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MAGNETIC STRUCTURE ANALYSIS AND GROUP THEORY 
E. F. BERTAUT 

C .  N. R. S. and C .  E. N.-G., rue des Martyrs, Grenoble 

R6sum6. - L'analyse de structures magnktiques par la thkorie des groupes (analyse de reprksentations) est baste 
sur la transformation de vecteurs spins, situks dans une position cristallographique donnee, sous les opkrations de symk- 
trie d'un groupe d'espace G ou sous-groupe Gk du cristal dans lequel se trouve la structure magnktique. Le vecteur d'onde 
k caracterisant le groupe de translation est deduit de l'expkrience de diffraction neutronique. Les Cquations de transfor- 
mation linkaires induisent une reprksentation r de G ou de Gk. On reduit en reprksentations irrkductibles (r. i.). Les 
vecteurs de base, sous-tendant les r. i. decrivent des structures magnktiques possibles de sorte que l'on n'a B comparer 
qu'un faible nombre de modkles avec I'expkrience. La symktrie de I'hamiltonien (de la reprbentation irrkductible) est 
gknkralement plus klevee que la symktrie de Shubnikov de la structure magnetique. Quant au schkma de classification 
d'opechowski, notre schkma (C2) utilise d'une manibre cohQente et exclusive les groupes d'espace, m6me pour des spins 
sinusoidaux et hklicoldaux alors que dans le schkma Cl' on doit ajouter des groupes non cristallographiques pour une 
description de ces cas. 

Abstract. - The analysis of magnetic structures by group theory (representation analysis) is based on the transfor- 
mation of spins on a given lattice site under the symmetry operations of a crystallographic space group G or a subgroup 
Gk of the crystal in which the magnetic structure is imbedded. The wave vector k labelling the translation group is taken 
from the neutron diffraction experiment. The linear transformation equations induce a representation r of G or Gk. 
r is reduced to irreducible representations. Basis vectors, constructed from them, describe possible magnetic structures 
so that only a small number of models have to be compared with experiment. The symmetry of the hamiltonian (of the 
irreducible representation) is generally higher than the Shubnikov symmetry of the magnetic structure. As far as Ope- 
chowski's classification scheme is concerned our scheme (C2) uses space groups consistently, even for sinusoidal and helical 
spins whereas in the scheme Cl' one must add non crystallographic groups for a full description of the latter case. 

Introduction. - Representation analysis of a 
magnetic structure is not only a) labelling or classi- 
fying a structure, but consists mainly of b) the search 
for the structure before it is known and of c) the dis- 
cussion of the interactions which might explain the 
final structure model. Professor Opechowski has not 
evaluated the merits of representation analysis for 
b) and c). Thus I shall answer his criticism at the end 
of my lecture. 

After stressing the difference between invariance and 
transformation properties, we show the analogy 
between the theory of magnetic modes and the group 
theoretical treatment of lattice vibration modes. 
In both cases linear transformations of vectors induce 
a matrix representation r of a space group G. We 
study in part I the structure of the matrix r taking 
advantage of the fact that the wave vector k of the 
translation group T of G is known from the diffrac- 
tion experiment and also that spin-components 
transforming like Bloch-waves can be defined. In 
part I1 we reduce r to irreducible representations and 
illustrate the procedure using Mn,GaN ( P m  3 m), 
the perovskite family (P b n m) for k = 0 and MnP 
(k # 0) for the helical case. In part 111 it is shown that 
basis vectors of irreducible representations describe 
magnetic modes in a unique way for all structures 
including helical and sinusoidal ones. 

The construction of invariants, which appear in 
an effective spin hamiltonian is briefly considered in 
part IV where we discuss also some interesting 
features of the length of spin components a t  individual 
sites. In part V we describe the procedure for finding 
the Shubnikov group when the irreducible represen- 
tation to which the structure belongs is known. 
Finally (part VI) time reversal symmetry is shown to 
play a role in those cases in which k and - k 
are inequivalent vectors in the star of k. 

I. Invariance and transformation properties. - 
There are two ways of stating the symmetry proper- 
ties of a physical object under the symmetry opera- 
tions of a group G. 

a) The set of symmetry operations under which 
the physical object is invariant, generally a subgroup 
H of G ;  

b) The specifications of the transformation proper- 
ties under all the symmetry operations of G. 

Let us give some specific examples. The crystallo- 
grapher assigns a space group to a crystal. This means 
that the crystal is invariant, i. e. transforms into itself 
under all the operations of the space group. In the 
same way the quantum mechanical physicist constructs 
an hamiltonian, invariant under the symmetry opera- 
tions of <( the group of the hamiltonian )). However 
when considering the Schrodinger wave $, he does not 
look for the subgroup which leaves $ invariant, but 
studies its transformation properties under the whole 
group of the hamiltonian. 

The same is true in lattice dynamics where for a 
crystal of given space group symmetry G the neutron 
diffractonist, the spectroscopist (in ultraviolet, infra- 
red, Raman effect work, etc.) studies the transforma- 
tion properties of atomic displacements (i. e. lattice 
vibrations). 

Transformation properties form an important part 
of representation theory. We shall remain within the 
framework of conventional space group theory (l). 
Finding the irreducible representations of a space 
group G,, associated with a k-vector in the first 
Brillouin-lone, has become a standard procedure [l-31. 

Proceeding by analogy, we first consider the case of 
molecular vibrations. Given arbitrary displacements 
u(R) of the atoms a t  positions R in the molecule, one 
subjects the u(R) to the symmetry operations Pi of the 
point group of the molecule. The linear equations of 
transformation may be written in matrix form and 
it can be shown that the matrices M i  multiply like the 
symmetry operators Pi and thus form a matrix repre- 
sentation, say r of the point group. The irreducible 
representations of the 32 point groups are found in 

(1) Except in the last paragraph of the discussion of time 
reversal. 
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many text books 1141. One can determine which irre- 
ducible representations P" are contained in and 
finally construct with the components of the u(R) 
certain linear combinations called cc symmetry coor- 
dinates >) [5] which transform according to the F(')'s. 

The same procedure applies to lattice vibrations if 
one replaces the u(R) by normal coordinates, the 
point group by a space group, and irreducible repre- 
sentation F(") of the point group by T ( k v )  of the space 
group. 

The atomic displacements are polar vectors ('). 
Our method of analyzing magnetic structures is 
exactly the same, except that we are concerned with 
spin vectors, i. e. <c magnetic displacements which 
are axial vectors. The analogy of the procedures is 
schematized in table I. 

Vibrational and Magnetic Modes 

/ POLAR VECTORS 1 AXIAL VECTORS 1 
MOLECULAR 
AND LATTICE 

VIBRATIONS 
MAGNETIC 

STRUCTURES 

I Symmetry Coordinates ( Magnetic Modes 

Linear Transformation induce a representation r 
Reduction of r to irreducibIe representations in 

The transformation equations of spin vectors in a 
given space group G induce a representation r which is 
decomposed into irreducible representations. Whereas 
the symmetry coordinates depict vibrational modes, 
the basis vectors of the irreducible representations 
in the magnetic case are cc magnetic modes l), j. e. 
describe possible spin arrangements. 

Point groups (molecular V.) 

Space groups (lattice V.) 

1.1 THE BASIC EQUATIONS. - We shall analyze 
more closely the three steps required in the analysis 
by referring to three basic equations. The transfor- 
mation induced representation I' is described by (I) ; 
the decomposition into irreducible components is 
given by (11), and the construction of base vectors is 
described by (111). 

C S j  = D=(c),, S, 
1 (1) 

Space groups 

with 

BASIS VECTORS 

(2) The author has used the same method to study ferro- 
electric modes 161, electric displacements or moments being 
polar vectors. 

I. 2 THE REPRESENTATION r. - The most general 
symmetry operation of a crystallographic space group 
G is (E ( R,) (a 1 T,), the product of a lattice trans- 
lation (E I R,) and the operation (a I 2,). Here E is 
the identity operator, R, a lattice translation belong- 
ing to the translation group T, a a proper or an 
improper rotation belonging to a point group g and 
2, a fractional translation. 

The space group may be expanded as follows 

G = T -t T(a2 I z2) + + T(a, I z,) (I-l) 

and it is well known that the factor group G/T is 
isomorphous with the point group g of order g. 

I. 2.1 The translation group. - The irreducible 
representations of T are labelled by a wave-vector k 
and the character (3) x(R) of a lattice-translation 
R is exp(2nik.R. Fortunately k is known, so to 
speak, experimentally. As in X-ray crystallography 
where general extinction rules (4) and the positions 
of the reflexions (irrespective of their intensities) 
determine the crystallographic translation groups 
(i. e. Bravais lattices), similar extinction rules deter- 
mine the magnetic translation lattices. If the neutron 
diffractionist says that he can index all the magnetic 
lines in the chemical unit cell, it means that k = 0. 
The character of any lattice translation is + 1 and 
the spin arrangement conserves the periodicity of the 
chemical cell. 

The classical magnetic structure of MnO with 
sublattices as foreseen by Nkel [7] and confirmed by 
the first magnetic structure determination of Shull 
and Smart [a] ifiustrates clearly the theory presented 
here. Indeed the appearance of only (odd, odd, odd) 
lines in a unit cell doubled in three directions 2 a,, 
2a2,  2a3  implies the existence of a wave vector 
k = [$$ $1, so that 

exp(2 x ik. R) = exp n i(x + y + z) = s(R) . (1-2) 

Here X, y, z are the coordinates of the positions R 
of Mn expressed in units of the chemical cell. One 
easily checks that cr(R) gives the correct signs of the 
Mn-spins. (For instance o(R) = + l for R in 000, 
in 200, 020, 002 but o(R) = - 1 for 100, 010, 001, + 4 0, etc. Note also that in planes defined by 
k.R = constant, the spins keep the same phase.) 

We can reach an even more important conclusion 
from the MnO example. Consider a spin S(R) in R 
and let P,, be the operator which brings the spin to 
R + AR, AR being a lattice translation. One then has 

PAR S(R) = S(R + AR) = 
= exp(2 .n ik. AR) .$(R) . (1-3) 

This equation expresses a Bloch-wave like behavior 

(3) This is only true for one dimensional representations of 
the wave-vector group Gk. More precise definitions are given 
later. It is clear of course that corresponding to the Iaw of 
addition, R1 + Rp = R3, we have the multiplication law 

exp 2 x ik. RI .exp(2 R ik. Rz) = exp(2 n ik. R3) . 
(4) An extinction rule is said to be cc general when it is 

valid for all reflexions (hkl). For instance, the rule (Wcl) only 
exists for h + k + I = 2 n, determines an I (centered) lattice ; 
the rule (hkl) only exists for h + k + I = 2 n + 1, an Ip (anti- 
centered) lattice, and so on. 
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TABLE I1 

Magnetic Translation Lattices and Invariant Wave-vectors 

Lattice 
System 0 & R~~~~ Vector k 

Lattice 
System 0 & GCz7] B~~~~ Vector k 

-- 
Triclinic P 

p 2  S 

M.onoclinic P 
P2 a 

P2 b 

pc 
C 
c2 c 

CP 
Orthorhombic P 

-. 

Orthorhombic F 
F, 

Tetragonal P 
Pzc  
PP 
PI 
I 
1, 

Rhombohedral R 
R, 

Hexagonal P 

Cubic 

of spins. Thus the fact that the neutron diffractionist 
can characterize a magnetic translation lattice by a 
wave vector k is already an experimental proof of a 
Bloch-wave like nature of spin-components. The 
magnetic translation lattices and wave vectors are 
compared in table I1 with the Opechowski-Guccione 
[27] and Belov [36] notations. 

In the foregoing discussion of magnetic transla- 
tion lattices with rational multiple cells, exp(2 n ik. R) 
takes only the values + 1 (translation) or - 1 (anti- 
translation). 

There is an obvious generalisation for helical and 
sinusoidal spin configurations. We shall write ( 5 )  

more generally 

S(R) = Sk(R) -F S-,@) (1-4) 

In the helical or sinusoidal case the neutron diffrac- 
tionist determines the k-vector from satellite reflexions. 
It can also be shown from (1-5) that the turn angle 
q(AR) between two helical spins S(R) and S(R + AR), 
AR being a lattice translation is q(AR) = 2 nk.AR. 
We postpone the proof to the discussion of invariants. 

Once k is known, one may construct the irreduci- 
ble representations of G and its subgroups associated 
with k. 

We recall here some definitions in order to avoid 
the existing confusion in the nomenclature. Among 
the (a 1 23 operators (their number is g )  consider 
those (P I zg) wity the following property 

pk = k +  K g .  (1-7) 

The rotational operators P which conserve the wave 
vector k  modulo a vector Kg of the reciprocal lattice (6) 
form a group, called the point group of the wave 
vector k and denoted here by gk. If gk is the order of 
the group, one has 

with 
Sk(R) = (xa exp ia -I- yb exp ip -I- 

+ zc exp i y) exp(2 n ik . R) 
S,"(R) = . (1-5) 

Here X, y, z are unit vectors along the crystallo- 
graphic axes, a, b, c are positive quantities, a, P, y 
phase angles to be determined by the experiment. 
The Sk(R)-components behave like Bloch-waves, i. e. 

where 6, is the dimension of an irreducible represen- 
tation of g,. 

The subgroup of G, composed of the (P I rg) ope- 
rators defined above and the translation group T 
is a space group, called the wave-vector group and 
denoted by G,. In an irreducible representation Ack-) 
of dimension d, of G,, a lattice translation R, is 
represented by 

p*, Sk(R) = 
= exp(2 n ik. AR) S,(R) = Sk(R + AR) . (1-6) 

One has the conjugate complex relation for S-k(R). 

( 5 )  We have defined earlier [9, 101 
S 

= 3 (U- iv) exp (2 K ik. R)exp ip , D'~'"(R,) = l. exp(2 n: ik. R,) (1-9) 
u and v being orthonormal vectors ; one has obviously 
S: = 0. The need for the definition above (1-5) has recently 
arisen in the discussion of the helical structure of 
(UFe04)o.7s(UCr04)o.25, see this conference Ill]. The two 
definitions can be shown to be equivalent, but U and v are 
not necessarily parallel to crystallographic axes. 

( 6 )  One must distinguish between reciprocal lattice and reci- 
procal space. One has K = K1 bl $. KZ b2 + K3 b3 with K, integer 
( j  = 1, 2, 3) for a reciprocal lattice-vector where bj, the reci- 
procal cell edge, is defined by ai.bi = ail, the at being the cell 
vectors of the direct lattice. 
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where 1 is a unit matrix of dimension d,. The rule 

gk = C dv2 (1-10) 
V 

still applies, but of course the d, and 6,  need not be 
the same. 

Finally there is the cc full group G in which all 
operators (a I z,) (and not only the @ 1 zs) defined by 
(1-7)) have matrix representatives in irreducible 
representations [l21 associated with k. The full group 
representation of a lattice translation R, is 

where the k j  ( j  = l, ..., p) form the star of the vector 
k, i. e. the set of p independant vectors (not related 
by (1-7)) generated from one of them by the appli- 
cation of all the operators or of the (or I z,). 

Here we shall be satisfied with the discussion of 
Gk only ('). 

- 
1, exp 2 .n ik, .R, 

1, exp 2 n ik, . R,- 

I. 2.2 Structure of the matrix representation T. - 
Let be C an operator of the space group G, acting on 
the spin component SkPi,, at Ri. Here k is the vector 
labelling the translation group, i is an index which 
numbers the sites in the crystal, tw stands for the com- 
ponents X, y, z. We can renumber the spin compo- 
nents in some convenient order and use one collec- 
tive index j so that Sk,i,a = Sj. The operator C will 
transform Sj to some other spin component say S,. 
If these transformations are written in the form 
of equation (I), they define a matrix Dr(C). The 
matrices Dr(C) represent the group i. e. they form a 
representation r of the group G. These matrices would 
have very high dimensions if C acted on all the spins 
of the crystal ; here would also be a very great number 
of operators C (theoretically an infinity) to deal 
with. 

Fortunately the knowledge of the translation group 
and its representation (1-9) reduces both the dimen- 
sion of Dr(C) as well as the number of operators C 
to be included. Indeed we have only to consider the 
g operatores (aj ] zaj) ( j  = 1, ..., g). Their action on a 
point xyz with no point symmetry (except the identity 
element) gives rise to g points, called c( general posi- 
tions and tabulated in the International Tables 
(I. T.) [14]. In most cases, paramagnetic ions are 
located in c( special positions D, i. e. positions having 
a site symmetry, which is also indicated in I. T. If n 
is the number of atoms in cr special positions )) and m 
the order of the site symmetry group one has inn = g. 
The positions in I. T. are defined modulo a lattice 
translation. 

We can proceed as follows. We number the spins S(R,) 
on a lattice site of order n from i = 1 to n in some 
definite order. They will be called reference spins N. 

(1-1 l) 

We apply to a spin component Sk(R3, (a = X, y, z) an 
operation C = (p I zg) which does two things. 

First it transforms the index ct to some index 
a' = xyz with or without a change of sign according 
to the transformation law of axial vectors. 

Secondly it sends point Ri to some point R?. 
In symmorphic groups (z, 0 for each -a) one 

can always choose the reference points in such a way 
that R? is again on a reference point ((a I 0) or (p I 0) 
are c< closed )) operations) so that there is no problem, 
whatever k may be. 

In non symmorphic groups (at least one z, # O), 
where cc open D 1151 symmetry operations occur, 
Ry may not belong to the reference points, but will 
always be related to some reference point, say Rj, 
by a lattice translation AR 

so that we can still express the transformed spin compo- 
nent in terms of the component of a reference spin 
in Rj, as 

S,(Ry),, = exp(2 n ik. AR). &(Rj),. . (1-13) 

This introduces a ~ h a s e  factor exd2 .n ik.AR) into 
the corresponding coefficient of the  matrix. T ~ U S  we 
can always construct matrices Dr(C) of dimension 
3 n, representing an operation C of the space group 
G,. This is a tractable problem for n up to six, but 
becomes quite cumbersome for say n = 24. 

Another simplification arises from the remark 
already made. The axial vector transformation operat- 
ing on the lower index a and on the sign of the spin 
component is governed by an axial vector represen- 
tation (') which will be noted 7 and has matrices of 
dimension 3 at most. The operation which sends R, 
to Rj. is governed by a permutation representation 
denoted by rP,,,. which has matrices of order n only. 
The two operations are independant, which means 
that the resulting representation F is the direct product 
of those representations 

In the same way, one has for the corresponding 
matrices the direct product relation 

11. Reduction of the Representation r. - As we 
have already said, once the wave-vector k is known, 
the irreducible representations A(k,) of the wave- 
vector space group G, may be constructed. If xr(c) 
is the character in the representation F, x(~(kv,)(C) 
the character in the irreducible representation A(k,) 
of the operator C, the relation (11) indicates how 
many times a, the representation A(k,) is contained 
in T: The summation is in principle over the gk ele- 
ments (j? 1 zs), but may be restricted further in the fol- 
lowing way. One has from the direct product rela- 
tion (1-14) 

(7) In UCo04 the full group representation has been taken (9) We Use the notation of ~ivardiere and ~ a i n t a l  1161 
into account 1131, namely V for a polar and ? for an axial vector representation, 

(8) If Cl, C2 and Cg are operators of G so that C1 C2 = C3, given for instance in the cubic group m 3 m by the 3 X 3 matrices 
then also D(C1) D(C3 = D(C3. of r4g(Ti). 
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In the permutation representation rperm., the only 
non zero traces are due to points which stay 
invariant (modulo a lattice translation) under the sym- 
metry operation which therefore must belong to the 
site symmetry group of order m. Thus the summation 
in I1 can be restricted to those of the m elements of 
the site symmetry group which belong to G,. 

For instance in the rare earth perovskites belonging 
to the space group P b n m, the rare earth site symmetry 
group is composed of two elements, the identity E 
and a mirror m. The identity will always contribute, 
the mirror m only if mk = k + K. 

In the axial vector representation 7 which clearly is 
the 3-dimensional representation r,,, aIso denoted by 
T, of the point group m 3 m, Xv(3) = 0, so that a 
ternary axis in a cubic group or subgroup of a cubic 
group will not contribute to xr(C). Other reductions 
are apparent from the direct product relation (1-14). 

We shall discuss the three following cases : 
10 k = 0 (chemical = magnetic cell), 
20 k is an invariant vector on the surface of the 

Brillouin zone, 
30 k is at the interior of the Brillouin zone. 

10 k = 0. In this case on has 

gk = g (11-2) 
and the only relevant irreducible representations are 
those of the point group g even if G is a non symmor- 
phic group. 

The matrices of the permutation representation 
have coefficients which are either 0 or + 1. The rele- 
vant matrices of the representation 9 are those of 
r4,(T1) in In 3 m, restricted to the point group g, 
if it is a subgroup (l0) of m 3 m. If g is an orthorhom- 
bic group, 7 decomposes into three representations 
of g, corresponding to three subspaces X, y, z which 
thus can be considered separately. If g is a uniaxial 
point group, splitting into two subspaces z and (xy) 
occurs. 

We illustrate these considerations by two examples. 
The first one chosen is m 3 m, the second one is 

m m m. 
Example 1. Mn,GaN crystallises in the cubic space 

group P m 3 m and all magnetic lines can be indexed 
in the chemical unit cell. The Mn atoms are in the 
positions 3 c and will be numbered 1, 2, 3 as follows : 
O)*(l ) ;  ) O *  (2); $ 3 0  (3). 

A fourfold axis, 4, along Oz changes 1 to 2, 
2 to 1 and 3 to 3 (modulo a lattice translation) ; thus 
the matrix (4,) in Tperm. is 

(11-3) 

One has obviously 

(10) Any point group is a subgroup of m 3 m or of 6/m m m. 
In this latter event one is again in the uniaxial case. 

The twofold axis along X X 0, denoted by 2' has the 
same matrix as (4,) so that the non zero traces are 
Xr~erm.(~) = Xr~erm. (2) = 3 ; 

Xrperm.(4) = Xr~e'm.(2') = 1 . (11-5) 

One then finds easily from the group character 
table [4] that 

r'e-m = A1 f E (11-6) 
and from (1-14) 
r = T f  X (A, + E ) = 2 T 1  + T, 
(or2 r 4  f Ts) (11-7) 

Thus no magnetic structure may belong to r,, T,, r, 
of the cubic group. The investigation has shown that 
the structure, in fact, belongs to S, [17]. 

Example 2. Consider the four Cr or Fe positions 
in the family of rare earth perovskites [3] belonging 
to P b n m. The point group g = m m m is of order 
eight and has eight representations rgj and rUj 
(j = 1,2, 3,4) (rg,  is the identity representation). 
The point symmetry is 1. The only non zero charac- 
ters in I'pSrm. are xrpe*m.(E) = Xrperm.(i) = 4. Thus 
rperm. contains each even representation once 

Irperm. = r g l  f rgl + rg3 f Tg4 (11-8) 

The representation splits as follows 

v = rg2 -I- rs3 4- rg4 (11-9) 

and the direct product r (1-14) reduces to 

Here we have used the relation = rsl ; 
rgz X rg3 = rg4, etc. 

Relation (11-10) shows that each representation is 
contained three times or in other words there will 
be three basis vectors per representation as can be 
easily checked (see table 6 in ref. [3]). 

The splitting of corresponds to the three sub- 
spaces X, y and z and one can prove easily that each 
even representation exists once in each subspace. 

Of course the same results may be obtained by the 
direct construction of the matrices Dr [3] [17]. 

20 k # 0 is invariant. 
Point group representations are still sufficient for 

symmorphic groups, but special care is needed for 
non symmorphic groups where for the case of k- 
vectors on the surface of the Brillouin zone the Olbry- 
chski-procedure [l-31 provides us with the needed 
irreducible representations. The coefficients in the 
matrices of Tp,rm. are 0, + 1 and also - 1 (due to 
the action of phase coefficients exp(2 n ik.AR). The 
representation of P is still handled as in the case 
k = 0. There are numerous examples in the littera- 
ture [3] that fall under this classification. 

The dimension of the irreducible representations 
increases generally. 

30 k # 0 at the interior of the first Brillouin zone. 
We only consider the representations of the space 

group Gk, simply given by (see any textbook on 
group theory) 

D(')(P I z ~ )  = exp(2 n ik . T~). D(")@) (11- l l) 
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where D(")(P> is the matrix representative of p in 
the irreducible representation r (")  of the point group 
g,. 

The non zero coefficients in the matrices of 
Tperm. are generally complex numbers of the form 
exp(2 n ik . AR) . 

Here we come back to the example of MnP, already 
considered brieffy in [9], because we shall complete 
it later when discussing the role of time reversal. 

MnP belongs to the space group P b n m. There are 
four atoms Mn with coordinates 

- 
xy $ (l) ; xy $ (2) ; + + X, + - y, (3) ; 

In the low temperature form the propagation vector 
is k = [h 0 01 [18, 191 for the << double helix struc- 
ture. For the time being let us be satisfied with the 
subgroup P 2, of P b n m containing the identity E 
and the twofold helical axis 2,, in X 4 0, described by 

2 , ,=(2 ,~z , )wi thz ,=$$O (11-13) 

The point group of k is g,(E, 2,) and has the usual 
irreducible representations ( +  l + 1) and 
T2(+ 1, - 1) of a binary group. From (11-ll), the 
space group P 2, has the following irreducible repre- 
sentations 

The axis 2,, brings point 1 to 3, point 2 to 4, point 3 
to point 1 plus a translation l 0 0 and point 4 to point 
2 plus a translation 1 0 0. Thus the couple of points 1, 
3 is disconnected from the couple 2, 4, so that they 
can be discussed separately. 

111. Basis Vectors. - Whereas for the reduction 
of T, the knowledge of the characters of r and of 
r'") was sufficient, we need for the construction of 
basis vectors according to relation (111) the matrices 
of the irreducible representations Dv(C) themselves (l1). 

In formula (111), $ is a function from which one wants 
to project Q L I ~  the part transforming according to 
T"), and described by $S). Here j is a jixed index 
whereas i varies from 1 to dv, the dimension of r("'. 
The summation in (111) is over all relevant symmetry 
operations. For the function $ we shall take successi- 
vely the spin components of S,,, say S, ,,,, S, ,,,, 
S,,,,. The result, on the left side, will be some h e a r  
combination of spins. This procedure is sufficient 
if the symmetry operations in the summation connect 
point 1 to all the other points. 

It happens however that, for peculiar wave-vectors k 
in G,, the crystallographic site of order n in G of 
the International Tables splits into disconnected sets, 
in which case one repeats the procedure above for 
one point in each separate set. This is the case for 
k = [h, h, 0] in spinels for the octahedral or B-sites [20]. 

( l1)  Of course, characters and matrices coincide in a one 
dimensional representation. 

Theorem. The speci$cation of the non zero basis 
vectors describes the structure. Indeed such an infor- 
mation, combined with the fact that every other 
basis vector is zero gives rise to a set of linear equa- 
tions which can be solved with respect to the individual 
spins. To prove the theorem, we only show that the 
number of spin components to be determined, say 3 n 
is equal to the total number of components of basis 
vectors. This is exactly what one finds by taking in 
the first equation (11), the traces of the unit matrices 
in the first and second member 

The basis vectors for the sites 4a) or 4b) in space 
group P b n m are shown in table V1 reference [3], 
which is valid for the rare earth perovskite family 
and for P-CoSO, in the case of k = 0. 

If we refer to a G, F, configuration we mean that 

These equations combined with those obtained by 
setting all other basis vectors equal to zero, yield 

S,, = - S2x- = -l- S3, = - S4, ; 
Sl,=S2,=S3,=S4, (111-3) 

The same is true for table IV describing the basis 
vectors for the MnP-structure in P 2,. If we say that 
the magnetic structure belongs to T2, the basis vec- 
tors of r , ,  are zero, leading to the conclusion (see 
table IV) 

= exp(- n ih) S,,,, ; (a = y, z )  . (111-4) 

Finally, let us mention that the magnetic structure 
factor, F,, linear function of the spins (111-5) can 
always be expressed in terms of the basis vectors 
of irreducible representations. This fact enormously 
simplifies model calculations [21]. 

IV. Invariants. - It is well known that the product 
X of two irreducible representations contains 

the identity representation only for r'") = r(")  
for real and T(") = r(")* for complex irreducible 
representations. Thus when we want to construct 
an effective spin hamiltonian of order two in the 
spins and invariant under a group G, (l2), we form 
products of two basis vectors belonging to the same 
real or to two conjugate complex representations of 
G,. For instance G, F, in (111-2) (see table 6 in [3]) 
is an invariant product. 

We note here that, in accordance with Curie's 
symmetry principle (l3), we consider the highest 
possible symmetry of the hamiltonian and not its 
restriction to the Shubnikov group (which will be 
defined later). 

An hamiltonian of order two in the spins is the 
exact analogue of the so-called c( harmonic approxi- 

(12) Sometimes, for k # 0, the full group is required. See [13]. 
(13) ((The characteristic symmetry of a phenomenon is the 

maximum symmetry compatible with the existence of the 
phenomenon D [221. 
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mation in the theory of lattice vibrations. Only 
anharmonicity, i. e. the existence of higher order 
terms and in our case of higher order products of 
spin components can couple different irreducible 
representations (l4). The hamiltonians constructed 
by the indicated pair multiplication can give infor- 
mation as already discussed in the existing literature 
on the nature (isotropic, symmetric, antisymmetric, 
(c one-ion anisotropic) of the magnetic couplings 
in COO [24], DyCrO, [25] and in alloys [26]. 

Another interesting invariant is the c< local length D 
of a spin component s?)(R) belonging to a definite 
representation A(k,). 

One has indeed for &'(R) complex 

(S("(R))' = 2 S,(R) .$(R) with ( 
= (<sP'*)2 = 0 

because only products transforming like r") X F(")* 
can be invariant. 

As an example one proves in the same way from 
(I. 4), (1.5) and (111.4) that in the case of MnP 

i. e. the angle between S, and S, is v,, = xh. 
Another interesting consequence is that spin- 

components of the same spin S(R) belonging to 
different representations must be orthogonal [3]. 

V. Shubnikov groups. - A magnetic space group 
G,,, or Shubnikov group leaves a magnetic structure 
invariant. Thus it is a subgroup [27] of the direct 
product of a space group G and the time inversion 
group (E, E) defined in such a way that it does not 
contain the time reversal operator alone but only 
in combination with other symmetry elements, giving 
rise to the so-called antisymmetry elements. 

The one-to-one correspondance between Shubnikov 
groups and one dimensional real representations 
has been pointed out by several authors [27]-[29], 
[3]. The antisymmetry elements having the charac- 
ter - 1, we can immediately indicate the Shubnikov 
group corresponding to a one-dimensional real 
representation. 

In the case of a one dimensional complex repre- 
sentation the Shubnikov rrroun is the restriction to 
the real elements. We lo&e the symmetry elements 
having imaginary characters and still relevant in the 
hamiltonian. 

In the case of an irreducible representation r(') 
of higher dimension one might think of a symmetry 
descent D B la Bethe [30] leading at least to one one- 
dimensional real representation, i. e. to a possible 
Shubnikov group. Such a procedure is however lengthy 
and often not unique. Indeed the three-dimensional 
representation r5, = T,, of group m 3 m can split 
into a one- plus a two-dimensional representation 
in a ternary group 32 (= A, + E) as well as in a 
tetragonal group 422 (= B, + E). 

The following procedure is much simpler. In a first 
step one selects those symmetry elements which leave 

(14) The criticism expressed by Herpin [23] that the c( theory 
of Bertaut )> cannot take into account anisotropy and higher 
order terms (biquadratic for instance) is incorrect. See also [3]. 

the magnetic structure invariant. They form a sub- 
group say K. In a second step one decomposes the 
restriction to K  of the original matrices of F') accor- 
ding to the irreducible representations of K. If the 
restriction contains a one-dimensional real repre- 
sentation, this one corresponds to the Shubnikov 
group. 

As an example, the non zero basis-vector V(F53 
(V-1) of Mn,GaN implies the relations (V-2) 

(V-1) 

The operations (3) (2') and (i) in r5, permute' the 
components of V(T5,), but do not change the rela- 
tions (V-2). The subgroup K  is R 3 m and the restric- 
tion to K  gives rise to the decomposition 

T2 = A, +- E (v-3) 
Thus the Shubnikov group is R 3 m. 

Another example, also discussed by Opechowski 
and Dreyfus [31] is TbCrO, [32]. Here k = [O 3 01 
and the diagonal matrices of the two-dimensional 
representation, say e, 2,,, 2,, c, 2,, i give rise to 
the equations - - 

2,,.G, = G,;21y.1.G, = 21,.1.G, = - G, 

21,. A, = - A, = 21z.1.A, ; 
- 

21y.1.A,=A,. (V-4) 
The Shubnikov group conserving G, is P,, 2, n' m' 

and that conserving A, is P,, 2; n m. They are 
equivalent. 

In our language, A, and G, describe equivalent 
magnetic structures, in other words they give rise 
to S-type magnetic twins (l5). The simple connection 
between the theory outlined here and the theory of 
magnetic twins will be considered by Sivardi&re [33] 
in a separate publication. 

To summarize, knowing the irreducible represen- 
tation leads easily to the description by means of 
Shubnikov groups and at  the same time gives infor- 
mation about magnetic twins. 

VI. Time Reversal Symmetry. - In our earlier 
paper [3] time invariance did not play a role in magne- 
tic structures because we had put special emphasis 
on the cases k  = 0 and k  invariant. Thus k  and - k  
are equivalent, crystallographic and magnetic space 
groups have the same number of elements and the 
same representations. 

This no longer holds in those G, groups (subgroup 
of G) in which k  and - k  are inequivalent as when 
G contains an element (p  1 z) such that 

p k =  - k + K ,  (VI-1) 

Then the combined operator a, = 0.(p I z) where 
0 is the time reversal operator (l6) (0k = - k) will 
also be in G,. 

(15) These show up in the diffraction pattern. The domain 
walls are here magnetic cc stacking faults D. 

(16) The notation here is that of Wigner [34] and of Dimmock 
and Wheeler [35]. 
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This means that to the operations, already outlined, 
that act on a spin-component (axial vector trans- 
formation and point permutation) we must add the 
following : a) change of sign and b) complex conju- 
gation. Thus an antiunitary operation will connect 
S, and S-, components and introduce new phase 
relations between them. 

To illustrate this point, we complete, in the example 
of MnP, the group P 2, with k = [h 0 01, having the 
elements e and 2,, in G,, by a centre of symmetry 
I = (7 ( 0). I is not in G, so that nothing would change 
without time reversal symmetry. Actually I plays 
the role of the element (p I 2) above (VI-1) so that, 
taking time reversal symmetry into account, a. = 8.1 
as well as 191 2,, are in G,. The four representations 
of Gk are given in table I11 where the lower index + or 
- indicates the character of 01. 

TABLE 111 
Representations of the group P 2,/b 
with time reversal for k = [h 0 01 

e 21, 8.1 
- - - 21x81 

- 
r~ + 1 a 1 a "  
r 2  + 1 - a l - a *  
l-1 - 1 a - 1 - a *  
r z  - 1 - a - 1 + a *  

a = exp n: ih . 
One has the following transformation equations - 

8(1 ( 0) = - S:,, = - S-,,, 

8(2,1zx) (7 I 0) Sk,,, = S;,, (a = Y, 2) PI-2) 
and analogous equations, so that the couples of points 
(1, 3) and (2, 4), previously disconnected (l7) are 
connected again. It is easy to see that the non zero y, 
z components of the basis vector \I/(r2-) in table IV 

TABLE IV 
Basis Vectors in MnP, 

group P 2,lb for k = [h 0 0] 

X-component a = y a n d z  - 
components 

- - - 
+ + - 

v(rl +>  vk,lx - (vk,2x)* vk, la  - (vk,201)* 

v(r2 +) v ~ Y ~ x  - (vk'lzX)* vkfla - ( ~ k t 2 a ) *  + 
V ( ~ I  - 1 vk,lx ( V C Z ~ ) *  vk:la -k (vk;Za)* 

v(i-:-) vk,ix + (viz,): v;la + tvkS12a)* 
vk,1/3 ' Sk,lp + a* &,3/1 ; Vk,la = Sk,l/l--a* S k . 3 ~  - 
~ 2 2 / 3  = Sk,2@ f a* Sk,4fi ; vk,2/3 = S k , ~ ~  -a* &,4/3 

B = X ,  Y, 

Time reversal symmetry has added the quantities (...)*. 
In P 21 one has only y(rl +) and y(Tz+) without the 

quantities (. . .)*. 

describe the structure. The relations (VI-3) imply 
indeed (VI-4) 

('7) Of course if there is no centre I in G, the couples (1,3) 
and (2,4) would remain disconnected. 

One might formulate the following objection : 
(< The Bloch-wave like behavior is only formal. The 

relation 8k = - k might not be valid in a static struc- 
ture P. We remark however that there is no inconsis- 
tency with still considering k as a crystal momentum. 
Indeed the minimizing condition for the hamiltonian 
equation of motion in the k, q representation 

(VI-5) shows that no motion is associated with the 
wave vector k, the velocity v being zero. For the same 
reason, one has also 

= v X H = 0 (H = magnetic field) . (VI-6) 
dt c 

One may go one step further by replacing our (( point 
spin P description by a << spin density >) description, 
replacing Sk(Ri) by Sk(R) 6(R - R,) or even S,(R) 
p(R - R,), 6 and p denoting respectively a Dirac 
or ordinary density function [37]. 

Answer to the criticism of Professor Opechowsk!. - 
In the C 2 label (corresponding to representation 
analysis) I would prefer the specification of the basis 
vectors to that of spins arrangements. When a physicist 
says that the iron spins rotate from the G, E; to the 
G, F, configuration in some perovskite this is for 
him more descriptive and appealing than saying that 
the Shubnikov-group has changed from P b' n' m to 
P b n' m' or that the representation has changed from 
r4, to rZ,. A good nomenclature for basis vectors 
is still needed. 

I have claimed the superiority of classification C 2 
over that by Shubnikov groups, and not over the classi- 
fication C l', as defined by Professor Opechowski. 

I certainly have said [3], thinking of helical and sinu- 
soidal spins that there are many instances where 
known magnetic structures are not invariant under 
any Shubnikov group D. If I had added {(except in 
P 1, p 1 and 1 B this would have avoided some misun- 
derstanding. But such low symmetries are not very 
useful for the physicist : The reason why I have 
not talked about magnetic groups of non crystal- 
lographic nature is that in representation analysis 
all ordered magnetic structures, including helical and 
sinusoidal ones, are handled consistently in the 
frame of the 230 space groups. Professor Opechowski, 
in his description of an helical spin introduces extra 
symmetries in the spin-vector space P, i. e. infinite 
rotation (non crystallographic) groups, whereas I 
still describe the helix by indicating basis-vectors 
(S,, , ,  + exp(- n ih). and so on in the case 
of MnP ; see Table IV). 

It is in this sense that I have claimed representation 
analysis to offer a wider frame than invariance under 
a Shubnikov group. 

If one is willing to accept all isometric groups inclu- 
ding non crystallographic ones, then, of course, 
C 1' and C 2 describe magnetic structures uniquely. 

On the other hand it is always easy to deduce from 
representation analysis the underlying Shubnikov- 
group. I do not think that the converse is that easy 
(see the case of TbCrO,). According to Professor Ope- 
chowski, C 2 may in some cases meet with mathe- 
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matical difficulties when one is not willing to impose 
cyclic boundary conditions B. As far as I understand, 
cyclic boundary conditions are the mathematical 
trick to handle infinite groups (translation and space 
groups) on the same footing as finite groups and have 
led to the success of space group theory. I am not 
willing to abandon these achievements if there is 
no better theory available. 

As far as usefulness is concerned I still think that 
C 2 gives more immediate information than C 1'. 
There is no difficulty in using both descriptions jointly 
and, as a common practice, I indicate the Shubnikov 
group (except P 1) in my writings. 

Conclusion. - Representation analysis is, first of 
all, a tool for finding magnetic structures. The des- 
cription of a magnetic structure by basis vectors 
of irreducible representations is certainly useful. 
Finally the construction of an effective spin hamil- 

tonian using all the symmetry elements of the irre- 
ducible representation becomes possible. Of course, 
physicists did not wait for the theory presented here 
to build their hamiltonian in the helimagnetic case. 
But when minimizing the isotropic part of the hamil- 
tonian, say J ,  cos nl -I- J, cos 2 nl in the case of say 
the dysprosium or AuMn,-helix, they may have 
got some feeling from this lecture that their hamil- 
tonian is invariant under the wave vector group 
G, (= P 6, m c) with k = [O 0 E] and that the helical 
spin configuration may belong to a two-dimensional 
representation of G, [10]. 

Thus we reach this final conclusion. When the 
spin arrangement belongs to an irreducible represen- 
tation of order higher than one or to a complex repre- 
sentation, the effective spin hamiltonian has a symme- 
try higher than the symmetry (Shubnikov-symmetry) 
which leaves the magnetic structure invariant. 
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