional

integral (lsa) and shown in figure1 :

lI~
=

fx~ z/8(4
w )~ rC ; W~

=

(Ax~ z
)~/48(4

w )~ (rC )~
,

4 4 4

A ~
=

(rl~~(h,, h~))~ (h, + h~ + h~ 4) dh, dh~ dh~/(h, h~ h~)"~,
o o o

1
=

(y13>(1))2x3z/12 «(64rc)3/2

Thus, the conditions of validity of the approximation choosen here are the following :

wr/«
=

(y ~3~(1))~ «/48 t(rc)"2 «
,

lI~/lI~
=

A ~(x~z) /24 wf(rC « I

At last, taking into account that fluctuation corrections are essential provided that the

following condition holds :

f X~ Z /2
W rc )~'~ W i

we finally get the conditions defining the region of applicability of the Brazovskii

approximation in our case :

max jl ~(x~= )/24 wf
,

(y l~~(1))~ (w/48 f)~j « rC «
(f(x~z)/2 w)4~ (41)

which hold when

((vla~) N "~l"~ « 12(2 wf ~)"~/x1~ (42)



One can show from direct calculations that y ~~~(l is equal to zero in incompressible star

blockcopolymers (A~ )~ (B~ )~ investigated below when n/N
=

m/N
=

0.5. In particular in the

vicinity of this point n/N 0.5 w 0.3 the parameter ( y l~~(1) )~ (w /48 f is small and we can

neglect the contribution from diagram in figure lf to the free energy.

Now let us retum to the calculation of the free energy (36) assuming that conditions (41),
(42) are fulfilled, Calculating the integrals involved in the definition (37) and minimizing free

energy (36) with respect to parameters A, at given value of r one can make sure (see Refs. [4,
5]) that all these quantities have the same modulus <A;< =

A, The quantity A as well as

parameter r are determined as the roots of the following system of equations :

AF~(A, r )/@A
=

AF~(A, r )/@r
=

0 (43)

AF~(A, r )/V
=

1/2 sr"~
+ l/2 sT/r"~ + fl

~

A ~
a~ A ~

+

+ l /2 sfA ~/r"~ + l /8 s~ fir + TA ~ (44)

Otherwise, equations (43) define the point of an extremum (for stable equilibRunJ states the

extremum is a minimunl) of free energy (44) as a function of parameters A and r, The
.4

following designations were introduced f
= y l~l(h, 0 dh/4, s =

q(/(2 WC "~l, where
o

functions a~ and fl~ depend on the sort of supercrystal lattice and are related to vertex

function as follows (see Ref. [5]) :

for lamellar structure a, =
0, fl,

= y l~~(0, 0)/4;

for tRangular structure

a~ =
2/3~'~ y l~~(1)

,

12 fl
= y l~~(0, 0 + 4 y l~~(0, 1)

for body cubic center structure (45)

a6 "
(2/31~'~ Y ~~~( Ii

,

24 fl~
= y l~~(0, 0 ) + 8 y l~~(0, 1) + 2 y l~~(0, 2 + 4 y l~~(1, 2

The terms in expression (44) correspond to those of expression (36) in the same succession

except for the first two terms corresponding to the first three terms of expression (36).

In order to determine the equilibrium values r and A as functions of both
T

and sort of

supercrystals lattice, one should minimize AF~ with respect to A and r.
Extremal equations

(43) can be wRtten in the chosen approximation as follows :

r T
sf/2 r

~'~ fA ~
=

0 ; (43a)

A (sf/r"~
+ 2 T 3 a

~

A + 4 fl
~

A ~)
=

0 (43b)

The root A
=

0 of equation (43b) corresponds, evidently, to homogeneous (« liquid ») state,

Substituting it in equation (43a) one can determine r as an implicit function of
T :

r
sf/2 r"~

= r
(46)

Equation (46) has exactly one root for any value of
r (- oJ < r < oJ ), the value of

r tends

to 0 when the value of
r

tends to -w. It means that within the framework of the

approximation adopted the homogeneous state stays stable as to infinitesimal fluctuations of

the order parameter 4S(r) at any limited value of effective temperature r.

ConsideRng the inhomogeneous (supercrystalline) states one should solve the following
system :

~ T Sf/2 r"~- fA ~
=

o
~~~~Sf/r"~+2T-3 a~A +4fl~A~

=
o,
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Thus, substituting into (44) the solution of equation (46) or system (47) for different sorts of

supercrystal lattice, we can determine the fluctuation correction to free energy AF~ as

function of T and sort of supercrystal lattice. Note, by the way, that using the substitution for

the case of local higher vertices one can show that our expression (44) gives the differences

between free energies of different (both disordered and ordered) phases which are just
corresponding expressions of reference (3), The diagram shown in figure ld determines the

fluctuation correction to the free energy of the disordered state at given
T.

Besides, the value

of
r

obtained in this way enables us to find the best approximation of kind (40) for the

correlation function, (It is useful to make this point clear. The Dyson equation allowing for

higher vertices' angle dependence was presented early in reference [4], One can arRve at the

equation minimizing the free energy (36) with respect to tRal functions

G~'(q)
=

(q qo)~ + r(h), h
=

q/q,) However, this equation can hardly be solved. On the

contrary, our choice of trial functions in the form (40) is more crude but more effective for

arbitrary higher vertices' angle dependence,) So, we get a quantitative description of

scatteRng phenomena in supercrystal phases.
It is worth noting that another advantage of our approach is the ability to evaluate the

correlation functions of supercrystal states in the random phase approximation. Indeed, the

latter corresponds to the limit sf/r~'~
~

0 in which fluctuation corrections are negligible. So,

one can get a system to be solved to find value of r in the approximation omitting in (47)
members with sf/r~'~.

2T-3a~A+4fl~A~= 0 (48a)

r-T-fA~= 0. (48b)

Tile first of these simultaneous equations enables us to obtain the value of an order parameter
in the RPA and was presented earlier in references [2, 5]. Equation (48b) defines correlation

radius in supercrystal phases in the RPA and seems to be new. (Note, that it is impossible to

obtain any approximate expression for WA supercrystal states correlation functions within

the framework of this approximation because of the fact that the last tern1in equation (48b)
arises from the diagram lc.) Solving equations (48) we get

A
=

j3 a~ + (9 al 32 ~p ~l'/2j /8 p~
~~

r =
T(I C~) + 3 a~ C~A/2

C~
=

f/2 fl~ being parameter independent of
T

characteRzing the structure of the system

under investigation.
Because of the incompressibility condition the mean density of a molten two-component

heteropolymer remains the same both in homogeneous state (I) and in all supercrystal states

(m). Therefore condition

AF,
=

AF~ (50)

defines the line (surface) of coexistence of these phases and condition

AFm~ =
AF~~ (51)

defines the line (surface) of two supercrystal phases (m, and m~) coexistence. Using this

procedure, phase diagrams for different copolymer systems were constructed in references [5,

11, 12].



5. Comparison with Fredrickson-Helfand theory.

To compare our results with corresponding ones of reference [13] we carry out the numerical

solution of equations (50) and (51) for incompressible molten star copolymers of kind

(A~)~ (B~)~. Macromolecules of this kind can be obtained (at least viewed) by means of

crosslinking k joints of diblock copolymer chains A~ B~ consisting of N
= n + m monomers.

So, numbers k and N as well as volume fraction
~§ =

n/N can be taken as parameters

characteRzing the chemical structure of these systems. Besides, there exists a parameter

z =

(vla~) N~ "~ which describes a level of fluctuation effects (see Ref. [13]). For real polymer

systems the value of the parameter z does not exceed 0.I and decreases when N increases.

We choose these systems for the following reasons. In the case of k
=

I the system is just
molten diblock copolymer which was well studied both in random phase approximation in

reference IS] and in approximation of reference [3] by Fredrickson and Helfand (FH) in

reference [13]. Remember that the trick of reference [13] mentioned in Introduction is the

following. Noting that for molten diblock copolymers higher vertices depend both on angles
between vectors q, and on concentration ~§, Fredrickson and Helfand (FH) assumed that to

construct phase diagram of the system on a plane (T ~§ ) it is sufficient to let

y i~~(h,, h ~i
m y >~(o, o ) (s2)

taking into account the #-dependence of y l~~(0, 0) and yl~l(I ) exactly as is consistent with

the calculations of reference [I]. Otherwise, in the approximation 52 values of coefficients

(43) and f can be wRtten as follows

f
= Y ~~~(°, °)

for lamellar structure a, =
0, fl,

= y ~~l(0, 0)/4

for triangular structure

a~ =
2/3~'~ y l~~(1)

,

12 fl
=

5 y l~l(0, 0 ;
~~~~

for body cubic center structure

a~ =
(2/3)~'~ y l~~(1)

,

24 fl
~ =

15 y l~~(0, 0

(Note, by the way, that in the case of approximation 52 the coefficient C~, which determines

phase stability in random phase approximation as consistent with equation (49), takes the

values of 2, 6/5 and 4/5 in the cases of lamellar, tRangular and b-c-c- lattices, respectively.
Only the last of them is less than unity. It follows that in the region of

z » I (or provided
a~~0) the values of both r, and r~ are positive unlike negative here value of

r~. It seems that it is this fact that explains the well known instability of b.c.c. phase in these

circumstances.)
On the other hand, it is these systems that were shown in reference [12c] to reveal a strong

angular dependence of high vertices which results in tricritical-like behaviour of lamellar

phase in the case of k
>

5. (More exactly, in this case the approximation (52) becames

nonvalid and the value of the coefficient fl, occurring in expression (44) for the free energy

AF~ becomes negative whereas fl~ and fl~ stay positive.)
The phase diagrams for incompressible molten star copolymers of kind (A~)~ (B~)~ with

different values of k are represented for the case of fluctuation parameter z =
0.I in figure 2

and for the case of
z =

0.01 in figure 3. Tile calculations carded out by means of our

variational principle show that for any value of k in the first case there are only transitions
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I i~~

30.oo 30.oo

20.oo 20.oo
~y

4 L
10.OO lO.0O

Rg.2
' ng.3a *

I I

30.oo 30.oo

20.OO
~~

20.OO LAM

'

,
,

,

''
' L

10.OO lO.0O

Rg.3b ~ Rg.3c ~

Fig. 2. Phase diagrams of (A~)k (B~)k-stars with
z =

O.I on plane (k, ~ ), k
=

X~. The numbers

assigned to lines denote the corresponding values of k. Solid lines pertaining to upper group are ones of

transition to lamellar (LAM) phase from disordered (L) (for k
=

I or 2) or triangular (Al (for
k =4) phase calculated using FH-like approximation 50; the dashed line is that of transition

L-A obtained in the approximation. The lines of phase coexistence calculated by means of our

variational principle 36 using exact expressions for angular dependence of hijher vertices calculated in

references [1, ~ are shown by asterisks. The lines of the lower group are those of corresponding
transition A-LAM calculated in the mean field (Leibler) approximation (z

=
O).

Fig. 3. Phase diagrams of (A~)k (B~)k-stars with z =

0.01 and values of k
=

1, 2, 4 (Figs. a, c and b

respectively). The solid lines correspond to our theory and the dashed fines to FH-like calculations. L, 4

and LAM are used to denote regions of liquid (disordered) phase and lamellar and triangular
(supercrystal) ones respectively.

from disordered or liquid (L) phase to lamellar (LAM) one. In the case of k=4,

z =
0.I, FH-like calculations using approximation 50 predict both the L-LAM transition in

the region 0.4
< ~§ <

0.6 and a sequence of transitions L-A-LAM with very narrow area of

triangular (A) phase in the regions
~§ <

0.4 and ~§ >
0.6. We see that the larger the value of k,

the more visible the difference between phase diagrams obtained in the framework of our

theory and of the less rigorous FH theory respectively. In a somewhat different manner the

same tendency is revealed in figure 3 where the region of the existence of A-phase appears

because the fluctuational parameter z decreases. Namely, this region calculated by using our

vaRational pRnciple is more narrow than that obtained using FH-like calculations. OtherPise,

the destruction of more ordered phases caused by fluctuations is more pronounced when

corresponding free energies are calculated more precisely. Summarizing, the tendency can be

expressed as follows FH-approximation underestimates to some extent caused by fluctu-



ations change of phase diagrams. However, the influence of angular dependence of higher
vertex function on the character ofphase diagrams becomes less pronounced with increasing
fluctuation effects.

6. Conclusion.

We have presented a general approach to account for fluctuation effects in copolymer systems
of complicated chemical structure under microphase separation in the weak segregation limit.

It has advantages over the FH theory in calculating correlation functions in supercrystal
phases (see formulas (40), (47-49) above) and in describing the crossover from mean field

(Leibler) regime to fluctuative (Brazovskii) one. However, in the latter regime the results of

our and of the FH theoRes and especially the qualitative picture (general topology) of phase
diagrams are generally the same.

Appendix.

Evaluation of Sp In G.

As consistent with standard definitions of matrix theory the following chain of equalities
holds :

Sp In G
=

Sp £ #, (x, ) #,* (x~) In 1,
=

£ In 1; f (x) ~ dx
=

£ In 1, (Al.I)

, , ,

1, and #, (x) being eigenvalues and fundamental functions of the following integral operator :

(tlf)(r)
=

G,~(r, r' f~(r') dr' (Ai.2)

Going over to Fourier representation of equalities (Al,I) and (Al.2) and substituting for

G(q) expression (40) we obtain

Sp In G
=

V lln (C(( <q qo)~) +
r) dq/(2 w)~. (Al.3)

The integral (Al.3) diverges in the large values of q region. The ultraviolet divergency,
however, is of no significance because it contributes only to a constant in free energy (see
Refs. [15, 28]). Therefore it is the r-dependence of integral (Al.3) which is the only one of

interest in the situation. To find it let us differentiate (Al.3) as to r :

(@/@r) Spin G
=

V (C(( <q qo)~) +
r) dq/(2 ar )~ =

V (ql/2 ar)(Cr)~ ~'~

(Al.4)

Finally, it follows from (A4)

Sp in G
=

V (qj/w ) (r/C)~'~ (Al.5)

an unimportant constant being omitted.
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