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Résumé. La théorie de Flory pour une chaîne polyménque est obtenue
comme l'ordre

dominant d'un développement en cumulants. Dans cette approche, l'énergie libre originale de

Flory y compris le terme logarithmique est obtenue. L'exposant
o est donné par a =

(v- ))d
et ne satisfait pas la relation entre exposants a =

2 vd. Les préfacteurs des énergies libres

élastique et répulsive sont dérivés à partir des paramètres microscopiques. La méthode peut être

appliquée à d'autres types d'interactions entre monomères, et on discute le cas d'une chaîne
en

mauvais solvant. La méthode peut être généralisée au cas de plusieurs chùnes solutions de

polymères), et on en
déduit les changements de comportement en fonction de la concentration

en chaînes. Finalement, la méthode permet un développement systématique autour de la théorie

de Flory. Les corrections à la théorie de Flory comportent des termes extensifs proportionnels

au nombre N de monomères et des puissances de N~~~~. Ces termes divergent à la limite

thermodynamique, mais moins vite que le développement de Fixman,
en puissances de N~~~/~

Abstract. Trie Flory theory for a
single polymer chain

is
denved

as
trie lowest order of

a
cumulant expansion. In this approach, trie fuit original Flory free energy (including trie

loganthmic term), is recovered. The critical exponent a comes out naturally
as a =

(v ))d,
and is not related to v

by trie hyperscaling relation
a =

2 vd. Trie prefactors of the elastic and

repulsive energy are
calculated from trie microscopic parameters. Trie method

can
be applied to

orner types of monomer-monomer interactions, and trie case of a single chain in
a

bad solvent

is
discussed Trie method is easily generalized to many chain systems (polymers in solutions),

yielding trie usual crossovers with chain concentration. Finally, this method is suitable for

a systematic expansion around the Flory theory. Trie corrections to Flory theory consist of

extensive terms proportional to the number N of
monomers

and powers of N~~~~ These

last terms diverge
in

trie thermodynamic Emit, but less rapidly than trie usual Fixman expansion

~~
~T2-d/2
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1 Introduction.

The size of a polymer m a solvent is characterized by an exponent v, which relates the radius

of gyration R of the chain to the degree of polymerization N (number of monomers) through
the formula [1-3]

~
m4

éÎ~ (~)

In an ideal 8 solvent, chains are Brownian with v =
1/2. In a good solvent, chains are

swollen, and the index v is larger than 1/2.
Flory [1] bas devised a simple argument to compute trie exponent v of a chain in a good

solvent, which gives amazingly good agreement for alI dimensions d. The argument, as presented
in reference [2] goes as follows: consider a chain of N monomers of length a, with local repulsive

interaction characterized by an excluded volume parameter ~/. Trie swollen chain will acquire

a radius of gyration R; the monomer concentration is c =

N/R~, and the repulsive energy is

thus

Erep
=

~~/ c~ R~
2 j~~)
1 N~

" §~@

The elastic energy of the chair is given by

~2
E~i

"
Tj (2b)

up to a multiplicative constant T is the temperature).
The total free energy is

j~2
~

fil2
~ ~Na2 ~

2 Rd ~~~

and minimization with respect to R yields the celebrated Flory exponent

RF =

~
(4)

which is exact for d
=

1, 2,4, and almost exact for d
=

3 (see reference [3]; VF "
o.6 whereas

the best numerical estimates give v =
0.588).

Note that this simplified derivation of trie Flory theory misses a logarithmic term in the free

energy, which is present in the original derivation of Flory [1]. In any case, the derivations of

the Flory exportent are quite empirical, and any attempt to go beyond ii, by improving on any
of the two terms of (2a) or

(2b) turns oui to ruin the argument (see Ref. [2] for a discussion

of that point). Moreover, the free energy increases like NM instead of increasing hke N as it

should in the asymptotic limit of large N (the free energy is not extensive).
Des Cloizeaux has proposed a Gaussian variational procedure to tackle this problem [4],

but the ouicome was v~ =

), by far too large a result. Also, Edwards has proposed a self-

consistent method [si which yielded the Flory formula, but, as noted by des Cloizeaux [3], this

approximation yields unrealistic chain configurations.
More recently, Edwards and Singh [6] have proposed the uniform expansion mortel, which

yields exactly the Flory equation. This method amounts to expanding the end to end radius

to first order around a Gaussian chain with expanded monomer length, adjusting this length

so as to cancel the first order correction.
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To be complete, let us also mention the approach of Bouchaud and Georges [7], which

interpret the Flory formula in terms of sums of correlated random variables, and that of

Kamien [8], who gets it from a self-consistent renormalization group method.

In this paper, we propose a cumulant expansion, which to lowest order generates a Flory
type free energy from the microscopic model, and which can be easily generalized to the study
of more complex systems (polyelectrolytes, chains in bad solvents, membranes and interfaces,

solutions of polymers, etc...). This method allows for a systematic expansion around Flory
theory.

2. One chain system.

We start from the Edwards continuous representation of a chair

Z
=

/
Dr(s) à

lj /~
ds

is))
exp (- /~

ds r~ /~ dsds'~/ iris) ris')
)

r(N)=r(o) o
2

o
2

o

là)
where ~/

jr
r

') is the interaction between a monomer at point r and a monomer at r' and

units have been chosen so that the persistence length a is equal to 1.

The first à-function is used to constrain the center of mass of the chain at the origin.
Furthermore, to simplify calculations, we have assumed that the chain is closed, 1-e- r(N)

=

r(0). As Will be seen later, this constraint is unessential, as far as the method is concerned.

Performing a Gaussian transform on
(5), and denoting by ~/~~(r) the inverse of the kernel

~/
jr)

,
vie have [9]

Z
=

/
D# jr) exp

(-j /
drdr '# jr) ~/~~ jr

r
') # jr ')) Zj (fia)

where

Zj
=

/
Dr(s) à

lj /~ ds
(s))

exp (- /~ ds f~ -1
/~ ds #

r(s)))
(6b)

r(N)=r(0) 0
2

0 0

Using the identity

i
=

/"
dQ à

Q j /~ ds
21s))

lia)
o o

where Q is the square of the radius of gyration, we can rewrite (6b)
as

Zj
=

/
dQ Zj(Q) (7b)

~

where

z~io)
=

~~~

~~~

Dris) à 1( j~ ds

is))
à

Q ( j~ ds
21s))

r =r j~~~

xexp (-j j~ ds r2 -1 j~ ds
(r(s)))
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Defining as the average with respect to the partition function Zo(Q)
=

Zj=o(Q), we

~~~ ~~~~~

z (Q) N$
= exP

-il
ds#iris))

o o j~)

= exp -1 dr#(r)p(r)
/

where p (r)
=

ff ds à (r r(s))
We use the cumulant expansion

le-Ai
= exp (-iA) + iiA2i iA)21 iiA3i 3 iA21IA) + 21A)3) + 19)

To lowest order, vie have

z~io) m zo(Q) exp (-1
/

dr < (r) p~ jr)) lira)

where

j
~~ ~) ô l~ /~ ds

(s)j
à

Q /~ d~ ~~~~j~°Q
~~N)=r(0>~ ~

°
~

~

xexp 1- /~ ds
~(s)j

(10b)
~

°

and

pQ(rl
=

(p(r))

OÎQ) Î~ ~~
(N)=r(0)

~~~~~ ~
Î~Î Î~ ~~ ~~~~ ~

~ ~Î Î~ ~~ ~~~~~

xexp

~

ds r~(s) à jr r(s))
2

(10c)
Zo(Q) and pQ(r) are respectively the partition function and monomer concentration for a

Brownian chain with center of mass constrained ai the origin and radius of gyration square
constrained to Q.

Finally, performing the (#) Gaussian integral of (6a), we obtain

Z ~ ZF
"

/~ ~~
Zo(Q) exp

(- / drdr'pc jr)
~/

jr r') pQ jr ')) (11)
o

N 2

The F index m (11) stands for Flory, smce, as we shall see, ZF is just the Flory partition
function.

A straightforward calculation of (10b) and (10c) yields see the appendix ), for Q IN
- co

(swollen chair)

zo iQ
~f il~

l. Il ~~

exP 1- ~l~
11 2éL)
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and

d d/2 ~
~~ ~~~ ~ ~

2~Q
~~~

Q~~~
~~~~~

In the thermodynamic limit, N
- +co, and (11) con be evaluated by applying the saddle-

point method on Q. Assuming a standard contact interaction

~
jr)

= ~ ô jr) l13)

where ~/ is the excluded volume parameter, the function to minimize is

~~~ ~~ ~~ ~~ ~Î) ~ ~~~Î ~ ~~) ô/2 ~~~~~

where fl is the inverse temperature, and the radius of gyration RG
"

éQ satisfies the mini-

mization equation

~ÎÎÎG ~~
~ ~~~ ÎÎ Î ~~)

~~~ ~~~
~ ~~~~~

We recognize in equations (14) the Flory free energy, with calculated prefactors, including
the logarithmic term, present in the original Flory theory. The rote of this term is just to

ensure a crossover from a Brownian regime in d > 4 to a swollen regime in d < 4. Indeed,

to solve (14b),
we must balance two terms of opposite signs, and check that the third one is

negligible with respect to them.

Balancing the 2~~ and 3~~ terms in (14b) yields the Flory result, VF "

~
The consistency

d + 2

requirement:
)

< ~/ is satisfied provided that d < 4.

G
Balancing the1St jnd 2~~ terms in (14b) yields the Brownian exponent v =

1/2, and the

consistency check
j~~~

< ~/ is satisfied for d > 4.
R~

Thus the logarithmic term indeed, enforces the crossover between the 2 regimes.
To conclude this part, let us note that this method yields naturally a value of the critical

exponent a for polymers. It is the exponent a which comes out, because we have considered

closed polymer chains. Using (11) together with (12) and (14), and calculating the quadratic
fluctuations around the Flory radius of gyration, we find that the partition function (11) takes

the form

ZF
"

N"~~ exp(-NM f) (14c)

where f is a constant independent of N, and the exponent a is given by

a =
(v~ j)à (14à)

Note that this value of a does not satisfy the hyperscaling relation a =
2 vd predicted by

the renormalization group theory. Equation (14d) gives a =
1/2 in d

=
2 and a =

0 in d
=

4,
which are the exact values, and 0.3 in d

=
3 compared to the best numerical value

o =
0.25

(for
a review of numerical values of exponents, see Ref. [3]).

The method can be applied to any type of twc-body interaction u
jr) and denoting by u(k)

its Fourier transform, the Flory free energy becomes

fIFF
"

-(d -1) In
~

+ 2~~
~ ~ /

dku(k) exp (-Q~~ (14)
N N 2 d
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Application of this method to trie case of polyelectrolytes, where the twc-body interaction is

the Coulomb potential u
jr)

=

j,
yields the well-known Flory exportent [10] v =

~. This
r d

is known to be incorrect for dimensions larger thon 3
,

where the exact exponent is v =

~

d 2
(see Ref. [10]).

Finally, let us show how this method works for a chair in a poor solvent. In this case, in

addition to the second virial coefficient u which is attractive, one has to introduce the third

virial coefficient w which is repulsive. The partition function of the chain reads

Z
=

/
Dr(s) à

(j /~ ds
(s)lexp

(- /~
ds é~ +

~ /~ dsds'ô (r(s)
r

(s'))
r(N)=r(0) 0

2
0

2
0

-~° dsds'as"à (r(s)
r

(s')) à (r(s)
r

s"))1.
(15a)

6

~

In the present case, the alternative to the Gaussian transform is to constrain the monomer

density p(r) as a new integration variable through the identity

1
= /D#jr)l~pjr)exp

1
/dr#jr)pjr) -1

/~ ds
(r(s)))

jlsb)
°

Inserting identity (15b) in equation (15a) yields

Z
=

~#(r)~p(r) exp

1
dr#(r)p(r) +

~ drp~ jr) ~° drp~ jr) Zj (15c)
/ /

2

/
6

/

where Zj is defined by equation (6b). Using identity (7a) in the above equation together with

the lowest order cumulant (see Eq. (10a)) and integrating over the fields # and p yields the

expression
CO

~ q~
Z ~

/
dQZ°(Q) ~~P (+j /

d~PÎ(~) j
/

d~PÎ
~))

(~6)

where Zo(Q) and pQ jr) are defined in equations (10b, c).
In the case u < 0, we are back to the previous situation, and the chain is swollen. The free

energy reads

~' ~~ ~~ ~~ ~Î) ~ ~~~Î ~~)
~~~

6~2 ~
Î

~11~)
~

Î~' ~~~~~

At the 8 point, u =
0, and the free energy is still given by the above expression with u =

0.

This regime corresponds to an exponent v =

~
In d

=
3, as is well known, this yields a

d +1
Brownian exponent v =

1/2. Note that
,

in this case, since the free energy of equation (17a) is

finite, one cannot evaluate the integral (16) by the saddle-point method. Quadratic corrections

must then be included to compute the free energy.
In the collapsed regime, Q/N

-
0 and Zo(Q) is no more given by (12a), although the

asymptotic form of pQ jr) is given by (12b). We show in the appendix that the correct form

for Zo(Q) in dimension d
=

3 is

~°~~~
6~Î2~) ~Î~ ~~~~ ~~ ~~~~~
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yielding a
dilferent Flory free energy

~~~ ~~
16~Î2~)

~Î~ ~~~ ~
~ ~~~ ~~~ ~~2

~
Î

~/~~
~

Î~ ~~~~~

In this regime, we recover the usual exponent v =

(.
The method described above con be applied to any type of interaction u

jr), and can easily
be generalized to the case of membranes or interfaces [11].

3. Pair correlation function.

At this level of approximation, it is easy to compute the corresponding pair correlation function

g(r) Using the following definition

gl~)
"

j /
dS

/
dS' lôl~ls))ôl~ ~lS'))) l18~)

~ ~

or

glq)
=

j /~ ds /~ ds' lexPliqlrls) ris')) )) l18b)

m Fourier space and the lowest order cumulant expansion (10a),
we show in the appendix that

the pair correlation function is given by

~
~

91q)
=

Nid i)i (Q(i
os~~q~) ~

Jd-1 12/Qii COS ~)q~l

x exp
(- ~f

(1 +
~°~ ~

(~ @) sin

))
(19a)

4~ 2

where the square radius of gyration Q is given by its saddle-point value as computed in the

previous section, and Jd-i denotes the Bessel function of integer order (d 1)
At small q,1-e- large distances q~Q « 1

,

the function reduces to

glq)
=

N /~ )
exPl-Qll COSÙ)q~/d) l19b)

whereas at smaller distances q~Q >
,

a simple scaling argument shows that

glq)
ce

À
ce

£
(19c)

m three dimensions. This result agrees with the prediction of Edwards [5].
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4. Many chains systems.

Consider now a system of tif polymer chains of length N (polydispersity effects can be trivially
included). The partition function of the system reads

~
,(N)=r,(0)

~~~~~~ ~~~ l~ Î~ ~~ ~~

~~ Î~ ~~~~'~ ~~~~~~

~~~~~

,

(2°)
Introducing a center of mass coordinate Rz and a square radius of gyration Qz for each

chain, the sonne procedure as in Sect. 2) yields the following expression

Z ~ ZF
=

/ ~dRzdoz exp (j~ ((d 1) In (~~) 2x~ ~~

~=i ~=i
N N

N~ d ~/~ d (Ri R~ )~
~~~~~

~~ i
§

2~ (Qz + Qj ~~~ § Qz + Qj
>3

Each polymer chain is represented by a coordinate Ri (center of mass) and a radius of

gyration square Qz. The determination of the size QI will be clone by a saddle-point method,
and it is natural (for monodisperse systems) to assume that ail sizes are equal: Qz

=
Q. We

obtain:

~~ ~~~ ~ ~~
~) in

~
~~2

Q

tif

~ N

~

~

~~ ~~~

~~~~ ~ùl ~~~ Î~
exP

(-ù
(Ri

>~2j 121b)

Thus, trie partition function contains a Flory-like term, which is characteristic of the prop-

erties of each individual chair, and a partition function which represents a liquid of interacting
chains with a smoothed interaction:

~ ~~~ ~~~~
41Q

~~~ ~~~~ ~~~~

The range of the interaction is the size of the chains /Q. Once ZF is calculated, the radius

of gyration RG is to be determmed by mmimizing the total free energy of the system with

respect to Q.
Defining the monomer concentration c =

Nfif/fl where fl is the volume
,

and the overlap

threshold concentration c*
=

~~
~

N(~~~~) (where RG
"

éQ is the radius of gyration of a~G

chain, and v is the Flory exportent v =

~

,

the various regimes of chair concentration
Id + 2)

can easily be recovered.

i) Dilute regime c « c*: it is the gas type regime, where the density of chains is such that

the typical interchain distance is much larger than the chain size RG In this case, we have a

gas of weakly interacting single chains. The partition function con be evaluated by using the

virial expansion [12], and the osmotic pressure reads:

II=Ti(1+A2~+:) (23a)
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where c/N
=

tif/fl is the polymer concentration, and A2 is the second virial coefficient calcu-

lated with (22)

~~
/

~~ ~~~~~ ~~~~~~ ~~ ~~~~~

A simple evaluation of this integral yields

A2 CÎ
R( (In N)~/~ (23c)

Note the logarithmic term in the virial coefficient A2, absent from standard calculations. The

total free energy per polymer reads

F/tif
=

FF + c/NA2T (23d)

where FF is the single chain Flory free energy as given by (14a). Minimization of (23d) with

respect to Q yields the usual Flory exponent.

ii Melt c* « c ce
lla~ where a is the monomer size when interchain distances become

smaller than the radius RG, the chains overlap strongly, and the monomer concentration is

constant, with small fluctuations. Using a Gaussian transform, equation (21b) con be written

as

ZF
" exp tif Id 1) In

~
2~~

~
~N~ N

x

/
~#(R) exp

-~ /
dR

/ dR'#(R)V~~(R R')#(R') + Min( / dRexp(ifl#( R)))
2

(24a)
where V~~(R R') is the inverse kemel of V(R R').

This functional integral can be evaluated by the saddle-point method. Assuming a uni-

form monomer concentration is equivalent to assume a constant field #(R)
=

#o. A simple
calculation shows that the Sadate-point is given by

fl#o
"

iNcu~ (24b)

so that the free energy becomes

~~~ ~
~

~~
~~ ~~

Î
~~~

Î
' ~~

~
~

~ÎÎÎÎ~~~
~~~~~

Minimization of (19c) with respect to Q yields the standard Brownian exponent v =
1/2

,

and

the osmotic pressure is given by: flfl
=

~c~
2

The interchain interactions screen out completely, and the chains become Brownian, as is

well known [13]. A systematic expansion around the mean-field #o can easily be clone, and the

lowest order tums oui to be identical to the usual RPR [9].

iii) Semi-dilute regime c* « c « lla~ ii is the liquid type regime, which requires more

involved calculations of the hquid-like partition function [12] A careful analysis of trie generic
term of the virial expansion of (16b) leads to the scaling form proposed by Des Cloizeaux [14]

àfl
~

C/~ÎÎ ()~à) (2à~)

which under a scaling hypothesis leads to the well-known behaviour

pff
=

ci (25b)

in dimension d
=

3.
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5. Corrections ta trie Flory theory.

One great advantage of this method is that it allows to compute corrections to the Flory theory.
Indeed, using equation (9) to second order, we have

zi lQ)
Cf zo lQ) exP (-1

/
dr 4 (r) PQ jr)

j /
drdr '4 jr) GQ (ri

r
') 4 jr ')) 126a)

where GQ jr, r') is the connected Debye function [15] of a Brownian chain with constrained

square radius of gyration

GQ (r, r')
=

/~ dSd8'lié jr ris)) à jr ' r18'))) lé jr r(8))) lé jr ' r18'))) 126b)

and is given m momentum space by (see appendix)

fil2 2« Q Q j~~
GQ (k, k')

=
du exp

--(k~ + k'~) exp -(-
cosu

sinu)kk' 1
2x 2d d 4x

(26c)
The parameter in (26a) is just a remamder to keep trace of the orders of the expansion.
Integration over the # variables yields

Z
=

/~ dQ exp 1- (-(d 1) In
(j)

+ 2x~ ~
Tr In (à jr

r
') + Àu GQ (r,

r
'))

o
2

~ dràr 'pQ (r) (À (T T') + ÀÙGQ (r,
r

')) ~
pQ (r ')

2

/
(27a)

Expanding to lowest order in À, we obtain:

q~ q~2fin
"

àFF + àr GQ (r, r) àràr 'pQ (r) GQ (r,
r

') pQ (r ') (27b)
2 2

The first correction term is thus of the form:

/dr G~ir, r)
=

/ jj)à G~ik, -k)

=

~~ / ) /~ du exp(- jk~)
exp ((j

cosu

) mu)k~) )
7r 7r w 7r

~~T2

~'

"
~~ ~ ~Qd/2

(28a)
where A and B are

finite numerical constants depending on the monomer size a and space

dimension d, and the natural cut-off ~j/ has been introduced to avoid ultra-violet divergences.

The term linear in N is the expected extensive part of the free energy, which in the Flory
expansion appears thus as a correction term, and the second term is a correction to the standard

Flory term m the repulsive energy.

The second correction term is given by

/~~~~ '~Q (~) ~Q (~i ~
') PQ (~ ') ~ /~/2 ~~~~~



N°1 FLORY THEORY REVISITED ii1

where C is a finite constant, depending only on the monomer size a and the dimension d This

term scales like the square of the Flory repulsive energy.

More generally, it can be proven that the expansion of the free energy around the Flory
~~T2

theory will generate extensive terms, as well as powers of ~. This is in contrast with the
Q

usual Fixman expansion [16]
,

which also contains extensive terms, but which is clone in powers

of N2~~/2. The Flory expansion is in terms of N~~~~
=

NM

As is often the case when calculating corrections to mean field theories, correction terms are

much larger than the mean field contribution, in the critical region IN
-

+co).
This allows the definition of a Ginzburg region [17], 1-e- a typical size Nmax such that for

N < Nm~x, the correction terms are small compared to the Flory free energy. The precise

value of Nmax depends on ail the pararneters of the problem, and we have net computed it

explicitly, since it is in fact a crossover size, and its precise value is not very illuminating.

However, it is clear that the Flory expansion will have a much larger domain of validity thon

the Fixman expansion, since for any dimension smaller than 4, we have NM
«

N~
,

and

therefore, this slower divergence of the Flory expansion might be the due to its success.

6. Conclusion.

We have shown how the original Flory theory of polymers can be derived rigorously from a

cumulant expansion. We obtain a Flory-like free energy, with the correct original logarithmic
term. This method can be generalized to other types of monomer interactions je-g- bad

solvent, polyelectrolytes, etc. and can be applied to solutions of polymers in a straightforward

manner. It can aise certainly be useful to other classes of problems (membranes, interfaces,
etc...). Finally, we show how this method can generate a systematic expansion around the

Flory theory. The calculations are somewhat cumbersome, but they show that the leading
corrections diverge when N

- +co, but much less rapidly thon the usual Fixman expansion.
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Appendix.

In this section, we show how to compute partition and correlation functions for a Brown-

ian chain with constrained center of mass, and constrained radius of gyration. Consider the

partition function:

~~~~~
(N)=r(0)

~~~~~ ~ Î~~ Î~ ~~
~~~l~ ~

~~ Î~ ~~ ~~~~~

xexp 1-
~

ds é~(s) (A1)
~
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In order to compute it, we expand the trajectories r(s) as Fourier serres:

+ce

r(s)
=

£ e~%~rn

n=-C© ~~)
~

rn =

j /
dS e~~l~~rls).

o

The center of mass constraint implies that the Fourier component ro vanishes. The à-function

constraining the radius of gyration can be represented by its Fourier integral, and then the

remaining Gaussian integral on rn con be performed. After some simple algebra, vie obtain

~~ d

~~~~~
~ ~

~~~~

l

~
~

~Î~ ~~~~

This integral can be computed by the method of residues. The potes of trie function are given
by

zn =
~~j~ lA4)

and they are of order d

Using the analytic expression for the infinite product [18]

fl (1 +
~

=

~~~~ ~, (A5)~j
n

Î

z

we can wnte
+ce dz

~~)zolo)
=

/
m riz)

-ce

with /j ~

f( lZq
~ (()

z " e

sinh
~~

where we have defined q =

j.
In the following,

we will forget the N factor which appears in

trie denominator of (A6), since it is just a normalization constant. We have thus

+ce

Zo(Q)
"

£ res( f, zn) (A8)

n=1

where res denotes the residue of the function.

The exponential factor in the function f implies terms of the form exp(-2n~x~q) in the sum

(A8).
In the case of a swollen chain, the exponent v is larger than 1/2, and thus, q - +co when

N
- +co. Therefore, in the sum

(A8), only the pale n =
1 will contribute, ail other pales

being exponentially subdominant. The sum (A8) reduces to

zoio)
~f

l~~~ll. (Îl ~~~~

exP ~l~l iA9)
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In the case of a collapsed chain, the exponent v is smaller thon 1/2, and thus, q -
o when

N
- +co. Therefore, in the sum

(A8), ail pales contribute equally, but the calculation of the

residue is simplified by the fact that q is small. Since the calculation of the residue of a pale
of order d involves the calculation of a derivative of order d, we will specialize to dimension

d
=

3. A simple calculation of trie residues yield the asymptotic formula

+ce

Zo(Q)
"

£(-1)"6n~~~ e~~"~"~~ (A10)

n=1

for )
-

o. Equation (A10) can be recast in a form which emphasizes its resemblance to the

Jacobi elliptic Theta functions [18]

zolo)
=

3) L exPl-2n~~~q + in~). (Ail)ÎÎÎ

Using the Poisson summation formula, we obtain

~°~~~ Îq
É

~
~~~~

~

~~~~~

n=-ce

In the limit )
-

0, this reduces to:

~°~~~ 16~É
Î

~
~ ~~~~~

We now tum to the calculation of correlation functions.

Consider the generating function for correlation functions, defined by

G(k(s))
=

/
~r(s) à l~ /~ ds

(s))
à

Q /~ ds
~(s))

~0(Q)
r(N)=r(0) ~Î

0
~Î

0

xexp 1- /~ ds
~(s))

+
~ /~ ds k(s) r(s). (A14)

2
o

N
o

The varions usual correlation functions can be obtained from (A14), by taking the proper sum

of à-functions for the function k(s) (see below, Eqs. (A19), (A20)) Defining the Fourier

component of k(s) by
~

kn
=

/
ds e~%~ k(s), (A15)

o

the generating function can be rewritten as

1 +co ~~ j~~ +C° ~ j2~~~~'~"~ Zo(Q)1-m 2~
~~~~ ~~~

2

(
iz

În2~2~
~~~~~

n=

where f(z) is given by (Ai). This integral can again be evaluated by the method of residues.

The pales are the same as before, given by (A4), but now, due to the new exponential term,
they are of infinite order.
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In the swollen case, q - +co
,

again only the pale n =
1 contributes. The calculation of

the residue cari be doue and yields

G(k(, kn)
=

e~ô ~ÎÎ~ ~É f
~~

~j~
~~~

~~~

(-1)P (~ )~
~ ~

(A17)
p=o

which can be written in terms of Bessel functions [18] as

Gjkj, km)
"

là i)!
2 ~~~

j~
~

2Q ki j2j
~~& Llll 3É

~i~)
Q 1kl l~

The monomer density p(k) is obtained by taking

k(s)
=

N à(s SO) k (A19)

and the pair correlation functions used in equations (19) and (26) are obtained by taking

k18)
=

N lô18 80) k + ô18 Si) k'). lA20)

In the large distance limit, Q ki Î~- o, we obtain
:

p(k)
=

N e~À~~ (A21)

and
j~j~ j2 N jj+°~ @

G(~* ~ =e 2 1 /
n=2 n -1 (~~~)

ni n

which is the form used in (19) and (26).
In the collapsed case, q -

o
,

ail potes contribute, but in the large distance limit, the

calculations simplify, and yield, for the density, exactly the same result as above.
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