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Abstract. Condensed matter physicists have recently recognised that systems as different as

metal elements and metallic alloys with dense atomic packings, semiconductors with covalent

tetracoordinated bonds, water clathrates with hydrogen bonds, liquid crystals of cholesteric

molecules with double twist and liquid crystals of amphiphilic molecules at liquidfiiquid
interfaces, build crystal structures exhibiting particular characteristics : namely cubic symmetries
with no directly apparent relation to local order and cell parameters much larger than the typical
interaction distances. Indeed it appears that the local order cannot propagate over long distances

in these systems, because of the filling requirements of Euclidean space. The conflict between

those two equirements must be relaxed by defects and it is the organization of defects which builds

the crystal structures. The common features of these structures can be understood, if it is

recognised that in each case ideal structures without defects can be built in the same curved space,

the hypersphere 53, the packing requirements of which are compatible with the different local

orderings of these various systems.

Introduction.

A structure results from a competition between local interactions and the topological or

geometrical rules imposed by space filling requirements. When there is no disagreement
between those two terms the structure can be readily understood, within classical crystallogra-

phy, but this is not always the case, and the structure is then the result of a compromise more

difficult to understand. For example, simple metallic atoms with sho~ range isotropic
interactions can build complex structures with large cell parameters and amphiphilic

molecules, with a local liquid-like disorder, can build structures with long range crystalline
order. We want to emphasize in this a~icle that these two examples, as well as others,

different in their chemical and physical natures, can indeed be understood within the same

common frame. They are all systems in which the conflicts between local and topological
constraints, frustration, cannot be relaxed totally by any configuration in Euclidean space. It

is however shown that such configurations can be found in appropriate non-Euclidean spaces

and that their knowledge is the key to the understanding of the structures observed. A most

noticeable kinship exists between structures built by very different systems. Two simple 2D

examples are helpful to get some feeling about the origin of the competition between local
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and non-local rules and the way to relax it. First, consider a packing of discs on a plane with

isotropic interactions organizing them in the most dense way possible, the discs being at the

vertices of equilateral triangles. Clearly there is no conflict between the two rules, as a flat

plane can be tiled regularly and compactly with the equilateral triangles. Let us now assume

that the local interaction energy is a minimum when the discs are on the vertices of pentagons.
If we now try to organize them on the plane, we discover that no regular long-range

arrangement is possible. This is because a flat plane cannot be tiled with pentagons. In this

second example there 15 obviously no compatibility between local and non-local rules, and the

system is frustrated. If we insist on building a regular organization of discs at the vertices of

pentagons, we are forced to change the non-local rule, abandoning the space of the plane for

that of the sphere, since a sphere can be tiled with pentagons as shown in figure I. In doing so,

the frustration has been relaxed by changing the topology of the supporting 2D space. It could

be argued that this is not very realistic, but the recently observed C50 molecule is an example
of a 2D sphere tiled, in this case, with pentagons and hexagons. This ideal pentagonal

structure in a curved space could be used subsequently for determining possible configurations
in the flat plane, by mapping the curved space onto the flat space and introducing topological

defects which perturb the structure locally and break the local rule. This is a necessary

compromise to flatten the curved 2D space.
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Fig. I. The flat plane cannot be tiled with regular pentagons whereas the sphere can.

This curved space approach was developed some years ago to explain amorphous metallic

structures where the so-called «
pseudo icosahedral

» (« compact» or «
polytetrahedral »)

model was suggested by experimental results II- In this model metallic atoms are supposed to

interact with a spherical potential, and therefore to pack 4 by 4 like spheres with their centers

on the vertices of a tetrahedron but, on the long range, this order cannot propagate, since our

Euclidean flat 3D space cannot be filled with regular tetrahedra. This is however possible in a

curved 3D space and a complete description of the structure possible in the flat space is

obtained once a network of adequate defects has been introduced to cancel the curvature of

the curved space. This approach appeared helpful for other systems too, and we present here

some structures in curved spaces which are now used to describe metallic alloys, tetra-

coordinated semiconductors, as well as cholesteric blue phases and lyotropic liquid crystals.

Dense packing of spherical atoms.

If one tries to pack spheres in a dense manner by a discrete aggregation process, one easily
finds that the regular tetrahedron, with one sphere on each vertex, is the best solution for 4

spheres, as shown in figure 2a. Then, going beyond 4 spheres and increasing the number of
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Fig. 2. Regular tetrahedra do not tile the Euclidean 3D space, four atoms building a tetrahedron (a),
five tetrahedra around one edge and the angular defect (b), an imperfect icosahedron of twenty

tetrahedra (c).

tetrahedra, it soon appears that 5 tetrahedra share a common edge with a void between two

triangular faces which cannot be filled, as shown in figure 2b, because the tetrahedron

dihedral angle of 70° is not a submultiple of 360°. This misfit angle manifests itself again when

one tries to propagate the local tetrahedral order around one vertex, and an imperfect
icosahedron is obtained as shown in figure 2c.

TETRAHEDRAL PACKING AND THE (335) POLYTOPE IN S~. This misfit, which might be

thought to be due to metric, is indeed more fundamental. Topology prevents the filling of the

Euclidean space with regular tetrahedra. In order to overcome this imperfection, the first step
consists in defining an ideal model in a space which can be filled perfectly with regular
tetrahedra. This can be achieved in the spherical space 53, a curved space commonly known

as the
«

hypersphere
».

When embedded in 4D Euclidean space, the hypersphere has the

equation £x)
=

R ~ with I
=

I to 4 and R
=

(1 +
/)/2, if the tetrahedron edge length is the

unity. The perfect tetrahedral packing on 53 is called the (335) polytope, a polytope being
the equivalent of a polyhedron in higher dimensions [2, 3]. This polytope has a finite

structure. As 53 is finite, it contains 600 tetrahedra and 120 vertices, there are 5 tetrahedra

around a common edge with a perfect fit of the triangular faces, and 12 tetrahedra around a

common vertex, in a perfect icosahedral configuration.
Some more ideas about the structure of this polytope can be conveyed using a simple 2D

analogy. If we want to represent geometrical configurations drawn on the surface of a sphere

on the Euclidean plane, as in cartography to represent the surface of the Earth on a map, we

may use an orthogonal mapping, following which the set of circles parallel to the equator is

mapped as a bundle of concentric circles onto a plane, tangent to one of the poles and, as long

as the mapped region remains small around the pole, the configuration obtained on the plane
is a rather faithful image of that on the sphere. In the case of the hypersphere orthogonally
mapped onto a tangent hyperplane, a bundle of spheres concentric around the pole is

obtained and, if a ve~ex of the polytope is chosen as a pole, the set of successive coordination

shells is recovered after the mapping. But, as we are in 3D spaces, we can do this type of

mapping not only in the vicinity of one ve~ex of the polytope but also in the vicinity of lines

drawn by edges of the polytope. Among them is a great circle of 53, a geodesic of the space, it

is drawn by lo edges and is surrounded by tetrahedra enclosed in a torus bearing 50 ve~ices,

as suggested in figure 3a. Thus, 60 ve~ices of the polytope, I-e- half of them, are organized on

and immediately around this great circle, the other 60 are indeed organized in a similar

manner on and around another great circle interlaced with the first, in a plane o~hogonal to

that of the first, as suggested in figure 3b. Those two circles are not only the axes of the two
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Fig, 3. A column obtained by piling up pentagonal antiprisms, it can be decomposed into a

tetrahedral packing (a), «flat» representation of the spherical torus at midway between the two

interlaced organization of the circles and the two tori organized like in (a) in this representation one

circle appears like a straight line, but in 53 both circles have the same radius (b).

tori bearing 50 ve~ices but also of a family of parallel tori contained in 53 to which the first

two belong, One of the tori of this family is particular as it separates 53 in two identical

subspaces spannig around the two interlaced great circles, it is called the
«

spherical torus »

and will play an impo~ant role in many parts of this a~icle. We may add that the spherical

torus is a developable surface which is built in 53 by identifying 2 by 2 the opposite sides of a

square flat sheet (an operation which is possible without distorsion in a curved space) and that

the diagonals of this square, as well as all its lines parallel to them, become then great circles

of 53. The parallel tori in the family, and particularly the two bearing the vertices of the

polytope, can be built in a similar manner by identifying the opposite sides of rectangles of

suitable side lengths,

CHANGE OF CURVATURE USING DJSCLJNATJONS, Disclir~atior~s are Voltera's defects

created by filling the lips of a cut in a structure with a wedge of material having a definite

angle, or by removing a wedge from this structure and putting then the two lips together. A

disclination is therefore a defect of rotation, while a dislocation is a defect of translation, and

the resulting deformation corresponds to a change of curvature as the latter is characterized

by an angle [4].

Adding a wedge of material to a structure in a spherical space decreases the curvature but

structural defects appear along the edge and faces of the wedge. Nevertheless, if the two faces

of the wedge are equivalent by a rotation belonging to the symmetry group of the structure, in

our case that of the polytope, the defect is confined at the edge. A 2D example of a

disclination is shown in figure 4, It is easy to observe how a disclination changes the curvature,

and therefore the topology, in its immediate surrounding : a hexagon becomes a pentagon or

a heptagon according to the sign of the curvature change, Disclinations can change rings
formed by bonds between atoms, or change the coordinance of atoms, according to their

relation with the positions of the atoms,
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Fig, 4. Disclinations in a hexagonal structure, a positive disclination (a), a negative disclination (b),

In a
(335) polytope the local effect of a disclination running along some edges is to change

the coordination number (z =12) of points lying on the disclination line, as shown in

figure 5 : the effect of a disclination on a structure being purely local, all other coordination

polyhedra remain icosahedra [5]. The spherical torus allows a simple description of the effect

of a disclination in the (335) polytope considering that, if the disclination runs along one axis

of the torus, it changes the 5-fold symmetry of this axis into a 6-fold symmetry, for instance

the torus represented in figure 3 as a piling up of pentagonal antiprisms becomes a torus built

of hexagonal antiprism. A new polytope is obtained which contains 10 vertices on the

disclination line, 6 x 10 vertices on the toric surface formed with hexagonal antiprisms, 12

vertices on the second axis of the torus and 5 x 12 ve~ices on the toric surface formed with

Fig. 5. Procedure to insert a disclination (a), effect of a disclination on an icosahedral order building a

Z
=

14 coordination polyhedron (b),
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pentagonal antiprisms around this axis. If, now, a second disclination is introduced along the

second axis of the torus, the new polytope contains 24 vertices with coordinance 14 and 144

vertices with coordinance 12. The radius of curvature of 53 has increased from 1.618 to 1.93,

in edge length unit. It is not yet infinite and more disclinations are to be added to decrease the

curvature totally. The precise procedure is not well defined at the moment, we have described

how to introduce one or two disclination lines in the (335) polytope but it is difficult, due to

the non-commutativity of the symmetry operations associated with the disclinations, to insert

disclinations one by one in order to flatten the structure. However, if a disclination network is

generated with a symmetry group contained in that of the polytope, the difficulty may be by-
passed [6].

STRUCTURES OF METALS AND METALLIC ALLOYS. The (335) polytope, which provided a

very fruitful approach of the icosahedral local order of pure amorphous metals, is also used to

understand some particular structures of metals and alloys. In these cases tetrahedral

interstices between atoms remain a reasonable hypothesis, even if the tetrahedra are no

longer regular. We shall also shown that it is possible to put the largest atoms of an alloy on

disclination lines to take the atomic size effects into account.

Metal structures are currently known te be b.c.c. or f-c-c- structures, with 2 or 4 atoms per

unit cell, but there exist several cases with a larger number of atoms per unit cell which

seemed at first very intricate. Most of these structures can be described by periodic networks

of disclinations in a medium having the local order of the (335) polytope with one atom at

each vertex. We give here two examples the fl phase of tungsten, with the so-called Al 5

structure, and a Laves phase.
The elementary cell of the A15 structure is a cube, an icosahedron with three orthogonal 2-

fold axes superposed to the three 4-fold axes of the cube is inscribed in this cell so that there

are 12 atoms on the face of the cube, a 13th at the center and 8 at the comers. There are

therefore 8 atoms per cell, two with an icosahedral coordination (or W~) and 6 with a

coordination polyhedron having 14 vertices (or W~). This polyhedron is identical to the

coordination polyhedron of atoms lying on a disclination line as that shown in figure 5. In an

infinite structure, a disclination line must have no end, and considering the situation of the

W~ atoms we observe that the straight lines running through them and lying in the faces of the

cubic cell can be defined as disclination lines, as shown in figure 6.

In a topological sense we may say that the structure of the fl phase of tungsten in a

(335) polytope with atoms on vertices and in which the disclination lines needed to flatten

the space have changed the coordination polyhedron of three atoms out of four. This

structure can be given the schematic formula W~~ W~ and, indeed, is also presented by several

alloys with the same stmchiometry as for instance Nb~Ge.

Fig. 6. Disclination lines in the unit cell of the p-tungsten structure.
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Laves phases, as for instance Cu~mg [7] are described by a cubic cell containing 8 atoms of

one type, with a large Goldsmith radius, arranged like carbon atoms in a diamond structure

and 16 atoms of a second type, with a smaller radius, filling the free space of the diamond

structure. The coordination polyhedron for the second atoms is a slightly distorted

icosahedron with 12 vertices, that of the first atoms has 16 vertices and can be obtained from

an icosahedron by a disclination procedure in which 4 half disclinations are going to the center

of the polyhedron or, equivalently, 2 disclinations intersect at the center, leading to 6 angles
of 109°28'. The structure of the Laves phases can therefore be understood as originating from

a (335) polytope which was flattened by a network of disclination lines organized in exactly
the same way that the bonds of a diamond structure as shown in figure 7.

Fig. 7. Disclination lines in the unit cell of the Laves phase structure.

These two examples of strictures show how a local tetrahedral arrangement leads to

structures with periodicities larger than the interaction lengths in order to account for

topological constraints. It is always surprising to observe complex structures in simple metals

and alloys between simple metals with isotropic atomic interactions but, because of the

existence of a local interaction in a frustrated situation, these structures are structures of

defects. This point of view extends the one developed for amorphous structures : a perfect

structure in a curved space leads to a disordered structure or a crystalline structure with a

large parameter in a flat space. Approximants of quasi-crystalline structures are related to this

kind of alloys, for instance the AlmgZn structure was described as a structure of disclinations

[8] and there are strong indications that it will be possible to describe quasi-crystals by this

method also.

Tetracoordinated structures.

In covalent structures like a-Si or a-Ge, the sho~ range order is perfectly defined by
tetrahedral connectivity : one atom at the center of a tetrahedron is linked to its four

neighbours by bonds directed towards the ve~ices of the tetrahedron. As this local order may

lead to several different structures in flat or curved spaces it is necessary to add some details

about the order at a scale slightly larger than the first neighbour distances [9]. The impo~ant
topological ingredient for improving the description of the local order is the local ring
configuration. A ring configuration is characterized by (I) the number of edges in the ring and

its parity, (it) the twist of the ring and (iii) the existence of cages with faces defined by rings or

the non-existence of such cages. In dense and tetracoordinated structures the similarity of the

local symmetry (tetrahedral interstices and bonds) leads to a relation between the two types of

structures and this explains why we can obtain models for covalent structures starting from the

(335) polytope and others derived from it.



852 JOURNAL DE PHYSIQUE I N° 6

THE (533) POLYTOPE IN 53. If we put a ve~ex at the center of each to the 600 tetrahedral

cells of the (335) polytope, and forget about the 120 original ve~ices, we obtain the dual

polytope called (533) which contains 600 ve~ices and 120 cells which are regular pentagonal
dodecahedra. Each vertex has a coordinance of 4, belongs to 4 dodecahedra and to 6

pentagons. The local configuration corresponds to the famous
«

vitron
»

of Tilton [10] and

«
amorphon

»
of Grigorovici I I]. The first two shells of vertices of the (533) are represented

in figure 8. This structure is characterized by two important features it contains 5-membered

flat rings only and these rings enclose well defined dodecahedral cages. It is probably not a

good model for a-Si or a-Ge but it can be used in order to understand the effect of 5-

membered rings on, for instance, the electronic band structure [12].

Fig. 8. Part of the (533) structure, the closed circle shows a 5-fold ring.

THE
«

240
»

POLYTOPE IN 53. There is another curved space solution to the tetracoordi-

nated problem, a polytope which, in contrast with the (533), does not possess all the

(335) symmetry operations but only a subgroup. Its building rule is similar to that which

generates the diamond network from the f-c-c- lattice. The diamond structure can be analyzed

as being formed of two f,c.c. replicas displaced from each other in the ( I I I) direction and the

polytope
«

240
»

is similarly built from two (335) replicas but which are related by a screw

symmetry operation in 53. Another way to obtain it is to place new vertices at the center of

one out of five cells of the (335), so that each vertex of one replica is surrounded by four

vertices of the other. Consequently the polytope «240», with its 240 tetracoordinated

vertices, is a «
bicolor

» structure with even-membered rings only. The smallest rings are

hexagons in a twist
«

boat
»

configuration, as shown in figure 9, which preserves the perfect

Fig. 9. part of the
«

240
»

polytope, the closed circle shows a 6-fold twisted ring.
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tetrahedral value for the bond angles but is associated with dihedral angle values intermediate

between the staggered and eclipsed ones. The local order of this polytope is very close to the

Connel-Temkin model.

Other polytopes with local order intermediate, between those of the (533) and
«

240 »,

have also been proposed [13].

CLATHRATE sTRucTuREs. Ice associated with other molecules, such as rare gas, is the best

known example for clathrate. In this case the tetracoordination holds to the electronic

structure of the oxygen atom of one water molecule leading to the formation of two covalent

bonds with its protons and two hydrogen bonds with those of two other water molecules.

There are two types of structures which describe most of the clathrate hydrates [14] and which

appear to be dual of the A15 structure (type I clathrate) and of the Laves phase structure

(type II clathrate). In these structures the water molecules build cages, with oxygen atoms at

the vertices and covalent and hydrogen bonds along the edges, trapping the associated

molecules. The cages are defined by the edges of dodecahedra and disclinated dodecahedra,

as shown in figure lo. These structures can be analyzed as (533) polytopes, the dual of the

(335), which have been flattened by disclinations, the disclination networks being similar to

that of the p-tungsten structure in the case of type I clathrates or to that of the Laves phase

structure in the case of type II clathrates.

./f~ µ*~~f'.<jj (~~[ il÷I(1
'~ °~ ~~/ ~$~

(al (bi (cl

Fig. IO- Cages in clathrates, a dodecahedron (a), a dodecahedron transfornled into a tetrakaidecahed-

ron by one disclirtation (b), a dodecahedron transformed into a hexakaidecahedron by four half

disclirtations (c).

There is another example of very interesting clathrate which complement the many types of

structures formed by Si : no closed cages are observed in the crystalline form, they most likely
do not exist either in the amorphous material but the compound Si~ flia~ exhibits clathrate

structures with cages built by the Si atoms and trapping the Na atoms when 0.02
< x <

0.2,

type I for large x and type II for small x [15]. These structures are good examples of structures

built from amorphon with periodic disclination networks.

As well as beyond the A15 and Laves phase structures there exist other structures which

can be described following the same approach, for instance p-uranium or Frank and Kasper
alloys. There are also other clathrate structures with different connectivities of their

disclination lines, for instance three in bromide hydrate instead of zero in type I or four in

type II.

Cholesteric liquid crystals with double twist

These are assemblies of elongated organic molecules, without any long range translational

order, but with a long range orientational order corresponding to a rotation of the mean

molecular axis for any displacement o~hogonal to it. As shown in figure11, such an
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Fig, 13. Stereographic mapping of the spherical space with Clifford's parallels.

PERioDic sTRucTuREs oF DiscLiNATioNs IN
«

BLUE PHASES». As in other cases the

curved space is then flattened by the introduction of disclination ne~works forming cubic

structures similar to the A15 or Laves phase structures [17].

Cubic structures of liquid/liquid interfaces.

Periodic organizations of two fluid media separated by interfaces are very common in liquid
crystals where they most often occur as stackings along one dimension of fluid layers of

molecules, the so-called smectic phases. In the case of the lyotropic liquid crystals, built by
amphiphilic molecules such as soaps, detergents and lipids, they are called lamellar phases
and can be described as stackings of altemating layers of water and amphiphiles with flat

interfaces defined by the polar heads of the amphiphiles, as shown in figure 14a. Besides these

phases with periodicity along one dimension, the phase diagrams of these systems may

present other ordered phases with periodicities along two or three dimensions, curved

interfaces and complex topologies [18]. Here, we shall limit ourselves to the cases of

structures with cubic symmetry, which are known to present two topologies, bicontinuous and

micellar.

A few phase diagrams of amphiphilic molecules in the presence of water exhibit cubic

structures in two distinct concentration domains [19, 20]. Some of them are observed in the

vicinity of the lamellar phase. They are now well characterized, their space groups being Ia3d

or Pn3m in most cases, Im3m in some others and they can be described as being built by two

interwoven labyrinths of one medium separated by a film without self-intersection of the

other, as shown in figure 14b, hence the characterization of their topology as «
bicontinuous ».

The other cubic phases are observed in the vicinity of the micellar phase, their space groups

are Pm3n, Fd3m or P4332 [21], their structures are not as well characterized as those of the

bicontinuous cubic structures at the moment. Because of their location in the vicinity of

micellar phases, far from the lamellar phase, they were not expected to have a bicontinuous

topology. However, arguments from NMR were in favor of structures built with finite

micelles of one medium separated by a self-intersecting film of the other [20], as shown in

figure 14c, hence the proposition of a cellular or «
micellar

»
topology.
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Fig. 14. Structures built by amphiphiles, lamellar (al,
«

bicontinuous
»

cubic (b), hexagonal (cl

«
micellar

»
cubic (d).

THE FRUSTRATION AND iTs RELAXATIONS. There are several forces stabilizing such

systems of interfaces, which are not all well known at the moment. Fo~unately we do not

have to consider them in full detail for the rest of our presentation. We just need to know that

there are forces normal to the interfaces, which control the distances between interfaces, and

forces parallel to the interfaces, which control their curvature as in a bi-metallic switch,

because the lateral area occupied by the chains do not vary necessarily in the same way as that

of the polar heads. Owing to the fact that the bilayer of amphiphiles admits a plane of

symmetry it is clear that a non-zero curvature of the two interfaces is not compatible with

constant distances between them if the lamellar symmetry is kept, as shown in figure 15. The

~ ~~~~ ~
~ ~jj~ ~
~ ~ ~

(b) (al (bl

Fig. 15. Frustration in systems of films, flat interfaces are compatible with constant distances between

interfaces (al, curved interfaces are no longer compatible with constant distances (b).
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normal and parallel forces are therefore in conflict : this is a typical state of frustration which

can find no solution in our Euclidean space.

This frustration may indeed be relaxed if the system is transferred into the curved space 53,

the film of two interfaces being suppo~ed by surfaces of this space respecting its symmetry,
I-e- separating 53 in two identical subspaces. There are indeed two such surfaces in 53, the

spherical torus already described and the great sphere [22].

GENERATION OF THE BIcoNTINuous TOPOLOGY [23]. From the properties of 53 and its

family of parallel tori it appears that the set of the spherical torus surrounded by two parallel
tori at equal distances on either sides of it can be considered as a representation without

frustration of the periodic system of fluid films which is frustrated in Euclidean space. The

periodicity in this space, which is the repetition of the films when moving along the geodesics
of the space normal to the films, is reproduced in the curved space by the displacements along
great circles of 53 normal to the tori. Moreover, as already said above, the two subspaces
separated by the spherical torus are identical, as are two spaces separated by the film in the

cell of the stricture and, finally, the fnlstrafiion is obviously relaxed as the two tori parallel to

the spherical torts have a smaller area.

The possible geometrical configurations in Euclidean space are to be found by mapping 53

onto it, as usual now. We limit ourselves to the process which maintains the bicontinuous

topology of the spherical torus, as suggested in figure16 where one ar disclination was

introduced along a C2 symmetry axis of the spherical torus. In the course of this process the

positive curvature of 53 is decreased to zero and the spherical torus, which is a surface with

zero Gaussian curvature in 53, becomes a surface with negative Gaussian curvature in

Euclidean space, as are the surfaces separating the two labyrinths of the cubic structures. The

possible symmetries of these surfaces are also imposed by those of the spherical torus and the

disclinations.

'_
'i

/

-~i- ~
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Fig. 16. Deformation of the spherical torus with genus I into a torus with genus 2 by a

ar
disclirtation along a 2-fold axis.

GENERATION OF THE MICELLAR TOPOLOGY [24]. In this case we use, aS a supporting
surface for the film of amphiphiles in 53, the second surface separating 53 in two identical

subspaces. This surface is a great sphere 52, which can be considered as the exact equivalent
in 3D of the equator drawn on a 2D sphere and separating it in two hemispheres. As, on the

2D sphere, there is a family of smaller circles parallel to the equator with their centers at the

poles, there is, in the 3D sphere 53, a family of smaller spheres parallel to 52 with their

centers at the poles of 53. Thus, the large sphere 52 with two parallel spheres at equal
distances on each side can be considered as another representation without frustration of the

the periodic system of fluid films which is frustrated in Euclidean space. The periodicity in this

space, which is the repetition of the films when moving along the geodesics of the space

normal to the films, is reproduced in the curved space by the displacements along large circles

of 53 normal to 52, moreover, as already said above, the two subspaces separated by the large
sphere are identical, as are the two spaces separated by the film in the cell of the structure
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and, finally, frustration is obviously relaxed as the two spheres parallel to the large sphere
have a smaller area.

The mapping onto the Euclidean space of this relaxed structure in its curved space is done

by introducing ar disclinations around its C2 symmetry axes which are large circles of 52.

The effect of one disclination is shown in figure 17, it brings in a third finite subspace. The

introduction of the network of disclinations needed to suppress the curvature should extend

the number of identical subspaces to infinity, thus creating a structure of finite cells whase

topological stability implies that the walls limiting them meet three by three along common

edges which meet four by four at every vertex. Unfortunately there is no assembly of identical

cells obeying these laws in Euclidean space [25], we can find them in curved spaces only. If we

search for the assembly possible in the space with lowest curvature, which will therefore be

considered as a step in the flattening process, we find that of regular dodecahedra, which we

have already met as the (533) polytope in the case of clathrates particularly. The last step for

flattening is therefore already known and leads to structures with the same symmetries as

those of clathrates, I-e- those of the A15 and Laves phase structures. We recall that these

structures are non regular assemblies of polyhedra but, in this case, the faces of the polyhedra

support the film which limits the cells enclosing the micelles of amphiphiles. The two

structures are shown in figure18, from [26]. One, related to A15 and type I clathrates, has

space group Pm3n and its unit cell contains two dodecahedra and six tetrakaidecahedra, the

second, related to the Laves phase and type II clathrates, has space group Fd3m and its unit

cell contains sixteen dodecahedra and eight hexakaidecahedra.

C~axis,~ ~'

~~ ~ ~
jai (hi (Cl

Fig. 17. Effect of a ar
disclination along a 2-fold axis of a great sphere 52 of 53. The 52 sphere (here

represented by a half sphere) separates 53 in two cells (a), the inside and the outside on this schematic

representation. The disclinated surface separates 53 in three cells (c).
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Fig. 18. Two
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micellar
»

cubic structures, Pm3m (a), Fd3m (b).

Conclusion.

We have considered several systems which, in spite of very different chemical and physical

natures, present very strong structural similarities. They all have cubic cells, with related

symmetries and parameters larger than the typical interaction distances. The reasons for this
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are not easy to grasp if one considers that the basic structural elements, atoms in metals and

alloys, molecules in clathrates, directors in cholesteric liquid crystals and liquid films in liquid
crystals of amphiphiles, have no common features. However, precise analysis of local

interactions and space filling requirements showed that all these systems shave one property.
They cannot build perfect organizations of their structural elements in Euclidean space since

the propagation of their local order would not be compatible with the topology. Thus, the

extension of the local order is necessarily limited up to a distance at which the resulting stress

becomes too large and defects appear within the materials. We have presented a systematic
approach to the origins and the natures of these defects and we showed that the structures

observed must indeed be seen as structures of defects, more exactly organizations of lines of

disclination with particular topological properties. The relationships between these very
different systems, therefore, are of this nature.
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