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(Reçu le 20 janvier 1978, révisé le 28 février 1978, accepté le 13 mars 1978 )

Resume. 2014 On cherche les configurations de plus basse energie d’un système de pseudo-spins
S = 1/2 situés aux n0153uds d’un réseau cubique simple, soumis à l’interaction la plus generate entre
premiers voisins autorisée par la symétrie quaternaire de la liaison :

Hij = J~ Siz Sjz + J (Six Sjx + Siy Sjy) , 
pour une paire (i,j) orientée selon Oz. En l’absence de champ extérieur, la configuration la plus stable
est ferromagnétique lorsque J~ et J sont tous deux négatifs, et antiferromagnétique dans les autres
cas; dans cette dernière situation, on obtient différentes configurations antiferromagnétiques selon
les signes de J~ et J. A partir de tous ces configurations obtenues de manière classique, nous avons
calculé le spectre d’ondes de spin afin de nous assurer de la stabilité magnétique de ces systèmes et
pour évaluer l’énergie quantique de l’etat fondamental, ainsi que la déviation de spin moyenne dans
cet état. Nous avons montre notamment que lorsque J~ = 2014 J  0, la configuration antiferro-
magnétique fondamentale est un état propre de l’Hamiltonien total. On établit ainsi un nouveau
système magnétique à trois dimensions dont l’état fondamental est connu rigoureusement.

Abstract. 2014The configurations of lowest energy of a system of pseudo-spins S = 1/2 forming
a simple cubic lattice are analysed by considering the most general interaction, between nearest
neighbours, allowed by a fourfold symmetry of the bond : Hij = J~ Siz Sjz + J (Six Sjx + Siy Sjy)
for a pair (i, j) oriented along the z axis. In zero external field, the most stable configuration is either
ferromagnetic when J~ and J are both negative, or antiferromagnetic in the other cases; in the latter
situation various antiferromagnetic configurations are obtained depending on the signs of J~ and J.
For all these configurations, derived in a classical way, the spin wave spectrum is calculated in order
to check the magnetic stability of the system as well as to evaluate the quantum ground state energy
and the mean spin deviation in this ground state. It is also shown that when J~ = 2014 J  0, the

antiferromagnetic ground configuration is an eigenstate of the total Hamiltonian. Thus a new three
dimensional magnetic system, whose ground state is known exactly, is obtained.

LE JOURNAL DE PHYSIQUE TOME 39, JUILLET 1978,

Classification 

Physics Abstracts
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1. Introduction. - In a previous paper [1] ] we
studied the magnetic stability at 0 K of a simple cubic
ferromagnetic array of pseudo-spins S = 1/2 with
anisotropic exchange between nearest neighbours.

(*) Laboratoire associé au C.N.R.S.
(**) Laboratoire de Spectrométrie Physique, B.P. 53 X, Grenoble

également.

More precisely we considered a cubic crystal structure
with magnetic ions having an odd number of elec-
trons, forming a simple cubic array. This is the case
of magnetic ions in the perovskite structure for

example. If each magnetic ion is in a cubic crystal field,
thé single ion ground state is usually a r6 or r 7
Kramers doublet which is assumed to be well separated
from the other excited levels. This is a very common
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situation for rare-earth ions in a cubic field. We then
introduce a pseudo-spin S = 1/2, associated with each
ground Kramers doublet, and the magnetic moment
of the magnetic ion in its ground state is given by
M = 9PB S, where g is isotropic f 2]. It is very well
known [3, 4] that the exchange interaction between
these ions in their ground state will generally be
anisotropic. Assuming this interaction to be small

compared to the crystal field, and a C4h’l CI,, D4 or
D4h symmetry of the bond joining two neighbouring
ions, the most general form of the ion-ion exchange
interaction allowed by this symmetry, expressed in
terms of the pseudo-spin S = 1/2, will be

for a pair (i, j) of ions with their bond parallel to the
z axis. The corresponding form of Jeij for bonds

parallel to the x or y axis are obtained from (1) by
circular permutations of x, y, z.

In [1l ] we have shown that, in the limit of a zero
external field, a ferromagnetic order is allowed at 0 K
only for JI, and Jl both negative, with an easy direction
of magnetization along a [100] axis. It is clear that,
except for the special very simple case were

(isotropic Heisenberg Hamiltonian), the classical

ferromagnetic configuration with all the spins parallel
to a [100] axis is not an eigenstate of the total Hamil-
tonian. However the diagonalization of the Hamil-
tonian of the problem, expressed in terms of quantum
spin deviations from this configuration in the linearized
Holstein-Primakoff formalism, leads to a new approxi-
mate quantum ground state whose energy Ei is lower
than the classical energy Eo, and whose excitations are
the usual spin waves :

The magnetic stability of the system is assured by the
fact that, for all k, Âk is a real and positive quantity
which simply means that the total energy of the

system is not lowered by the excitation of spin waves.
A simple way for evaluating the difference between

the new approximate ground state and the original
classical state is given by the calculation of the mean
spin déviation ( ni &#x3E; from the classical state in the new
state.

The aim of this article is the determination of the

configurations of lowest energy for the same system
of pseudo-spins S = 1/2 forming a simple cubic
lattice with the most general ion-ion interaction
between nearest neighbours allowed by symmetry,
for all possible values of Jjj and J 1..

If we rewrite Jeu given by (1) as

the total exchange Hamiltonian of our system of

interacting spins is

where the summation i is taken over the N equivalent
ions of the sample, and r stands for x, y, z ; for example
i + F.z is the neighbour of the spin i located in the

positive z direction at a distance (0, 0, a), a being the
cubic lattice parameter.

There exists no rigorous theory for the prediction
of the ordered structures corresponding to a given
Hamiltonian, and approximations must be used.
In section 2 we shall follow the classical method of
Yoshimori j5]. Then for each configuration of lowest
energy associated with each possible sign and magni-
tude of JBI and J 1.., we shall calculate in section 3 the
spin wave spectra in order to check the magnetic
stability of the system. From the dispersion relations
we shall be able to evaluate, in section 4, the quantum
ground state energies and the mean spin deviations
in these states. The new phase diagram will be exten-
sively discussed in section 5.

2. Classical approach. - For a while we shall treat
the spins as classical vectors and look for the minimum
of Je given by equation (4). For this purpose we
perform the Fourier transformations on the compo-
nents Sr of Si which are real vectors :

where the three vectors k" run over N wave vectors in
the Brillouin zone corresponding to the cubic unit cell.
Then we have

where

In these notations k§ is the a component of the .kr
vector relative to the r component of the spins.

Since we must have 

we get

The stable structure is that which minimizes the

energy (6), while satisfying the N strong constraints (8)
or (9). This problem may be formally solved by using a
Lagrange-multiplier for each spin but this is an impos-
sible task. Instead of that, following Yoshimori [51 or
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Luttinger [6], we minimize the energy under the much
less stringent condition deduced from (8) :

which may be rewritten

If the solution which is obtained in this way happens to
satisfy also the strong constraints (8), we shall have our
stable magnetic configuration.
The minimization of the total energy (6) under the

weak constraint (10) reads

where is the unique Lagrange multiplier of the
problem. The 3N sr(kr) being considered in (12) as
independent variables, we get immediately from (6)
and (11)

where the Wkx, Wky, Wkz are defined by (7). Now if the
solution (13) is put into (6), we get from (11) :

and it is seen that is minimum when Â is minimum.
It is now possible to investigate the ground magnetic
configurations for all possible values of J~, and J 1. by
looking at equation (7) :

2.1 Jjj  0, J 1.  0. - The minimum value ouf À
is given by (Ji, + 2 Jl) for kx = ky = kz = 0. The
spin configuration is given by (5) :

Obviously, for this solution, the weak condition (10)
which is expressed by 8(0)2 = S2 is identical to the

strong condition (8). This is the ferromagnetic confi-
guration studied in the previous paper rt] and we get
the same condition for it : Jjj and Jl must be both
negative. All the spins are parallel and may point in an
arbitrary direction. For the sake of simplicity we shall
assume that we have a vanishingly small anisotropy
field in the [001] direction taken as z axis. We thus get
the configuration called Z, represented in figure 1.

Otherwise the classical ferromagnetic configuration is
a linear combination of Xl, Y,, Zl, where X and Y, 1
are obtained from Z, through cubic rotations. It must
be recalled at this point that the quantum approach of

FIG. 1. - The four ground configurations corresponding to the
Hamiltonian (6).

the ferromagnetic configuration leads to an anisotropic
ground state energy, but still the easy magnetization
axes are the fourfold axes of the cube [1].

2.2 JII &#x3E; 0, J1. &#x3E; 0. - The minimum value of )1.
is - (Jil + 2 yj for

the components of the wave vector q being (nla,
rc/a, nla). 

-

From (5) the spin configuration is given by

where q is defined by (16) and li cr, m; a, n; cr are the
components of Ri in a system of fourfold axes with
one spin site taken as origin.
Here again it is easy to check that the solution (17)

which satisfies the weak constraint (11) rewritten now
as

(for q given by (16), S(- q) = S(q)), also satisfies the
strong constraint (9) which is identical to (18).

In this case the classical ground configuration is such
that each spin is surrounded by six nearest neighbours
with opposite direction. Still assuming that we have a
vanishingly small anisotropy field in the z direction,
we get the configuration called Zg represented in

figure 1. Otherwise the classical antiferromagnetic
ground configuration is a linear combination of

X8, Y8, Z8.

2.3 JII &#x3E; 0, J 1.  0. - The minimum value off
is - JI, + 2 J1. and is obtained when the k’ have the
following components :

From (5) the spin configuration is given by

The weak and strong constraints (10) and (8) are still
identical and are expressed by

where the kr are defined by (19).
We get a rather complicated structure which,

however, may be easily visualized by considering that
it is a linear combination of the three configurations
X2, Y2, Z2, where Z2, for instance, corresponds to
Sxi = Syi = 0 and SF = ( - )ni SZ(kZ) _ (- I)n, S.
This configuration shows alternate (001) planes with
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spins up and down successively. This is the confi-
guration obtained with a vanishingly small anisotropy
field in the z direction and it is represented in figure 1.

2.4 Jjj  0, J 1- &#x3E; 0. - This situation is very
similar to the previous one ; the minimum value ouf À
is Jil - 2 J 1-" and this is realized when the k" have the
following components :

The spin configuration is given by

The weak and strong constraints are identical and are
still expressed by (21) with the k" given by (22).
The structure is a linear combination of the three

configurations X5, Y5, Z. where Zs.. for instance,
corresponds to Si = Sy = 0 and

This configuration is such that we have a vertical line
with parallel spins up and parallel vertical lines at

distance a with spins down. This structure is repre-
sented in figure 1.

These notations Zi , Z2, Z5, Z. are those introduced
by Luttinger and Tisza [7] for dipolar interactions.
Indeed, these configurations could have been obtained
very simply by considering only spins pointing along
the z direction and by limiting ourselves to arrays such
that two spins separated by a distance 2 a along the x,
or y, or z directions are parallel (r 2 class array). In
these conditions, starting from the spin So at the origin,
the whole simple cubic crystal structure may be gene-
rated by the three primitive translations ia, ja, ka where
i, j, k are unit vectors in the x, y, z directions. Then,
if So is a spin up, there are eight different configurations
corresponding to the orientation up or down of the
three nearest neighbours 3SI, S2, S3 located at (a, 0, 0),
(0, a, 0), (0,0, a). The four configurations Zi, Z8, ZI, Z2

FIG. 2. - Classifical ground configurations for all possible values of
JII and J,.

are four of these eight possibilities which are shown to
minimize the energy in each particular case. The

advantage of the method of Yoshimori is that it does
not exclude a priori configurations different from the
class T 2 and that all possible configurations are

investigated including for example helimagnetic solu-
tions.

The various results obtained in this section are

summarized in figure 2 which represents the classical
phase diagram. In all the cases the classical ground
state energy Eo expressed in terms of the parameter
t = JII /11- is given by

For what follows, an important remark must be
made. The configurations Zs and Z2 may be deduced
from the configurations Z1 and Z8 in a very simple way.
Let x, y, z be the fourfold axes associated with the spin
which is ai the origin, we associate to a spin located
in Ri a local system of axes Xi, y;, zi such that

We get in this way four kinds of orthogonal systems
of axes which are always direct.
Now if we consider two neighbouring interacting

ions, the two local systems of axes defined by (25) and
associated with each of the spins will have parallel axes
in the direction of the bond and opposite axes in the
two other directions perpendicular to the bond. This
procedure is equivalent to keeping J~ and changing
the sign of J 1. in the exchange Hamiltonian.
Now for Ji,  0, if we start from the Z, confi-

guration and use this procedure, i.e. of changing J 1.
into - J 1.. we get the Z5 configuration as can be easily
seen from figure 1 because the spins along a vertical
line remain parallel, and neighbouring spins in a

horizontal plane which are parallel in Z, become anti-
parallel in Z.. So Z. is simply the ferromagnetic confi-
guration Z, in which we associate the local axes (25)
with each lattice site.

Similarly for JI, &#x3E; 0, it is easy to check that Z2 is
simply deduced from Z8 by changing J1. into - J_L,
which means that the antiferromagnetic configu-
ration Z2 is simply Z. in which we take the local
axes (25).
We could also deduce Z2 from Z, by changing J"

into - JI, and keeping J,, a procedure which is equi-
valent to introducing a local system of axes defined by
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However this transformation makes use of inverse
local frames and will not be as helpful for the quantum
approach to the problem.

Obviously the transformations (25) and (26) are
simply correlated with (23) and (20).

It may be of interest to give the magnetic point group
associated to each of the above magnetic structure.
The magnetic point group of Z1 is D4h(C4h) where C4n
is the invariant unitary subgroup [8], and the magnetic
point group of Z2, Z5 and Z8 is in each case D4h x T,
where T is the time reversal operator.

It may be noted that the four structures Z3, Z4, Z6
and Z7 described by Luttinger and Tisza [7] have only a
magnetic point group D2h x T. Thus the classical

ground configuration is always associated in our

problem with a higher symmetry of the magnetic point
group.

2. 5 SPECIAL CASES : J il OR J_L = 0.-2.5.1 Ji, = 0.
- We first restrict ourselves to configurations where
the spins are along the z axis. When J 1.  0, the ground
configurations Z, and Z2 have the same. energy, and
similarly when J 1. &#x3E; 0, the ground configurations Z5
and Z8 have the same energy. More generally, in this
case, there is no correlation between the orientation
of the spins of two adjacent planes perpendicular to
the z axis. If J 1.  0 each of these planes is a ferro-
magnetic layer ; Z, and Z2 are simply two particular
cases where two adjacent planes have their spins
parallel or antiparallel respectively. Similarly, if

J 1. &#x3E; 0, each plane perpendicular to the z axis is an

antiferromagnetic layer ; Z5 and Z8 are still two

particular configurations where two neighbouring
ions on the z axis have their spins parallel or anti-
parallel.
The most general configuration is obtained by

combining linearly the above configurations where the
spins are along the z axis, with the equivalent confi-
gurations where they point along the x and y axes.

2. 5. 2 J 1. = 0. - As before, if we restrict ourselves,
as a first step, to configurations where the spins are
along the z axis, it can easily be seen that we get
configurations with vertical lines, such that there is no
correlation between the orientation of the spins of two
adjacent vertical lines. 1 f JII  0, these lines are ferro-

magnetic, and if Ji, &#x3E; 0, they are antiferromagnetic.
Zl, Z5 or Z3 and Z4 (the two latter configurations are
not represented in figure 1, but are given in ref. [7]) are
particular configurations corresponding to ferro-

magnetic vertical lines and have all the same energy
NS 2 JII. Similarly Z2, Z8, Z. and Z7 (see ref. [7]) are
particular configurations corresponding to antiferro-
magnetic vertical lines and have the same energy

- NS2 j il.
The most general configuration is rather compli-

cated in this case and is obtained by linear combination
of these configurations with the equivalent ones whose
spins point along the x or y axes. We thus get a very

high degeneracy, and the classical structure may be
very complicated. We would like to show that, for
example, we can have helicoidal solutions.
When JI,  0, À is minimum and equal to JII for the

following components of kx, ky, kz, as can be checked
from (7) :

The non-zero components of (27) are a priori
arbitrary. Let us choose the particular solution given
by :

The weak condition (11) may be written as :

and the strong condition (9) becomes

The strong condition will satisfy the weak condi-
tion if

From (28) and (30) we get

where ul and u2 are the unit vectors along the x and y
directions, and A is a normalization constant given by

From (5) we get the helimagnetic structure

3. Quantum approach. Spin wave spectrum. -

Starting from each of the configurations described
in figure 1, we shall calculate the spin wave spectrum
corresponding to a Hamiltonian including the

exchange interaction and a vanishingly small aniso-
tropy field Ha along the z direction in order to pri-
vilege this direction. This calculation will be performed
in the framework of the linearized Holstein-Primakoff
formalism.
For Zl, this calculation was made in our previous
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paper [1] and the total Hamiltonian could be written
in the form (2) where Âl, and Eô are given by

where

Here J~, and Jl are both negative, thus t &#x3E; 0. The

expression (33) is easily deduced from equation (21)
of reference [1] ] by taking 1 = m = 0, n = 1 and

Ha = gpl, H (the anisotropy field or external magnetic
field along the z direction). The summation in (34) is

taken over the Brillouin zone, i.e. 2013 -  0(, p, y - .
Typical dispersion curves corresponding to rela-
tion (33) in the limit where Ha = 0 are represented in
figure 4a. For k.11[0011, Âk/(4 S Jl 1) is independent
of t, but for any other direction of k we get diagrams
very similar to the one given here for k/[100]. It
should be noted that as for a,Heisenberg ferromagnet
(t = 1), Âk --+ 0 when k - 0 when t :0 1. As will be
discussed later this result is true only in the framework
of the linearized Holstein-Primakoff formalism.

For the three antiferromagnetic configurations l8"
Z2 and Zs we start from the total Hamiltonian

where the indices and j refer to the different sublattices
with spins up and down respectively. All the exchange
interactions are taken between nearest neighbours
exclusively ; i + er is the neighbour of the spin i belong-
ing to the same sublattice in the positive r direction
and jr is the neighbour of i belonging to the opposite
sublattice in the positive r direction. Ha is a positive
anisotropy field. Introducing the magnon creation and
annihilation operators

we get a Hamiltonian which is quadratic with res-
pect to the Bose operators and which has the follôw-
ing general form :

where Eo is the classical ground state energy given
by (24) and wk, yk, bk and ’-’k are real even functions of k
which will be given later for each specific case. The
summation over k is taken over the first Brillouin zone
of the magnetic sublattice.
The Hamiltonian (38) may be diagonalized with the

help of the following linear transformation :

where, uk, vk, w., tk, uk, v’, wk are real even functions
of k related by 

because the new creation and annihilation operators
ak ak, fik, fi must satisfy the usual commutation rules
of Bose operators :

Using expressions (39) and (40) we obtain

where

and

The expression of the coefficients introduced in (39)
which realize this diagonalization are

The spin wave spectra of the three antiferromagnetic
configurations studied in the: previous section are now
examined as particular cases of the above general
equations.
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3.1 CONFIGURATION Z8. - Each magnetic sublat-
tice is a face centred cubic lattice (each cube being of
side 2 a) and the corresponding first Brillouin zone in
the reciprocal space which is the Wigner-Seitz unit cell
of a cubic centred lattice [9] is represented in figure 3a.
In this case the spin wave Hamiltonian (38) is such that From (43) and (46) we may deduce the dispersion

relations Âk and lik which may be rewritten, by using
the notations introduced in (35), as

with

FIG. 3. - The different Brillouin zones of a magnetic sublattice
corresponding to the three antiferromagnetic structures under

investigation. In fact all these Brillouin zones being symmetrical
with respect to the three coordinate planes, only the parts in the

first octant are represented.

In the limit where H,, ---&#x3E; 0, it is easy to see from

expressions (47) that Âk and Pk remain positive for all k
if, and only if, both JI, and J 1- are positive, a result
which confirms the classical predictions.

Typical dispersion curves corresponding to rela-
tions (47) when Ha ---+- 0 are represented in figure 4b for
k,,/’ fOO 1 ] and kef 100]. In the (110) plane Â. and Ilk are

degenerate, but outside this plane the degeneracy is
removed giving two modes. This result was already
obtained [10] in the calculation of the spin wave
spectrum of KCoF3 which corresponds to this confi-
guration and to this kind of Hamiltonian.

3.2 CONFIGURATION Z2- - Each magnetic sublat-
tice is a simple tetragonal lattice, with a unit cell of
sides (a, a, 2 a). The Brillouin zone is represented in
figure 3b. The Hamiltonian (38) is such that

From (43) and (48) the dispersion relations are

given by

with

The magnetic stability is assured for Jl  0 and

Ji, &#x3E; 0, in accordance with the classical prediction.

3.3 CONFIGURATION Z5. - Each magnetic sublat-
tice is a simple tetra;;onal lattice rotated by 7r/4 around
the z axis with respect to the fourfold axes of the cubic
lattice. The first Brillouin zone is given in figure 3c.
The parameters involved in the Hamiltonian are

From (43) and (50) the dispersion relations Âk
and Ilk are given by
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with

. The magnetic stability is assured when J 1- &#x3E; 0
and J,,  0, still in accordance with the classical

prediction of section 2.
In fact, the dispersion relations (49) and (5 1) of Z2

and Z5 could have been deduced from the dispersion
relations (33) and (47) of Z1 and Z,, following remarks
in section 2.4 and the transformation (25). For

example an excitation of Z. is obtained from an
excitation of Z, by changing Jl into - Jl (or t into - t)
and by taking account of the new spin configuration
expressed by (23). More precisely as we have

k’ and ky being defined by (22), a spin wave with a wave
vector k in ZI is replaced by a spin wave of wave
vector k + k’ and k + ky in Zs. So the dispersion
relations (51) are simply obtained from (33) by
replacing

for one branch and

for the other branch.
It is thus not necessary to draw the dispersion curves

of Zs as they are not fundamentally différent from
those of Zl. Only the geometry of the Brillouin zone
has changed.
We must note that the point 0 (k = 0) in Z, for

which the excitation energy Â is zero in the frame of the
linearized Holstein -Primakoff formalism is equivalent
to the point R with k (0, nla, nla) at the surface of the
Brillouin zone (and to the equivalent points) of Z.
where Àk = 0.

Similarly we could deduce the dispersion relations
of Z2 from those of Z8 with the same transforma-
tion (53). However, it is not obvious how to deduce
a priori which of the transformations (53) is associated
with Â and J1, and this is the reason why the dispersion
relations of Z2 were obtained from the general for-
mulas (43). Still in this case the central point 0 of the
Brillouin zone of Z8 is equivalent to the points

(0, nla, 0) and (n/a, 0, 0) at the surface of the Brillouin
zone of Z2 where Âk (or pJ given by (49) vanish.
To summarize, we have shown that, in the frame-

work of our approximation, the four configurations
represented in figure 1 obtained classically, are stable
with respect to the magnetic spin wave excitations
with the same range of validity for the two para-
meters JII and J 1-. For the special cases where JII or J 1-
are zero, one of the excitation energies is zero on a
whole line or a whole plane of the Brillouin zone. This
is in agreement with the high degeneracy of the classical
ground state as shown in the previous section.

Finally we would like to point out that our results are
not in contradiction with the Goldstone theorem [1 I ]
which may be summarized in the following way [12] :
when a system has a continuous broken symmetry with
short range interactions, one branch of the elementary
excitations from a particular ground state is such that
Â(k) ---&#x3E; 0 when k E 0, i.e. there is no gap at the origin.
We have already said that for the configuration Z,, Âk,
as given by equation (33), has no gap at the origin
(see Fig. 4a). But as shown in reference [1] the quantum
ground state energy Eo defined by (2) is anisotropic for
J’I =1= J 1-’ the easy direction of magnetization being a
fourfold axis of the cube. Thus there is no continuous

group of transformations leaving the exchange Hamil-
tonian (4) invariant. We can then expect a gap in the
dispersion relations for k = 0. In fact there is a gap in
the spin wave spectrum which comes from higher order
terms in the expansion of the spin components in terms
of creation and annihilation operators. Including all
the terms of the 4th order in the Bose operators we
obtained a gap Aî at the origin for the Z, configuration
which is given by

where the summation over k’ is taken over the first
Brillouin zone. We see from (54) that there is no gap
only if Jjj = Jl (Heisenberg ferromagnet case). Fur
thermore this gap at the origin insures the stability
of Zs and consequently of Z_,.

4. Quantum ground state energy. - We have shown
in the previous section that the ground state energy E’ 0
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FIG. 4. - Magnetic dispersion curves for the configurations :
a) Zl, b) Z8, for Ha = 0 and k parallel to the fourfold axes. Broken

lines correspond to J1.k when different from Âk.

corresponding to the Hamiltonian (38) is given by
equation (44) where Eo is the classical ground state
energy and 1 E (Âlk + ,uk - 2 (Ok) is the quantum

k

mechanical zero point energy which comes from the
fact that we have assumed only an approximate ground
state. First it must be noted from the Bogolyubov
transformation (see expressions (45) of uk and u)
that Âlk  colk + Ek and 11, ’- (01, - gk, thus we have
always E’ 0  Eo.
Taking into account the discussion of section 2, we

know that 1 E’ 0 is the same for Zl and Z5 on one side
and for Z2 and Z,, on the other side. So we can restrict
ourselves to Z, and Z8.

It is easy to show that for Zg, we have from (46), in
the limit where H,, = 0,

The corresponding expression for Z1 was given
by equation (36) of reference fl].

In figure 5 we show the variation of E¿/(NJ 1.) for
S = 2 and Ha = 0, as a function of t, after numerical
integration over the respective Brillouin zones.

// 1 B B

FIG. 5. - Variation of the ground state energy as a function of t :
the curves represent El/(NJI) given by (55) and the straight lines
represent the classical energy Eo/(NJ .1.) given by (24). In agreement
with figure 2, when J.1. &#x3E; 0, Z,, and Zs are the ground configurations
for &#x3E; 0 and t  0 respectively, and when J.1.  0, Z, and Z2 are

the ground configurations for &#x3E; 0 and t  0 respectively.

Finally, for Z8 in order to get an estimation of the
discrepancy between our approximate ground state

1 f ) obtained through the Bogolyubov transfor-
mation when there are no spin wave excitations, and
the classical ground state, it is interesting to calculate
the mean spin deviation ( ni &#x3E; in one sublattice which
is given by
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where ak and ak are defined by (37). From the inverse
linear transformation (39) we get

Using the expressions of Uk and uk given by (45) we
obtain

( n; ) has been calculated by numerical integration
over the Brillouin zone for various values of the

parameter t. The results are shown in figure 6, together
with the corresponding ones obtained for Z1 fI].

FIG. 6. - Variation of the mean spin deviation ( n; ) as a function
of 1 t for the various configurations.

5. Conclusion. - The fact that Z5 may be obtained
from ZI by changing J1. into - J1. and by using the
local axes defined by (25) has a very striking conse-
quence. Since we know that for JI, = J 1. the confi-
guration Z, is an eigenstate of the exchange Hamil-
tonian (Heisenberg ferromagnet) we must have the
same property for ZS when Jjj = - J1.. Indeed this
can be very easily proved in the following way : we

start from the quantum ground state 1 f’ &#x3E; with no
spin deviation in each sublattice. This means that

where i and j refer to the spins of the two sublattices
respectively like in figure 1 d. It is easy to check that
for Jil = - J1. we have

where je is the exchange Hamiltonian of the problem
and is given by (36) with Ha = 0. Thus ( f ) is an

eigenstate ofJC. It must be pointed out that this feature
is specific to the configuration Z. for t = - 1 and
that no equivalent situation arises for the two other
antiferromagnetic configurations. To our knowledge,
apart from the Ising model, this is the only known case
of three dimensional two sublattice antiferromagnet
for which the ground state is perfectly known [13].

Another point is that for Z2 and Z8, ( ni &#x3E; is mini-
mum for 1 t 1 = 1 as can be seen in figure 6. In this
case  ni &#x3E; = 0.08, a very well known result [14] for
the Heisenberg antiferromagnet.

Finally we shall conclude that the phase diagram
obtained from the quantum energy ground state E’ 0
and represented in figure 5 is not essentially différent
from the classical phase diagram. The quantum
theory predicts the same ground configuration as the
classical theory for any values of the couple of para-
meters JI, and J1.. The discontinuity which appears
for t = 0 (Jii = 0) on Eo is not very significant because,
first of all, our dispersion relations are strictly speaking
not valid for this value except if we add an anisotropy
field, and because ( n; ) is respectively equal to 0.063
and 0.153 for Z, and Z8, so that the approximate
ground states are rather poorly defined. The same
difficulties arise for 1 t 1 = oo (J 1. = 0) and they are
essentially due to the high degeneracy of the ground
state which was underlined in the classical discussion.
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