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Abstract. We show that the Car Following Model with Optimal Velocity (Optimal Velocity
Model), whicl~ was proposed in our previous paper, is a

successful traliic model in reproducing
the characteristic features of observed traffic flow data. In our model the transition from free

flow to congested flow occurs spontaneously by the collective motion of vehides, wl~ich obey to

tl~e same
dynamical equation. Tl~e observed specific discrepancy of traffic flow

vs- car
density

grapl~ is well understood in terms of tl~e phase transition in our model.

1. Introduction

Trailic flow has been studied from many different points of view and there have been essentially

two different types of approaches, macroscopic and microscopic ones
idynamical models). We

are here mainly concerned with the latter approach, in which the global features of trailic flow

are to be explained from the collective motion of individual vehicles. Among those approaches

one of the most traditional treatment is the study of the Car Following Model [1-3]. These

models are based on the reliable assumption that each driver controls his vehicle only according
to his preceding vehicle's motion. Most models have taken the assumption that the acceleration

is proportional to the relative velocity of two successive vehides, and therefore have used

essentially the first-order differential equation of motion of an individual vehide. However,
these models have diiliculty in explaining the specific property of trailic flow, which has two

distinct behaviors, free and congested flows.

Conventionally trallic flow is characterized by three basic quantities: velocity i~), flow iQ)
and density (k). The main mterests of trailic engineers are rather practical problems such as

how many vehides are allowed to run in the freeway traflic fanes with specified capacities-
Measurements are made to search the relationship between the flow (or velocity) and the

density. The dependence of the velocity on the density, which is usually called the k-~ curve,

generally shows that velocity is a decreasmg function of density- The typical feature of trailic
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Fig. 1. Illustration of tl~e flow-density and velocity-density relationsl~ip of traffic flow.

flow has been expressed using the Q-k graph, which shows the relation between the flow and

the density [4].

From accumulated data of measurement on freeways the following facts are commonly rec-

ognized. When the density is very low, each driver can control his vehide almost freely, which

can be called "free-flow". On the other hand, when the density is very high, each driver is

strongly forced to decrease his vehide's velocity and a "congested flow" appears. A typical k-~

curve and Q-k graph are illustrated in Figure 1, neglecting the difference of quantitative details

among several data. A possible discontinmty is observed between the high and low density
regions and there seems to exist a critical density which separates the two regions [5-7]. We

can identify these high and low density regions as the congested and the free flow.

Figure 2 is an example of the accumulated observed data taken by the Japan Highway Public

Corporation (JHPC) [4]. You would find such types of graphs in most of textbooks of trailic

theories. In Figure 2, we find a possible discontinuity at the occupancy P cf 25%
,

which may

be called a critical density as we mentioned before.

In trie traditional studies of trailic flow, the behavior of two distinct region are separately
explained with independent formula or models. No early works of Car Following Model could

reproduce the discontinuity between free and congested flows in unified way.

In our previous paper [8, 9], we proposed a new model (hereafter
we call "Optimal Velocity

Model" ). The essential difference from traditional Car Followmg Models is the introduction of

an optimal velocity of a vehicle, which value is changed accordîng to the headway distance. In

our model the trailic congestion occurs spontaneously and this phenomenon can be understood

as a sort of phase transition from free flow state to congested flow state. Actually, the dynamical
equation of our model has two different kind of solutions. One is the homogeneous flow solution

and the other is the congested flow solution, which consists of the two distinct regions; congested

regions ihigh density) and smooth moving regions, or free regions ilow density). The specific

property of observed trallic flow, (Fig. l and Fig. 2), will be explained in this context.

The purpose of this paper is to apply ouf model to explain observed data and to show how

well ouf model reproduces the Q-k graph of traflic flow, especially trie behavior at the cntical

density. In Section 2 we explore some charactenstics of observed trallic flow data. After doing

a brief review of Optimal Velocity Model in Section 3, we shall apply our model to realistic

trallic phenomena using the data of Chuo Motorway in Section 4. Summary and discussions

will be given m
Section 5.
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Fig. 2- Example of flow-occupancy (a) and velocity-occupancy (b) relations obtained from the

observed data taken by Japan Highway Public Corporation.
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Fig. 3. a) Drake's k-u curve; b) Q-k diagram corresponding to Drake's k-u curve.

2. Behavior of the Q-k Graph at Critical Density

In early works explaining the shape of Q-k curve, several functions have been proposed for

the density-dependence of the velocity ~ik), by Greenshields [loi, Greenberg [iii, Edie [5],
Underwood [12], Drew [13], Drake et ai. [14]. Some of them are introduced semi-empirically

and the others are derived from calculations of some underlying models. Among these works,
the Drake curve, which is obtained from fluid dynamics, has been thought to reproduce the

global features of observed data fairly well [14]. We show the illustration of Drake's curves

in Figure 3. He derived the Q-k curve corresponding to a certain ~(k) with the assumption
Q

=
k~. Trie curve does not reproduce a striking wedge at the critical density m the observed

data (see Fig. 2). No one can obtain such wedge shape so long as he uses any continuous

function for the k-~ curve. Among the above works Edie's model only showed the wedge
shape [5]. However, he introduced the critical point by hand.

Our model can explain the features of trailic phenomena for both congested and free flow m

a
unified way, 1-e-, to understand them from the same microscopic dynamical law. We know a

lot of physical phenomena that the basic equation has a different kind of solutions, which have
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qmte different macroscopic aspects. This can be explained in terms of phase transition.

3. Optimal Velocity Model

Let us make a brief review of our dynamical model [8]. We investigate our model in the most

simple situation where N vehides move on a single fane circuit with a circumference L. Here

we assume that road conditions are uniform along the circuit and drivers are identical.

We use the following notations; position x, velocity fl and headway AT as the basic vari-

ables for convenience. The dynamical equation for each vehide is the following second order

differential equation:
in

= a (ViAxn) in), 11)

where xn is the position of n-th vehide and Axn denotes the headway of the n-th vehide,
Axn

= xn+i xn and a is the sensitivity.
Each driver controls the acceleration of his vehide in such a way that its velocity is maintained

at an optimal value V(Az) according to the headway AZ. We call this "Optimal Velocity" (~).
In contrast to earlier works, we do not introduce the discontinuous function V(Ax) in order to

reproduce trie observed discontinuity in k-~ and Q-k curves.

The Optimal Velocity function ViAx) should have some properties for safety driving [8].
We adopt a

tanhix)-type
curve as a candidate. For the convenience to fit the function with

observed data, we rewrite ViAx) as

V(Ax)
= Vo [tanh m(A~ bf) tanh m(bc bf)] 12)

We have four parameters Vo,m, bf and bc m this function, which should be determined from

observed data of the individual vehide behavior. The maximum velocity for a large enough
headway is given by Vmax

=
Vo[1- tanhmibc bf)] The headway, AZ

=
bf, corresponds to

the inflection point of the Optimal Velocity function, where Vibf)
=

Vmax j. The Optimal
Velocity becomes zero at AZ

=
bc, whicl~ is regarded as an effective car lengtl~ and is a httle

larger tl~an tl~e average lengtl~ of vel~ides, l~, smce eacl~ driver stops bis vehicle before crasl~ing:

b~ = l~ + à. 13)

We bave a l~omogeneous flow solution of equal spacing b
=

LIN and constant velocity V(b)
for equation (1),

~n(t)
=

b(n 1) + Vib)t in
=

1,.
,

N). 14)

This solution is unstable m the case of 2V'lb) > a, whicl~ corresponds to tl~e area between two

dashed fines as shown in Figure 5 and traflic congestion occurs spontaneously [8].
Figures 4a and 4b show typical results for N

=
100 and L

=
200, which are the snapshots

at t
=

100 and 1000 of the velocities of each vehicle, respectively (~). The homogeneous flow

with a small initial disturbance develops into a congested flow with time evolution. Figure 4b

indicates the spontaneous generation of congestion.
The profile of the congested flow is illustrated in the AZ k plane (phase space). After tl~e

generation of congestion is finisl~ed, the motion of vehides organizes the specific dosed curve

in the phase space. We called this "Hysteresis Loop" and the loop can be understood as some

kind of a hmit cycle. Here, we observe that each vehide moves from the free region iindicated

(~) It was called "legal velocity"
m our previous papers.

(~) Numerical solution of Figure 4 is obtained with parameter values, Vo
"

1, m =
1, bi

=
2, bc

=
0,

and the initial condition: ~i "
o-1, ~n =

bi(n 1) (for
n > 1), in

=
V(bi)
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Fig. 4- The snapshots at t
=

100 (a) and t
=

1000 (b). A congested flow (kink-like) solution

appears as time develops.
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Fig. 5. The motion of vehides m the A~ 1 plane on the "hmit cycle". The dotted curve denotes

V(A~). The stable and unstable regions of homogeneous flow solution
are

also shown-

by point A% iAxF, ~F)) to the congested region idenoted by the point Be (Axc, uc)) on this

"limit cycle", iindicated by the arrows m
Fig. 5) [9] and ~ice ~ersa. The shape of the limit

cycle depends on the sensitivity a; the smaller the sensitivity is, the wider the limit cycle grows.
This will be apparent in Figure 7-

4. Phenomenological Study

Now we move to the main topic in this paper. We compare the predictions of our model with

freeway trailic flow data.
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Fig. 6. Velocity-clearance data from
a car-following expenment on the Chuo Motorway, which was

taken by Koshi et ai. [6,15] Solid curve is
the determined Optimal Velocity function V-

Our first task is to determine the values of parameters to fix trie form of an Optimal Velocity
function 12). This can be clone with the reference of the observed data of an mdividual vehide's

behavior. As the most appropriate data for our purpose, we use the data of car-following
experiment on the Chuo Motorway taken by "Koshi group" [6,15]. They obtained data points

on the velocity-dearance plane (Fig. 6), where the dearance S is defined as the headway
subtracted by the vehides length, l~, isee Eq. 13));

S=Ax-l~. 15)

There are very few data points around 55 km/h velocity in Figure 6. In the view of ouf

dynamical model, drivers feel difliculty to run vehides maintaining with such velocity, which is

just corresponding to the unstable velocity region of the homogeneous flow solution. So, we can

mfer that the inflection point is nearby such velocity. Let us fix the parameters of the Optimal
Velocity function from Figure 6. The mflection point is taken as (S,

v =
(20 m, 55 km /h). The

maximal velocity is Vmax
=

ils km/h (dashed line) and the minimal dearance is Smin
=

à
=

2.0 m
iindicated by dotted line). From the above, we get the concrete form of the function,

V
=

16.8[tanh 0.0860(Ax (20 + l~)) + 0.913] (m/s). (6)

The resulting function (6) is also displayed by a sohd curve m Figure 6. For simulations, we

should take the length of the vehide, l~ =
5 m ~vhich was used in the car-following experiment

on Chuo Motorway.
Next we determine the value of sensitivity a. For this purpose we make simulations for

vanous values; a =
1.6, 2.0 and 2.8 usmg the Optimal Velocity function determined above.

The results are shown in Figure 7. We choose the sensitivity a =
2.0 as the most appropriate

value which reproduces the realistic velocity and headway of congested or free regions. Then

using this value, we will make simulations of various car-densities (NIL) for the purpose of

obtaining the density-flow relationship (Q-k curve).
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Fig. 8- Q-k
curves on

tl~e flow-density plane. Tl~e flow-density relations of tl~e l~omogeneous flow

solution and congested flow solution are depicted by solid and dotted curves respectively. A and B

denote the free region and the congested region points respectively- C corresponds to tl~e inflection

point of Optimal Velocity function V(A~) (see also Fig. 5).

By substituting the value of A~c and A~F obtained from the simulation result, we find

Q
"

318 3.36 k (ii)

On the other hand, the Q-k relation of the homogeneous flow is analytically derived by using
the solution (4)- The flow Q is easily written as

Q
"

~
"

kV(1/k)
=

5.04 (tanh(
~~

2.15) + 0.913) k (12)

These two curves, equations Ill and (12),
are drawn

m
Figure 8- The free region point iA)

and the congested region point iB) correspond to the end points of the limit cycle in Figure 5-

We note that the homogeneous flow solution is unstable in the region between dashed lines

m Figure 8 from the analysis of linearized theory [8]- The corresponding region is shown as

region III in Figure 8. The congested flow solution is expected to be realized in this region,
therefore the simulation data will be plotted on the dotted line iii).

Now we
finished the discussion about Q-k relation and we perform the simulations for varions

NIL values. We use the Optimal Velocity function 16) determined from Chuo Motorway data,
and take the initial condition of simulations as the homogeneous flow with a tiny disturbance.

The result of simulations is plotted also in Figure 8. Each diamond mark corresponds to one

simulation, which shows a good agreement with our prediction.
We can separate the density mto five regions divided by dashed hnes as m Figure 8. In

regions I and V, only the homogeneous solution is stable ithe solid curve is realized). In region
III, only the congested flow solution is stable (the dotted line is realized). On the other hand,

in regions II and IV both solutions are stable. In Figure 8 the solid curve is realized because we

started the simulation from the homogeneous flow. When we start from another distributions

of vehides such that congestion already exists, the congested flow solutions are stable as long as

they obey to the Hysteresis loop profile. We have already confirmed this result in the previous

paper [9]. In this case the dotted hne is realized as well in regions II and IV.
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Fig. 9- Q-k diagram on the flow-occupancy plane. The result of our simulations is shown by the

diamond marks togetl~er with the observed data of Figure 2a.

Now we cl~eck our simulation data against some observed data. In principle, we sl~ould

compare the simulation results with real Q-k data measured in the same freeway that we

determined the Optimal Velocity function. Unfortunately we have no data of Q-k diagram
given by the observation in Chuo Motorway, which should be compared with the result of the

simulation using the Optimal Velocity function (6). On the otl~erl~and, we bave tl~e Q-k data

of JHPC (Fig. 2), but we do not bave the data hke Figure 6, which can determine tl~e Optimal
Velocity function. Tl~us we apply tl~e Optimal Velocity function for Chuo Motorway to tl~e

study of JHPC data (Fig. 2) with some modification. This can be done by only rescaling
trie overall factor V, which makes no change in trie dynamics of ouf model. When we fit the

Optimal Velocity function VIA~) to the JHPC data (Fig. 2b) in the same way as tl~e case of

Cl~uo Motorway (Fig. 6), tl~e maximum velocity of V(Ax) of JHPC data is about 80% smaller

tl~an tl~e Cl~uo Motorway one. So we rescale the function as

V'
=

0.8 x V (13)

The time occupancy P, which appears in Figure 2 is related to the density; P
=

lck. Here we

take l~ =
7 m as an average length of vehides.

We perform trie simulations usmg tl~is function witl~ tl~e same procedure as tl~e previous

case. We also took tl~e initial condition as tl~e l~omogeneous flow with a tiny disturbance.

We present trie result of ouf simulations m Figure 9 by tl~e diamond marks togetl~er with tl~e

observed data of Figure 2a. In the region where tl~e congested flow solution is stable, the series

of diamond marks are very dense and may look like a thick solid fine. Ouf result agrees quite
well with the observation and the specific discontinuity between free and congested flow is well

reproduced.
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5. Summary and Discussion

We have demonstrated that Optimal Velocity Model reproduces the characteristic features of

the traflic flow phenomena quite well. Especially our model reproduce the specific discontinuity

near the critical car-density between free and congested flows in the observed Q-k graph. This

discontinuity is understood as the behaviors of two different kind of solutions of our dynamical
model, which means the two different phases of our dynamical system. Thus we stress the traflic

flow phenomena with congestion can be well described in the concept of phase transition.

Recently several models have been proposed to understand the phenomenon near the critical

density. Navin and Hall proposed to describe the system on 3-dimensional space ik-u-Q)
with a smooth function based on catastrophe theory iii. This allows one to reproduce the

discontinuity on 2-parameter plane by projecting the smooth function to this plane. The

spontaneous generation of congestion, whicl~ we bave demonstrated by our Optimal Velocity
Model, suggests wl~y tl~e catastrophe tl~eory describes tl~e traflic flow quite well. We know

some otl~er kinds of models wl~icl~ can generate tl~e trailic congestion spontaneously. Cellular

Automaton models are proposed by Nagel and Scl~reckenberg [16], Nagatani iii] and Kikucl~i,
Tadaki and Yukawa [18]. In tl~ese models tl~e lane is divided into lattice sites and eacl~ car

sl~ares a lattice site and moves from a site to site in discrete time steps according to some

rule. Kikuchi et ai. also propose another model based on coupled map lattice model [18].
These models have also been successful in generating congestion spontaneously. It would be

interesting to investigate the common feature to their treatments and ours, whicl~ lead to a

successful description of tl~e traflic flow. Tl~e l~ydrodynamical approach based on well known

Navier-Stokes equation is also proposed by Kerner and Konl~àuser [19]. Under some special
condition, tl~ey lead to tl~e simple equation, which is very similar to our model. The sensitivity

m our model corresponds to the inverse of relaxation time.

We should stress that our model is rather powerful in dealing with realistic trailic flow

phenomena, because it is easy to indude modifications to reproduce realistic trailic flow. For

example, our model can indude tl~e effects of different bel~avior of each driver by introducing
tl~e driver-dependence of tl~e sensitivity an and Optimal Velocity function VniAx).
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