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FAST-ION STOPPING POWER IN HOT, DENSE, STRONGLY-COUPLED PLASMA 

B.J.B. CROWLEY 

Atomic Weapons Establishment, Rldermaston, GB-Reading RG7 4PR, 
Great-Britain 

Résumé - L'expression relativiste de la formule de Bethe pour le ralentissement de 
particules rapides (fonction diélectrique transverse) dans les plasmas denses et 
fortement corrélés (F _ >> 1) est établie. Un modèle d'atome moyen adaptable sur PC 
est décrit. Il donne accès aux contributions lié-libre et libre-libre de la fonction 
d'excitation plasma, lesquelles améliorent les modèles OCP ou Debye-HUckel. Dans 
les plasmas fortement ionisés (Z * >> 1), il arrive fréquement que les ions soient 
fortement couplés, alors que les électrons libres ne le soient que faiblement. 
Ainsi, bien que le traitement DH demeure valable pour les électrons, l'approximation 
OCP pour la composante ionique peut ne pas être valable à toutes densités. Le modèle 
décrit tient compte de la polarisation électronique à l'intérieur de la sphère 
ionique, ainsi que l'influence de l'écrantage électronique sur la dynamique des 
ions. Ces effets sont incorporés dans l'abaissement du continu, lequel inclue les 
fluctuations du microchamp électrique. Le modèle de plasma donne un traitement 
raisonnable des effets collectifs au voisinage, de la résonance. Puisque la précision 
spectroscopique n'est pas requise dans les calculs de pouvoir d'arrêt, si l'on 
satisfait aux règles de somme, on utilise une formule analytique approchée pour les 
niveaux atomiques. On omet les transitions lié-lié, la force d'oscillateur 
correspondante étant approximativement transférée aux transitions lié-libre. On 
calcule les fonctions d'excitation et les pouvoirs d'arrêt pour Al à 100 eV et PL à 
300 eV avec des densités de plasma usuelles. 

Abstract - The relativistic form of the Bethe fast-ion stopping power involving the transverse 
dielectric function, as given by Landau and Lifshitz, is applied to calculation of atomic ion stopping 
in hot, dense plasmas in which the ions are strongly coupled ( r o c p > > 1). An average-atom 
plasma model, suitable for implementation on a PC spreadsheet, is described. This model, which 
provides the basis of a calculation of a bound-free and free-free representation of the plasma 
excitation function, incorporates several novel enhancements over the standard one-component 
plasma (OCP) or Debye-Huckel models. In highly ionised (Z* > > 1) plasmas, a frequently found 
situation is that the ions appear strongly coupled while the continuum electrons remain weakly 
coupled. Thus, while the Debye-Huckel treatment may therefore remain valid for the electrons, the 
OCP approximation for the ion component may not hold except at very much higher densities. The 
model therefore allows for electron polarisation within an ion sphere and treats the influence of 
electron screening on the ion dynamics. These effects are incorporated into a continuum lowering 
model which includes microfield (Stark) fluctuations. The plasma model also provides a reasonable 
treatment of the plasma collective effects around the plasma "resonance". Since spectroscopic 
accuracy is not demanded for stopping power calculations provided that the appropriate sum rule is 
obeyed, use is made of an approximate analytical formula for the atomic energy levels. 
Bound-bound transitions are omitted - the bound-bound oscillator strength being appropriately 
transferred to the bound-free. Calculations of excitation functions and stopping powers are presented 
for lOOeV aluminium and 300eV lead plasmas at normal densities. 

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1988713

http://www.edpsciences.org
http://dx.doi.org/10.1051/jphyscol:1988713


JOURNAL DE PHYSIQUE 

1 - INTRODUCTION 

Rapid progress in desktop computing power in recent years now makes it possible to perform quite 
detailed and sophisticated calculations of plasma models with quite modest resources. Moreover, the application 
of specialised software, rather than the more familiar general programming languages, like FORTRAN, can 
permit the rapid development of complex numerical models within a flexible framework. This work describes 
the application of such a tool, the scientific spreadsheet, to the study of hot, dense, LTE plasma under 
possible ICF conditions. Spreadsheets are ideal for developing and implementing analytical and semi-analytical 
models especially in "what if?" and "try-it-and-see" contexts. Flexibility comes particularly from the cyclic 
nature of the calculation which enables new ideas to be plugged in almost anywhere and have access to every 
parameter. The user has complete control over the whole calculation which can be viewed through a selected 
window as it is running, and can readily redefine any part of it. Input data may consist of formulae, rather 
than numbers, and can even reference the calculation. The complexity of the user interface does however give 
rise to problems of documentation! 

For its theme, this paper considers the calculation of fast heavy-ion stopping in hot, dense LTE 
plasma (dense in the sense that the plasma is strongly coupled; hot in the sense that the plasma is Lorentzian 
and non-cohesive (P > O), and not highly degenerate) using the Landau-Lifshitz form of the stopping power 
[I] for fast heavy-ions, namely, 

with 

where 7 is th'e usual mean energy loss per collision, = vlc, y = (1 - 0')-3 , v is the ion velocity, and 
E = (y  - 1)Mc2 is the ion energy. Other symbols appearing are as follows: a! denotes the fine-structure 
constant; M the ion mass; rn the electron mass; Zeff the ion effective charge; and the limiting plasma 
frequency is R = (ZIZ*) * we - tic(4sa!ficZnilmc2) * , where ni is the plasma-ion (number) density, Z_ is the 
atomic number of the plasma, and Z* is the mean ionisation of the plasma. The mean energy loss I is the 
logarithimic average weighted by the plasma excitation function, n(w) which is given in terms of the plasma 
dielectric function ~ (w)  by 

ie, 

the normalisation property being an expression of the Bethe f-sum rule. In taking these integrals to infinity, 
one is ignoring the possibility of inner shell corrections due to there being an upper limit to the energy loss 
in a single collision, and that this energy must be at least sufficient to cause ionization. Moreover equation (1) 
is valid in an impulse approximation which neglects motion of the plasma electron before the collision. It is 
failure to take proper account of these effects that leads to a stopping power that is too small or even 
negative for low ion energies. This is due to an excessive negative contribution, in equation (I), from the most 
tightly bound electrons. An effective palliative is therefore to extend the integration over w only as far as 
q = 2M2mcZ(yZ-1)I(M2+2yMm+m2) which is the maximum energy that can be lost in an elastic collision with 
a stationary free electron. This both limits the maximum energy loss in a single collision and removes 
contribution from electrons that are too tightly bound to be ionized. As a result the validity of equation (1) is 
enhanced in the sense that the implicit approximations are less bad near the end of the particle rznge. 
Indeed, with these corrections, Ls generally does not become negative. Calculations of the proton stopping 
power in the MeV range confirm that the stopping power calculated using (1) increases when the contribution 
from inaccessible inner-shells is removed. The corrections are applied by replacing Ls in (1) by Ls' where 

in which Ls continues to be given by (2). 

A plasma model yielding the plasma dielectric function is therefore a means of calculating the stopping 
power. The model, which is described in the following, incorporates several novel features and is suitable for 
implementation on a spreadsheet. 



2 - THE PLASMA MODEL 

2.1 - Electronic ~ r o ~ e r t i e s  and calculation of the dielectric function. 

The plasma dielectric function ~ ( o )  is calculated in terms of the plasma. properties including the 
reduced opacity [2] ~ ( o ) ,  and the bound electron optical activity f (w), according to 

The function f(o) vanishes at very low frequencies well below the photoionization threshold, and tends to 
Z - z*, the average number of bound electrons, in the limit of w + m. 

The reduced opacity, K = ~f + ~ b ,  separates into a part K A ~ )  due to continuum (free) electrons 
(free-free processes) and a part K ~ ( w )  due to bound electrons. The free-free part, ~f is calculated as 

in which the first term is a universal form of the continuum-electron absorption opacity, while the second 
describes Thomson scattering and is only important at high frequencies. Here, a T  is the Thomson 
cross-section. The collision frequency v appearing in equations (8-10) is expressed in terms of the conductivity 
collision frequency, 

(in which ye is the Spitzer correction [3] for electron - electron collisions) and the Kramers bremsstrahlung 
collision frequency, 

in which are introduced the Gaunt factor [4], gff; the electron-electron coupling parameter A, = PID,; and 
the effective charge Qe for close electron-ion collisions (for Lorentzian collisions, Qe = z*); and the Coulomb 
logarithm, In(&-). The electron Landau length Q and the electron Debye length De, are calculated according 
to the "exact" expressions [5], 

which involve the chemical potential p(nel,T) for a free-electron gas of density net and temperature T. These 
equations relate De and P to the electron density fluctuations and allow for correlations due to degeneracy. 
The effective thermal energy, 6 = all/aln(ne), is the "transport energy" (ne6 is the electronic bulk modulus) 
and is equal to T We2>/CNe> where ANe is the fluctuation in the number Ne of electrons in a fixed 
volume V. In addition, the polarisation of the electron density in the vicinity of a strong ion field 
(z* >> 1) is treated by virtue of the chemical potential being correctly expressed in terms of ne' = Z2*ni 
which is the electron density at the surface of the ion-sphere (61, instead of the average density, 
ne = z * ~ .  An analytical estimate of the ratio z,*/z* is found to be 

where X = RID, and R is the ion-sphere radius. This formula results from assuming a polarisation potential 
of the form 

Vp(r) = Vp(xDe) = ( Z * l ~ ~ ) ( a x ~  + bx + (ex*(-x) - 1)lx) 

and determining the coefficients a and b from the conditions apelar = 0 at r = R ;  and 4rS per2dr = -z*, 
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with the electron charge density pe(r) given by Poisson's equation, 4rpe(r) = -V2Vp. Note also that whereas 
the ionic component of the plasma may be strongly coupled, the electronic component is assumed to be 
weakly coupled. This prescription provides an analytic estimate of the Thomas-Fermi chemical potential for 
given z*. The same model is used to provide the electron polarisation correction to the large-r limit of (29). 

The Coulomb logarithm is given by a minor generalisation of the RPA form [S], ie, 

where p is the fractional part of Z* and p + q = 1. For the logarithm argument, AD(z), the following 
formula, which interpolates between the classical and quantal limits, is used 

where q = crlic/weDe is the Sommerfeld parameter for a Coulomb collision between an electron with velocity 
oeDe and an ion of unit charge. The classical and quantal limits are respectively qz >> 1 and qz < < 1. 

The formula (10) for ~f is valid at low frequencies (w << we, when it yields the classical conductivity 
and skin-depth formulae) and at high frequencies when it yields the Kramers inverse-bremsstrahlung formula 
with a Gaunt factor [4,10,11]. The correspondence with the formalism of Landau and Lifshitz [9] is made by 
identifying rgff 1 (J3(l+Af)) and rgff IJ3 respectively with the low frequency ( v  < < w < < we) and high 
frequency Coulomb logarithms. In practice, the quantity 4 is best determined by enforcing the sum rule. 

The contribution of the bound electrons to the opacity is taken as being given by 

where r(w) is taken to be the impact width of a level bound by w (this is an unimportant correction, and is 
applied only to remove possible divergence at w = 0) and F is provided by the atomic model as described in 
section 3. 

2.2 - Ion dynamics and microfield fluctuations. 

In dense strongly coupled plasmas, the atomic states are strongly influenced by the plasma 
microfield which can be represented as a static (average) plasma polarisation part AVp, and a fluctuating part 
AVfl. The total continuum lowering used in the determination of the ionization state is taken as 
AVcl = AVp. + AVfl which accounts for the ionisation of upper levels of an atom due to fluctuations in the 
local microfield. The plasma polarisation AVp is normally dominated by the electron-electron and electron-ion 
interactions (eg. see [6]). However, in a plasma in which the usual OCP approximation fails, but in which the 
ion-ion interaction can be reasonably treated in the Debye-Hiickel approximation through the plasma Debye 
length D = (1/De2 + I / D ~ Z ) - ~  , there is apparently an additional contribution to the continuum lowering due 
to the effect of electron screening on the ion-ion electrostatic free energy. For Z* >> 1 this amounts to 

which vanishes in the OCP limit when De 9 03, D + Di. In both weakly and very strongly coupled plasmas, 
this contribution is typically very small (often less than the uncertainty in the electronic contribution). In the 
latter case, the formula may lack some validity. However, in moderately strongly-coupled plasmas, the concept 
of an ion Debye length may continue to have some validity if electron screening sufficiently weakens the 
ion-ion coupling. In such cases, a small, but significant, contribution can arise from this term. 

The treatment of the ion dynamics assumes that the ions interact through a nearest-neighbour 
potential of the form, 

where d l ,  is a dynamical screening length due to screening by the continuum electrons (bound electrons too if 
the collisions are non-lorentzian). If Z, << Z ,  (or vice-versa) then d , ,  - De, otherwise the additional 
electron polarization in the dipolar ion field gives rise to d l  , < De. These, together with the requirements of 
Thomas-Fermi scaling [6] and consistency with the form of the findhard potential [16,7] which describes 
screening by bound electrons, suggests the following form for d l ,  



In particular, when Z l  = Z,, d l  , = d  = Del/ 2. The effect of this screening on the ion-ion coupling may 
be represented by an effective ion-ion Landau length, L defined to be the distance of closest approach for a 
thermal ion with energy Ti where Ti is the ion temperature. The definition is the same as the usual one 
except that the potential is (20) rather than Coulombic and the thermal kinetic energy is ascribed at the 
effective lattice distance r , ,  which is the mean ion-ion separation in the zero-T configuration (represented in 
terms of randomly packed hard spheres) rather than at infinite separation. In this way one can treat both the 
effect of close packing at  high density, and the effect of electron screening. This definition yields L according 
to 

where Locp is the OCP Landau length (d  - w, r ,  - w). The ratio LILocp expresses the weakening of the 
ion-ion coupling by electron screening and polarisation. We can regard this as being equivalent to a reduction 
in the effective ion charge and apply the appropriate modifications to the ion plasma frequency, Ri and Debye 
length Di in accordance with 

where XOCP or Xocp denotes the value of X in the standard OCP model. 

In considering the continuum lowering due to polarization of such a plasma, it is found to be 
convenient to represent the interaction of an ion with the surrounding plasma in terms of an effective 
perlurber charge, Qi where 

where D is the plasma Debye length as given by D = (1/De2 + 1 / ~ ~ ~ ) - 1  . The concept of an effective 
perturber charge is particularly useful for describing continuum lowering in plasmas containing more than one 
ion species (the many-component plasma) especially those consisting of components of widely differing Z. For 
the OCP, = Z*. In terms of Qi, the effective plasma coupling parameter is 

where rocp is the OCP coupling parameter [12]. (In a many-component plasma, r is defined for each ion 
species.) 

In terms of these parameters, the continuum lowering is given by a suitably modified form of the 
Stewart-Pyatt formula [6,17], 

which allows for polarization of the electrons within the ion sphere even when the ions are strongly coupled 
( r  >> I), ie, the formula allows for the possibility that r >> 1 at the same time as De < R. If 
r > 4.96045 an extra term equal to 3.266ri - 0.57844r - 2.0048 is added within the second parenthesised 
factor in order to yield the correct high-density limit 16,131. In the weak coupling limit, the formula is 
indistinguishable from the "standard" plasma polarisation result of Debye-HUckel theory. 

The fluctuation component of the continuum lowering is taken to be the rms nearest-neighbour 
potential, seen by a small test charge at the mid barrier, less the same potential due to the perturber when at 
the lattice distance r,,. This gives, approximately 
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where r ,  = R/<P>* and 6 = (Rlr)2 (which is the microfield, in the absence of screening, in units of the 
normal field, - Z*CY~C/R~) .  The average <P> is calculated using a nearest-neighbour distribution corrected for 
Coulomb repulsion at close distances, ie, 

in which L is the effective Landau length, and P(P)dP is the Poissonian nearest-neighbour distribution, 
P(P) oc g s / 2  exp(-K3/2). A saddle point approach is used to estimate the ratio of the integrals with an 
analytic formula when LIR is not too small. 

Although somewhat crudely implemented, this method does seem to account for the gross effects 
and yields reasonable edge widths that are in agreement with the scarce amount of available experimental 
data [15]. The same approach is used to estimate the mean square electric field to determine the Stark widths 
of bound levels. With r ,  = R I < P ~ > ~ ,  the rms electric field due to the nearest perturber is estimated by 

3 - ATOMIC PHYSICS MODEL 

A model of the bound electronic states within the atomic ions is required in order to determine 
the three quantities z*, F, and f that feature in the above plasma model. The model used is a simplified 
version of the average-atom in which the bound electron energies are estimated by an analytical formula. 
(This is not a necessary approximation and indeed, for realistic calculations, is generally inadvisable. The 
spreadsheet does however allow the replacement of such estimates by more accurately known values.) The 
average-atom prescription is as follows. Given a set of energy levels en, which may depend on the value of 
z*, the average-atom level populations, Nn , and the average ionization Z* are determined self-consistently 
from the following equations, 

where wn is the statistical weight of the level; together with the constitutive relations for the ionization 
energies, sn and the chemical potential, y. The ionization energies are calculated as described below, while, 
for the chemical potential, an analytical parameterisation based on the work of Latter [I41 is used. The 
required functions F(o) and f(w) are then given as follows 

where 

and An is the ionization edge "width", expressed as the rms deviation, divided by the ionization energy e n  at 
the average position. Since the ionization energies, e n  are given only on the gross energy scale of the 
hydrogenic principal quantum number, n ,  the edge broadening model should take account of inhomogeneous 
broadening due to spin-orbit and configurational splitting, as well as homogeneous broadening caused by, in 
particular, Stark and Doppler broadening of the bound level, and fluctuations in the continuum threshold. The 
last process is by far the dominant source of homogeneous edge broadening. 

The above formula for F describes a quasi-Gaussian-broadened edge profile, while the optical 



activity f(w) derives from the analytic form of the Kramers-Kr6nig transform of broadened llw3 ionization 
profile. The latter is insensitive to the precise form of the edge broadening profile. Scaling factor(s) may be 
applied to F to ensure accurate compliance with the sum-rule. 

The following describes a simple way of obtaining reasonable rough estimates of the bound electron 
level energies using a simple hydrogenic-continuum model. As with the discretized screened hydrogenic model 
[ 6 ] ,  the energy levels obtained are essentially the ground states of the Bohr Hamiltonian, 

for n 2 1. The electrostatic potential V is constructed for a series of concentric shells continuously pogulated 
according to an assumed density-ofstates g(n), up to a maximum n = N such that I ,Ng(n)dn = 2-Z . The 
energy levels for integral values of n are then extracted, in accordance with the virial theorem, as 
En = -$V(rn) where rn = l lu ,  is the classical orbit radius (n>l)  or s-orbital uncertainty radius (n=l) as 
given by 

with u = l l r .  This procedure yields the energy levels according to 

for u H n being continuous, differentiable and one-to-one in n 2 1, u > 0, and where 

is the charge inside the orbital n. The use of Z+1 instead of Z in (41a) corrects for the self-energy of the 
electron in the orbit n. With g(n) = 4n. the simplest reasonable choice, the model yields the spectrum 

z-z* + E,, = - ER[[?12 - 4(1+2)[1 + + ~ n [ g ~ ]  + Z(Z-z*)] , 1 5 n 5 (42a) 

z-z* $ 
n 2 Cyl 

where ER is the Rydberg energy. An ad hoc generalisation of the above parameterisation permits some fine 
tuning through the introduction of an adjustable parameter a which can be used to fit the spectrum to 
available data. In place of (42a), the formula actually used is 

in which a is parameterised in terms of 2-Z* so as to fit the K-shell ionization energies of the neutral atoms 
across the periodic table. Typically (ie, for 2-Z* < 70) -+  < a! < 1. This model can also be used to 
construct (piecewise) analytical atomic potentials which, unlike Thomas-Fermi, can be calculated without 
recourse to numerical integration. 

The parameterised form of u(x = 2 - 2 )  is as follows: 

a ( x )  = a O ( x )  + a' (x)  

where 



C7-112 

and 

JOURNAL DE PHYSIQUE 

a' ( x )  = 0.1426 x-' s i n ( f a ( ~ ( 4 x + l 6 5 )  - l l ) ]  4 < x < 41 

= 0 x 5 4 ;  x 1 4 1  

Finally, the ionization energies provided to the average-atom model need to be further adjusted to 
account for continuum lowering in the plasma. ie, 

E,, = - En + AV,1 (44) 

This is also the opportunity to correct for any degeneracy in the continuum. 

4 - NUMERICAL CALCULATIONS 

Numerical calculations have been carried out with Supercalc1"4 spreadsheets running on an 803861387 
personal computer. These calculations are performed in two stages. First the plasma model is self-consistently 
solved and the plasma properties necessary to determine the stopping power calculated. The second stage 
integrates the stopping-power equation (1) over its range of validity to determine the particle range and the 
energy deposition rate, dEldx vs x. (The plasma model also yields the specific heat, so that, knowing the ion 
beam flux gives local rate of temperature increase.) Inner-shell corrections are applied where necessary. 

Two (arbitrary) plasmas were modelled, namely aluminium at T=100eV, and lead at T=300eV, both at 
normal density. The computed values of I are respectively 102eV and 459eV. The *plasma coupling parameters 
work out respectively at r=1.65 and r=2.4 compared with the OCP values of 7.35 and 53.6 respectively. The 
values of the ratio, DelR, of the electron Debye length to the ion-sphere radius are 0.663 for the aluminium, 
and 0.545 for the lead example, showing that there is a significant degree of free electron polarization. The 
resulting values of Z,*IZ* are 0.933 and 0.885 respectively. Under these conditions, the total continuum 
lowering in the aluminium is found to be about 140 eV, of which 16 eV is attributed to continuum 
fluctuations, while for the lead, it is found to be about 680 eV with a fluctuation component of 60eV. 
Application of the Stewart-Pyatt formula from [6]  yields, for the same values of z*, 116 and 590 eV 
respectively. These effects lead to increased ionization ( increased 2) within the plasma. 

The results of some model calculations are shown in the figures. In interpreting these figures the 
following explanatory notes may be helpful: Dashed lines denote the results of using equation (1) without 
inner-she11 corrections, where these show a difference. Excitation functions are given in arbitrary units. The 
stopping power S(E) is ( l lp) ldEldx~ in MeVcm21g units. The range is the total distance travelled by the ion 
(proton) before coming approximately to rest. The mean free path is IlldEldxl with any inner-shell 
correction to I is applied by computing the average of In(w) over the interval 0 < w < q. In the captions, 
t t ion~ and "proton" are synonymous. It is hoped that the figures are otherwise self-explanatory. 

The excitation functions show clearly the plasma collective "resonance" (at 31 eV in the aluminium and 
59 eV in the lead) and also a series of edge features (counting from the right these are the K and L features 
in the aluminium; and the K, L, M, N, 0 features in lead). The peak of the plasma resonance is found, in 
these examples, to be significantly above the plasma frequency, we which is 26.6 eV and 45.7 eV respectively. 

5 - CONCLUSIONS 

A simple yet powerful plasma model has been described and applied to some examples. The 
calculations show that in high-Z plasmas of moderate to high density, the corrections that one needs to apply 
to the ion-ion interaction to account for electron polarisation and screening are large. This is indicative of 
failure of the OCP. model. The model described here, while plausible, is clearly capable of further refinement 
where the necessary extra computing power is available. This model, as described, was developed principally 
for rapid calculations over wide parameter ranges and for assessing the importance of various physical 
processes, rather than for accurate calculations in narrow parameter ranges. 

Calculations show that the simple relativistic stopping power formula (1) is useful for determining 
where a fast heavy ion deposits most of its energy in hot plasma, and for estimating the ion's range in that 
plasma. A virtue of (1) is its simplicity and the ease-with which it can be incorporated into a calculation of 
the plasma hydrodynamics. The necessary tables of I ( p , T )  are easily provided. It is found that applying a 
simple "inner-shell correction" to (1) is advantageous and results in a more reasonable description near the 
end of the ion's range. However knowledge is then required of the excitation spectrum. 

The representation of the plasma properties, in the stopping power treatment, through the 
dielectric function enables a description of both the collective plasma processes due to free electrons, and 
ionization processes involving bound electrons, in a convincing and unified way. 
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