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G.M. WORRALL 

Department of Metallurgy and Science of Materials, Oxford 
University, Parks Road, GB-Oxford OX1 3PH, Great-Britain 

ABSTRACT-This paper gives some suggestions and caveats on how to estimate 
the confidence limits on data obtained from atom-probe experiments. There 
are four sections covering autocorrelation, the use of contingency tables, 
estimation of ordering parameters and testing for clustering. This paper 
certainly does not exhaust the possibilities for statisitical tests which 
may be applied to atom probe data, but demonstrates some useful techniques, 
which as far as the authors are aware have not been used before. 

I-INTRODUCTION 

A general approach to the statistical analysis of data should consist 11-21, first, 
of the postulation of a null hypothesis and an alternative hypothesis. The null 
hypothesis is the assumption that the data has been obtained from a random 
distribution, and the alternative hypothesis is that there is in fact a pattern to 
the data. An appropriate experiment should then be designed and performed, followed 
by a statistical test based on the null hypothesis. The confidence limits (usually 
given as a percentage) for the rejection of the null hypothesis and the acceptance 
of the alternative hypothesis then depend on the assessment by the experimenter of 
whether it would be worse to reject a true null hypothesis (a type I error) or a 
true alternative hypothesis (a type 11 error). 

The following studies show the application of various statistical tests. Two 
of the most important aspects of the process of interpreting data will not, and 
indeed cannot, be discussed in general terms. They are the design of an experiment 
which is free from systematic errors and the interpretation of the results in the 
context of the physical consequences of the acceptance of the null hypothesis; these 
rely on the skill and experience of the experimenter. 

11-AUTOCORRELATION ANALYSIS 

The autocorrelation function can be a powerful tool for examining regular 
modulations in composition. The interpretation of some of the features that might be 
expected in an autocorrelation plot have been discussed by Piller and Wendt /3/ 
(although their estimations of the errors of values are not always precisely 
calcu1;lted; for example, their estimation of the maximum value of R(k), their 
equation 5, is independent of the number of samples taken whic~~ is plainly 
unrealistic). However, this kind of interpretion of an autocorrelation is beyond the 
scope of this paper. The first step that has to be made is to ensure that one is not 
trying to interpret a plot that is merely a set of random points, and this is the 
problem which we will tackle. 
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The discrete autocorrelation function is often defined as 
7 N-k N 

where C. is the composition of the ith block of data and C is the average 
composi$ion. It is worth pointing out that the precise formulatio: is 

N-k N-k N 

This is a far more cumbersome equation (since it requires the calculation of two 
means, CA and CA' over the appropriate range's and a new normalizing factor for 
every k), yet, 1s nevertheless the precise expression of the product-moment 
correlation coefficient of a scatter of points about their centroid. However, the 
value of the first expression is its ease of computation, and it is this expression 
which we will consider in the rest of the paper. 

The first, somewhat surprising, result that we can obtain is that the average 
value of the R(k)'s is not zero as one might expect but -1/(N-1) where N is the 
number of composition blocks. The derivation of this is simple. Writing x.4.-C and 

1 1 0  

s = 1 (Ci - c0l2 
i=l 

The mean value m of the all the R(k)'s, including k=O, is 
N-1 N 

m = l  1 C Xi Xi+k 
k=O i=l 

The summation in both i and k is taken to N (with the assumption that the 
composition of the (i+N)th block is the same as the ith block) in order to eliminate 
the need for the 1/(N-k) scaling factor, but this does not affect the result. 

Reversing the order of summation gives 
N N-1 

1 a = -  C Xi C Xi+k 
S i=l k=O 

which is zero since 
N- 1 N- 1 

Xi+k = 1 (Ci+k-Co) = N(Co - Co) = 0 
k=O k=O 

However, the value of ~(0) is 1 and therefore the mean, m, of the other values is 
m = (0-R(O))/(N-1) = -1/(~-1). From this we can derive just as simply that the 
variance of the distribution is var(m)=l/(N-k). Fig. 1 shows the autocorrelation of 
a set of random data from an Alnico 8 alloy. The graph has been extended to k=N in 
order to demonstrate the increase in the standard deviation as the amount of data in 
the calculation becomes smaller, whereas the mean stays constant at -1/(N-I). In 
reality there is little meaning to an autocorrelation extended beyond k=~/4. 

We now need to decide whether an autocorrelation is random or not. Fig. 2 shows 
the autocorrelation between iron and aluminium from alternate (200) planes in the 
ordered Fe-Co phase in Alnico 8 /4/ and is clearly non-random. Comparing the 
theoretical and the observed means is clearly not a very sensible test since the 
observed mean is very close to the theoretical value despite obvious ordering. One 
method of testing for randomness would be to compare chain lengths of consecutive 
R(k)'s with values above -1/(N-1) using a binomial model, in an analogous way to 
that discusssed for chains of B atoms in section 4. However, it seems that the 
standard deviation of the results is a sensitive test for randomness of the data. If 
we weight the variance of ~ ( k )  by 1/(~-k), then the expectation of the average of 
weighted variances will be 1/N. If we now think of the standard deviation as a 
parameter just like any other we might have measured, then the value we have 



calculated will have an error associated with it just like any other would. The 
standard deviation of the standard deviation is an estimate of this error, and is 
given by 

I 
standard deviation of standard deviation = s / (2(n-1)j2 

providing the distribution which has been sampled is a normal distribution. This 
condition is satisfied according to the central limit theorem providing N is greater 
than 120. (The central limit theorem states that if you take the average of enough 
values then the value of the average will have a normal distribution). 

We now have a way of testing for randomness. If the standard deviation we 
measured came from a random population of standard deviations then that random 
population would have a Student's t distribution. The limits within which the actual 
standard deviation lies can therefore be estimated. This is best illustrated with an 
example. The standard deviation of the graph of fig. 2 is s = 0.152. From our null 
hypothesis that the R(k)'s are random the standard deviation of this standard 
deviation is s = 0.152/(17.2)=0.0088. Our alternative hypotheses is that the 
standard deviation is significantly larger than the theoretical value and therefore 
we perform a one-tailed test (if we had said that the value could be bigger or 
smaller a two tailed test would have been appropriate). We will reject the null 
hypothesis if the theoretical value lies outside the range in which 97.5% of the 
values based on the measured value should lie. There are N-1=149 degrees of freedom 
and our estimate of the standard deviation is therefore 0.152 with an error of 
1.97 x 0.0088=0.017. The theoretical value is a long way outside this, and therefore 
we accept the alternative hypothesis. The deviation from a random distribution in 
fig. 2 was obvious without a test. However, fig. 3 shows an autocorrelation of 
carbon composition in a Fe-Ni-C alloy which is known to undergo a spinodal 
decomposition 1 5 1 .  There is no obvious trend to this data. However, the freqency 
distribution of C compositions deviates significantly from what one would expect 
from a binomial distribution, and if we test the standard deviation of the 
autocorrelation it is found that it too indicates that the carbon distribution is 
non-random. 

The measurement of the standard deviation of the points on an autocorrelation 
therefore seems to be a sensitive test of an autocorrelation function for atom probe 
experiments. Marking the expected standard deviation on a graph as in figs. 2 and 3 
also helps to estimate where significant peaks in the graph lie. 

One consequence of the above discussion is that the optimum signal to noise ratio 
is not obtained when the size of the composition blocks is chosen to be one atomic 
plane in size, but when it is one atom in size (i.e. N is a maximum). Although it 
would be meaningless to describe a modulation wavelength to this accuracy, averaging 
to the nearest number of atomic planes should be done after the autocorrelation and 

not before. In many cases it is impractical to choose a block of one atom size 
because of the computation time which would be required and any real autocorrelation 
will be a compromise between optimising the signal to noise and having realistic 
computation times. It is also possible to improve the signal to noise ratio if 
additional information from a depth profile is included (obtained from counting the 
atomic layers evaporated from a crystallographic pole). 

It is also possible to take a 'moving average'. For this the composition is taken 
over N atoms, but the atom which is considered to mark the start of the block is 
only n atoms further on from the atom used to start the preceding block where n is 
smaller than N. This is the discrete implementation of a low pass filter and the 
autocorrelation function will tend to the autocorrelation of the filter function as 
the number of random samples tends to infinity. 

111-CONTINGENCY TABLES 

Table la is a contingency table of the correlation between Cu and Ni in data taken 
from an iron alloy with 1.1 at% Cu and 1.4 at% Ni after aging for 10 mins at 825 K 
from a homogeneous state. The solubility of copper in iron at 825 K is 750 ppm and 
some small b.c.c. particles can be detected in the alloy after this aging treatment. 
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The d a t a  from t h e  atom probe experiment was considered i n  b locks  of 50 atoms. The 
number i n  t h e  t o p  l e f t  of t he  t a b l e  g ives  t h e  number of  b locks  con ta in ing  no copper 
or  n i c k e l  t h e  second number i n  t h e  f i r s t  row, those  b locks  con ta in ing  one n i c k e l  and 
no copper and s o  on. Table l b  i s  t h e  v a l u e s  t h a t  would be expected i f  t h e r e  was no 
c o r r e l a t i o n  between t h e  Cu and N i .  They a r e  obta ined by m u l t i p l y i n g  t h e  number a t  
t he  end of  t h e  row wi th  t h e  number a t  t h e  bottom of t h e  column and d i v i d i n g  by t h e  
t o t a l  squared ( i . e  1082.0=(1915 x  1299)/(2299 x  2299). The va lue  of chi-squared 
c a l c u l a t e d  from t h i s  i s  t a b l e  is 20.23 wi th  6  degrees  of freedom ( t h e  number of 
degrees  of freedom is t h e  (number of columns-1) m u l t i p l i e d  by the  (number of rows 
-1) i .e .  2  x  3). Th i s  va lue  i s  s i g n i f i c a n t  a t  t he  0.3% l e v e l  and i n d i c a t e s  t h a t  
t h e r e  i s  an  a s s o c i a t i o n  between Cu and N i  a f t e r  t h i s  aging time. 

The c o r r e l a t i o n  between copper and n i c k e l  could  a l s o  be found us ing a  
c ross -co r re l a t ion  ( s i m i l i a r  t o  an  a u t o c o r r e l a t i o n ) .  However, we have found t h a t  
cont ingency t a b l e s  a r e  e a s i e r  t o  c a l c u l a t e ,  s impler  t o  i n t e r p r e t  and more s e n s i t i v e .  

IV-ORDERING I N  ALLOYS 

Once aga in  t h e  problem we f i r s t  cons ide r  is  how can w e  determine whether o r  not d a t a  
i s  random. Although a  s o  c a l l e d  l adde r  diagram can provide  a  s t r i k i n g  demonstra t ion 
of o r d e r i n g  ( see  /4 /  f o r  an example),  i t  i s  of l i m i t e d  use f o r  s t a t i s t i c a l  purposes.  
As was shown i n  s e c t i o n  2  an  a u t o c o r r e l a t i o n  f u n c t i o n  can be used t o  t e s t  f o r  
o rde r ing ,  but  t he  most appropr i a t e  way t o  examine the  d a t a  i s  by cons ide r ing  i t  a s  a  
Markov cha in  ( a  Markov cha in  i s  one i n  which t h e  outcome of  a  t r i a l  depends on the  
preceding t r i a l ,  f o r  i n s t a n c e ,  i n  a  co in  t o s s i n g  experiment the  p r o b a b i l i t y  of 
throwing a  sequence of 2  heads on t h e  4 t h  t r i a l  i s  c o n d i t i o n a l  on a  head being 
thrown on t h e  3rd t r i a l ) .  I f  t he  atomic f r a c t i o n  of an  element B ,  i n  an  a l l o y  i s  p ,  
then, i f  t h e  d a t a  is random, t h e  p r o b a b i l i t y  of any atom being of type  B is p  
independent of what i t s  neighbours a r e .  The p r o b a b i l i t y  of g e t t i n g  a  chain  of n  B 
atoms i s  t h e r e f o r e  pn. By comparing t h e  observed numbers of chain  l e n g t h s  wi th  t h e  
expected number i t  is p o s s i b l e  t o  e s t i m a t e  the  s i g n i f i c a n c e  of a  r e s u l t .  I t  is 
poss ib l e  t o  count cha ins  i n  d i f f e r e n t  ways. I f  we were looking f o r  cha ins  of 3  B 
atoms, t hen  a  s t r i n g  of atoms 

ABBBBABBBABBBBBA 

could e i t h e r  be considered t o  c o n t a i n  1 cha in  ( i f  we say t h e  chain  must be 3  atoms 
preceeded and terminated by A atoms) or  6  cha ins  ( i f  we counted every  s e t  of 3  
consecut ive  atoms i r r e s p e c t i v e  of t h e  s t a r t i n g  and f i n i s h i n g  atom and could  i n c l u d e  
an atom i n  more than  one chain) .  I n  f a c t  t h e  most u se fu l  way t o  count them i s  t o  say 
t h a t  t h e r e  a r e  3  cha ins  d i s t r i b u t e d  a s  

s o  we have counted any cha in  of 3  B atoms i r r e s p e c t i v e  of t h e  atoms t h a t  
t e rmina te  the  cha in  bu t  have only  allowed any atom t o  be included i n  one cha in  a t  
most. This  i s  t he  most s e n s i b l e  way t o  count cha ins  s i n c e  it i s  p o s s i b l e  t o  d e f i n e  a  
s imple  r ecu r rence  r e l a t i o n s h i p  f o r  t h e  p r o b a l i t i e s  of success  on any t r i a l .  If  t h e  
mean w a i t i n g  t ime f o r  the  f i r s t  cha in  of r atoms t o  occur i s  m ,  then t h e  expected 
number, E(n),  of cha ins  of l eng th  r from a  t o t a l  of  N atoms is  ~ ( n ) = ~ / m .  
Furthermore,  i f  t h e  va r i ance  i n  t h e  wa i t ing  t ime f o r  t h e  f i r s t  chain  of l eng th  r i s  
s ,  then E(n.), gas  an  approximately  normal d i s t r i b u t i o n  wi th  va r i ance  va r (n )  given by 
v a r ( n )  = Ns / m .  

For cha ins  of l eng th  r of t h e  type de f ined  above it can be shown /6/ t h a t  

m = ( 1  - pr) / (q.pr) 
and 

s = ~ l ( 4 . p ~ ) ~  - (Zr + 1) /(q.pr) - p/q2 

where q=l-p. I t  is  p o s s i b l e  t h e r e f o r e  t o  t e s t  whether o r  n o t  d a t a  is  random by 



examining the the number of long strings and comparing it with the expected value. 
If an alloy is ordered we would expect to see far more long strings. 

If we have determined that a material is ordered then we want to estimate the 
degree of order. The ordering parameter, L, of a binary alloy may defined as 
L=(l - p)/(l - x) where p is the probability of an atom B occupying a B atom site 
and x is the atomic fraction of B atoms in an alloy. It is possible to estimate p 
from an atom probe experiment. The best way to do this is to observe planes 
collapsing and then count the number of B atoms on the planes. The probability p is 
then simply obtained by dividing this number by the total number of atoms collected. 
If this cannot be done then it is possible to obtain an approximate value of p by 
taking composition averages over groups of n atoms where n is much smaller than the 
number of atoms per plane. This will then produce peaks in the frequency 
distribution of the compositions at np and also nq where q is the probabilty of a B 
atom being on a 'wrong' site. The results of a computer experiment are shown in fig. 
4 from which it can be seen that quite good results can be obtained from fairly 
small data chains, however this should be used with care. 

V-MONTE CARL0 CALCULATIONS 

A Monte-Carlo computer calculation has been used to simulate the nucleation and 
growth of particles of an element B in solution in an element A after it has been 
quenched from a very high temperature to below the miscibility gap. The calculation 
considers nearest neighbour interactions. It calculates the change in energy if two 
atoms changed places. If the energy of the new configuration is lower than that of 
the initial one then it exchanges the atoms. If the energy is increased then it 
'gambles'. It generates a random number between 0 and 1 and if that number is 
smaller than exp(-E/kT) (where E is the increase in energy k is Boltzmann's constant 
and T is the temperature) it keeps the new configuration and rejects it if the 
number is larger. 

Atom probe experiments have been performed on these crystals, in order to try 
to determine the optimum conditions for investigating the earliest stages of 
nucleation. From a large number of experiment the following general points have been 
observed. 
a) The detector efficiency is important and should be as high as possible. If the 

same volume is probed using detectors with efficiency 1 and 0.5, the first can 
reveal the decomposition after a time up to eight times shorter than the second. 
b) The probe hole diameter must not be too small (too few atoms will be detected 

to give any meaningful results) or too large (the sequence that the atoms are 
detected no longer represents their relative positions very well) However, similar 
results are obtained for diameters of between 3 and 6 atoms. This is not therefore a 
critical parameter. 
c) The best way to test for nucleation is by the measurement of the variance of 

the mean waiting times between adjacent solute atoms (the mean waiting time itself 
is not very sensitive to decomposition). 

VI -CONCLUS IONS 

A few applications of statistical tests have been discussed. We have found all these 
tests useful in assessing our experiments and in explaining our results to 
specialists from other fields. 
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OBSERVED EXPECTED 

Total 

2 5 . 4  14-3 
>=3 34.5 19.9 7 . 5  

717 283 2 2 9 9  

Table 1. Contingency table, for an underaged Fe-Cu-Ni alloy containing wpper 
precipitates, showing frequencies of copper and nickel ions in samples 
of 50 ions. The calculated level of significance of 0.003 indicates 
that the copper and nickel are associated. 

-1 I 
NUMBER OF SAMPLES (k) 720 

Figure 1. Autocorrelation analysis of iron and nickel taken from the homogeneous 
iron-rich phase in Alnico 8 .  The sample size was 1 atom and the total nu,nber of 
samples was 721. The numbers in brackets are the values which would be expected 
from a random distribution based on the theory given in the text. 

NUMBER OF SRMPLES (k) 158 

Figure 2. Autocorrelation analysis of iron and aluminium taken from the a (200) 
plane in the ordered iron-rich phase in Alnico 8 .  The sample size is 1. 



Figure 3. Autocorrelation analysis of carbon in an as quenched Fe-Ni-C alloy 
which is known to undergo a spinodal decomposition. The intial stages of the 
decomposition may already be detected in the autocorrelation. The sample size is 
1. 

X a x i s  n u m  
Y a x i s  ft-eq x l B - 1  

Figure 4. Frequency distribution of B atoms in blocks of ten atoms, from a 
computer simulation. Four atomic planes of 94 atoms were studied. The 
probability of finding an B atom on a B lattice site was 0.7 and the probability 
on a 'wrong' lattice site was 0.25. 


