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Résumé. 2014 Les produits directs de représentations irréductibles du groupe double O1h (groupe de
symétrie de la structure cubique simple et de celles du chlorure de césium, des perovskites et du
trioxyde de rhénium) sont réduits pour les quatre points de symétrie maximum de la zone de Brillouin.

Abstract. 2014 The octahedral symmorphic space group O1h is the symmetry group of the simple
cubic. the caesium chloride, the perovskites and the rhenium trioxide structures. The direct products
of irreducible representations of the double space group O1h are reduced for the four points of highest
symmetry of the Brillouin zone.
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1. Introduction. - The first of thé octahedral space
groups, 0’ or Pm3m, the symmorphic group based on
the simple cubic Bravais lattice, is the symmetry group
of several different crystal structures. The first of these
is the simple cubic structure in which there is one atom
per unit cell.
The second, the caesium chloride structure, is

represented by several ionic crystals, including CsCI,
CsBr, CsI, RbCI, TICI, TIBr, several compounds,
such as CaB6, Cu3N, AuCu3, numerous intermetallic
binary compounds, like LiAg, AINd, FeAl, FeTi,
compounds of magnesium : MgAg, -Sr, -La, -Ce, -Pr,
-Au, -Hg, -Tl, of beryllium : BeCo, -Cu, -Pd, of
copper : CuZn and CuPd, of zinc : ZnAg, -La, -Ce,
-Pr, -Au, of thallium : TICa, -Sb, -I, -Bi.
The third, the perovskite structure, is the structure

of numerous ternary compounds where the molecules
contain a transition metal and three oxygen, fluorine,
chlorine or bromine atoms, like : NaNb03, NaTa03,
NaW03, CaTi03, KTa03, SrTi03, BaTi03, CaZro3,
CaSn03, SrZro3, SrSno3l SrCe03, PbTi03, BaZr03,
PbZr03, LaAI03, LaK03, LaCr03, LaMn03,
LaFe03, KMnF3, KMgF3, KNiF3, KCdF3, RbCaF3,
RbMnF3, CsCaF3, CsCdCl3, CsCdBr3, CsHgCl3,
CsHgBr3, also Mn3SnN, and many others.
The group 0’ is also the space group of rhenium

trioxide, Re03, a compound similar to perovskites.
An extensive list of the crystals of symmetry Oh,
together with the ionic radii, can be found in a report
by Slater [1], who also derived the irreducible repre-
sentations for this space group [2].

The simple cubic structure is the structure of a-Po
below 10 OC [3]. Because of heating by alpha decay the
temperature of polonium in surroundings at room

temperature is about 75 °C, but there is considerable
difficulty in estimating the exact temperature of the
specimens examined by X-rays.

FIG. 1. - Unit cell for the caesium chloride structure.

The caesium chloride structure is shown in figure 1.
There is a caesium atom at the origin (0, 0, 0) and

chlorine at (1/2, 1/2, 1/2) a, where a is the lattice
constant.

The cubic perovskite structure is shown in figure 2,
for SrTi03. There is a titanium atom at the origin,
oxygens at (1/2, 0, 0), (0, 1/2, 0), (0, 0, 1/2), Sr at
(1 /2, 1 /2, 1 /2), in units of the lattice constant a.
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FIG. 2. - Unit cell for the cubic perovskite-type compound SrTi03.

Reo3 contains a single rhenium atom per unit cell.
. The rhenium atom is situated at the origin, at a site
with full cubic Oh symmetry. The oxygen atoms
occupy positions at the face centres of the cubic cell,
at sites with tetragonal D4h point symmetry, see

figure 3.

FIG. 3. - Unit cell for the Re03 structure. The Re atom is located
at the origin, the 0 atoms occupy positions at the face centres.

The Brillouin zone for the space groups Oh, Oh,
0’, Oh is simple cubic, and is shown in figure 4, with
labels of Miller and Love (M-L) [4] for the symmetry
points and lines. Characters of the irreducible repre-
sentations of the wave vector groups for the space
group 0’ were published by Bouckaert, Smolu-
chowski and Wigner [5], for the double group by
Elliott [6], later by Zak et al. [7] and Bradley and
Cracknell [8]. The irreducible representations for 0’
can be found in the tables of Kovalev [9], in the report
of Slater [2], and in the tables of Miller and Love [4],
whose labels of the irreducible representations we will
use here.

Tovstyuk and Tarnavskaya [10] presented a general
discussion, based on group theoretical arguments, of
the energy spectrum in crystals with the octahedral
symmetries 0’-010. References to the theoretical

papers on the Oh symmetries can be found in the
monograph of Bradley and Cracknell [8].

FIG. 4. - Brillouin zone for the simple cubic Bravais lattice.

2. Caesium chloride structure. - In CsCI type alkali
halides a peculiar F-centre absorption structure has
been observed at the fundamental absorption edge,
strikingly different from the other alkali halides.
The optical absorption band of F-centre in caesium
halides at low temperatures has two or three compo-
nents [11, 12]. A strong spin-orbit coupling can
account for two components. After early attempts to
explain the structure [13, 14], Moran [15] has shown
that the F-centre absorption band in caesium halides
can be explained by the instantaneous distortion of
the F-centre environment from cubic symmetry
induced by the motion of the bcc lattice. Agreement
with experimental results for CsF, CsCI, CsBr and CsI
has been achieved. The different relative strengths of
the various cubic and noncubic interactions account
for the striking contrast between a caesium halide
F-centre and those observed in the salt crystals with a
relatively light alkali metal [15].

Electronic energy bands have been labelled by the
BSWE [5, 6] labels and calculated for CsI by Ono-
dera [16] who found the direct gap at the Brillouin
zone centre.

Electronic energy bands for TICI and TIBr have
been calculated [17-19], with the result that the direct
gap is at the X point at the centre of the Brillouin zone
face. This is found to be in agreement with recent
results of the ultraviolet photoemission studies in
TICI [20].
The observed doublet structure of the first exciton

transition in simple cubic TICI [21] is explained as
arising from Coulombic and exchange interactions,
which lead to intra- and intervalley scattering between
the excitons formed of electron-hole pairs at non-

equivalent X-points of the Brillouin zone [22-24].
The band structure of caesium halides and rubidium
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chloride has been investigated theoretically and

experimentally [25-34].

3. Review of expérimental work on perovskites. -
Numerous compounds with the perovskite type
structure are of theoretical interest and significant
practical importance because they possess ferro-

electric, semiconducting or superconducting pro-

perties.
KNiF3 perovskite crystals have been investigated

by optical absorption studies and by nuclear magnetic
resonance [35-37].

Recently structural phase transitions have been
found to occur in perovskite compounds with phonon
soft mode instabilities appearing at various symmetry
points of the Brillouin zone. The phase transitions
have been investigated in KMnF3, RbCaF3, SrTi03,
BaTi03, PbTi03, KTa03, CaPbCl3.

In particular, strontium titanate, SrTi03, and
several other perovskite type compounds have been
the subject of extensive studies mainly because of their
ferroelectric properties with an expected Curie tem-
perature in the range of helium temperatures [38].

It is believed that the high value of the dielectric
constant of SrTi03 is mainly due to the optical
phonon mode at the zone centre.
Unoki and Sakudo [39] with the help of their

electron spin resonance measurements of Fe 31 ions
in SrTi03 have demonstrated a phase transition
at 110 K from the cubic perovskite symmetry 01 to
the tetragonal Dl’ symmetry. This transition is not

accompanied by any anomalies in the dielectric
constant.

The X-ray study by Lytle [40] revealed a small

tetragonal distortion below 110 K but the unit cell
volume remains unchanged through the transition.
The small tetragonal distortion manifests itself in
the ESR experiments [41]. The most remarkable

change at the transition was revealed however, by
measurements of the elastic constants [42]. The

interesting characteristic feature of this transition lies
in its extremely small, below 1 promille, lattices
distortion, indicative of a second order phase change,
combined with other well defined anomalies (see
Fig. 5).

Detailed inelastic neutron scattering experiments
have shown that the 110 K transition is caused by a
soft mode instability at the (111) zone boundary.
A systematic investigation of the phonon spectrum
was concentrated on the phonon branches near the
zone centre as well the zone boundaries of high
symmetry directions. The neutron scattering intensity
distribution in the low temperature phase was found
to be essentially in agreement with the Raman scat-
tering measurements [43] and the crystal structure

deduced from ESR experiments [39, 41].
Neutron inelastic scattering measurements in perov-

skite crystals such as SrTi03, KMnF3, LaAI03, etc.

FIG. 5. - Unit cell for the tetragonal structure of SrTi03 with the
D"’ space group. The cell contains four molecular units and its
dimensions are a J2, a J2, 2 c, where a and c correspond to the
tetragonal one molecular unit. The ratio cla = 1.000 62 at 4.2 K.

have been made by Cowley [44], Riste et al. [45, 46],
Shirane et al. [38, 47-49], Tôpler et al. [50], and
others [51, 52]. The central peak has been observ-
ed [46, 50, 52]. The antiferrodistortive phase transition
in SrTi03 at 105 K has been interpreted as due to the
softening of the optical transverse F2. phonon at the
Brillouin zone boundary R point [46, 50].

The linear thermal expansion coefficients for mono-
domain crystals of SrTi03, measured near the dis-
placive phase transition at 106.8 K have been found to
be different in the two perpendicular directions [53].
Neutron scattering studies of soft modes in the

critical temperature region in cubic BaTi03 have been
performed [54, 55].

Light scattering studies on the soft phonon phase
transitions in SrTi03, BaTi03, etc. have been
made [56, 57].

Fleury and Lazay [58, 59] measured the tempe-
rature dependence of the Brillouin scattering spectrum
of BaTi03 in the room temperature phase.

Accumulating experimental studies of the soft
modes in perovskites, particularly by inelastic photon
and neutron scattering, or the soft mode spectroscopy,
are reviewed inter alia by Scott [60]. 1

In KMnF3 [47-49] the zone boundary phonon
dispersion branch extending from the R point to

the M point is extremely soft, and the R phonon
instability at 186 K [48] is followed by an M3 phonon
instability at 91.5 K [61].
KMnF3 undergoes structural phase transitions :

at 186 K from the 01 (Pm3m) to Dl’ (14/mcm) [48, 49]
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and at 91.5 K from Dl’ to Dl (P4/mbm) sym-
metry [61, 62].
The related compounds K2MnF4 and Rb2MnC’4

have perovskite type layered structure with the

Dl’ (14/mmm) symmorphic group symmetry [63, 64],
(see Fig. 6).

FIG. 6. - Unit cell for the cubic perovskite structure (space
group Oh) of KMnF3 with the lattice constant a = 4.19 Á, and for
the perovskite-type layer tetragonal structure (D") of K2MnF4

with a = 4.22 Á and c = 13.38 À.

The Raman-active modes of symmetry F’(Alg)
and F’(Eg) 5 in tetragonal K2MnF4 and modes of
symmetry X’ 1 and X’ 5 in cubic KMnF3, respectively,
have been considered [64].
EPR experiments on RbCaF3 [65] have revealed the

occurrence of structural phase transitions at low

temperatures, and Raman scattering data [66] have
shown that the transition at 200 K is similar to the

cubic-tetragonal transition occurring in SrTi03 and
KMnF3 [65-68].
The observations in RbCaF3 show an excellent

correspondence with those in KMnF3 and there are
strong similarities with the SrTi03 data [65, 66, 69].
The 01-D" transition in SrTi03 and in KMnF3
results from an R point instability of an F2u sym-
metry phonon whose eigenvector consists of a

staggered rotation of anion octahedra about (001)
axis, and gives rise to Raman active phonons
Aig + 2 Big + 2 B2, + 3 Eg. For a (100) cut crystal
the diagonal spectrum contains the Alg and Big modes
and the nondiagonal spectrum contains B2g and Eg
modes. In RbCaF3 all these modes except for one
in the diagonal spectrum have been identified [66].
The low frequency temperature-dependent modes
can be assigned to the Aig and Eg components of
an F2u zone boundary soft mode.

For RbCaF3 it is possible, using group theoretical
considerations, and the available experimental data,
to make a tentative assignment of the space group,
D", below the 198 K transition temperature. The
Raman data and the tetragonal splitting in the EPR
spectrum below 200 K are consistent with an 0’-D"’
phase transition driven by an R-point mode [66]. 

In contrast to the cubic-to-tetragonal phase transi-
tions which seem to have only a small effect on the
thermal conductivities, it has been found that the low
temperature structural phase transitions produce
a strong reduction in the thermal conductivities
of KMnF3 and RbCaF3 [69]. The structural phase
transition in LaAI03 around 489°C [51, 52] belongs
to the case when the condensing phonon mode is at
the corner R = (1, 1, 1) nla of the Brillouin zone in
the cubic phase. The triply degenerate phonon mode
has the R2-1 irreducible representation, i.e. F25 at the
zone centre, and its components can be thought of as
alternate librations of the A106 octahedra around the
cubic axis. The low temperature phase is rhombo-
hedral D6 3d(R3c) and the distortion from cubic

symmetry corresponds to a condensation of a linear
combination of all three cubic components of the R2 s
mode. The tetragonal distortion in the SrTi03
and KMnF3 results from the condensation of only
one of the cubic components of the R2-1 mode [52].
Uwe and Sakudo [70-73] studied by dielectric

measurements and Raman-scattering experiment the
uniaxial stress dependence of the ferroelectric and
structural phonon mode transition in SrTi03 and
KTa03. Anticrossing between the ferroelectric and
the structural soft modes was observed for an oblique
wave-vector phonon. An anomalous increase of the
damping of the totally symmetric ferroelectric mode
near the critical stress for the transition has been
found. Stress induced ferroelectricity was also inves-
tigated in KTa03 [73-75].

Analysing the ferroelectric modes in SrTi03 and
KTa03 Migoni et al. [76] argued that the strong
Raman scattering and the behaviour of the ferro-
electric soft mode in oxidic perovskites of the type
AB03 originate from the unusual anisotropic pola-
rizability of oxygen, enhanced, especially dynami-
cally, by the hybridization of the oxygen p states

with the d states of the transition metal ion B in
the perovskite..
The lattice normal modes in the cubic perovskite

BaTi03, in the ferroelectric system Pbl_xBax’l,lO3
and in the ferroelectric tetragonal and perovskite
PbTi03 were measured by the Raman spectroscopy
technique below and above the ferroelectric transition
temperature Tc [77, 78]. BaTi03 and, in particular,
PbTi03 is a good example of a ferroelectric below Tc
in terms of the lattice modes. The modes obey the
appropriate Raman selection rules ; the modes are
overdamped in BaTi03 and are underdamped up
to Tc in PbTi03; the modes in PbTi03 disappear
abruptly at 7c when the crystal becomes centro-
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symmetric, as they should according to selection
rules [77, 78].

Optical excitation by laser radiation of ferro-
electric BaTi03 has been investigated by Chanus-
sot [79, 80] : the electron-phonon coupling can give
rise to a ferroelectric phase transition via the Jahn-
Teller effect.

The densities of valence states in SrTi03 and
BaTi03 have been investigated by high resolution
X-ray photoelectron studies [81].

Cluster surface states of SrTi03 and BaTi03 have
been calculated [82].

Isotropic RbMnF3 is a nearly ideal Heisenberg
antiferromagnet. Its thermal conductivity has been
measured [83], a phase diagram has been proposed,
tests of scaling and some renormalization group
calculations have been done [84].

Precise magnetic measurements of the paramagnetic
susceptibility in intense static magnetic fields, and the
neutron diffraction and Môssbauer effect studies have
been performed in the perovskite type crystal
Mn3SnN [85]. Three first-order transitions and one
second-order transition occur and four different crys-
tallographic phases, magnetically ordered, have been
observed and found to depend critically on the exis-
tence of singularities in the electronic density of
states [86].

Superconductivity has been observed in several

perovskite compounds. In particular the Zr-doped
SrTi03 is a superconducting semiconductor, with a
large penetration depth because of the small carrier
concentration. A theoretical model involving screened
electron-electron interactions via intervalley optical
phonons was applied to fit the transition temperature
data [87]. Superconductivity has been observed in
a number of degenerate semiconductors such as

SrTi03 -,, [88], Sr 1- yBay Ti03 -x [89], etc. 1

Appel [90] considered the mechanism of the soft
mode superconductivity in SrTi03 -,, to calculate the
transition temperature as a function of the electron
concentration. 

4. Theoretical work on perovskites. - A theoretical
examination of the electronic energy bands of cubic
strontium titanate has been performed by a semi-
empirical L.C.A.O. (linear combination of atomic
orbitals) method [91]. In cubic strontium and barium
titanates there are six lowest conduction band ellip-
soids lying along the (100) axes with the minima
located at or near the Brillouin zone boundaries.
Characteristic extrema at the zone centre correspond
to the forbidden energy gap r 2S,-r 15’ Apart from the
minimum of the conduction band at the zone centre
there exist well shaped valleys at the symmetry
points X. Energy positions of the F2., and the X3
valley are very close and in the doped SrTi03 all these
valleys are populated by electrons. Thus intervalley
scattering is possible. Symmetries of the electron and

phonon states in the scattering processes are restricted
by the selection rules.

Electronic band structures have been calculated by
the nonrelativistic augmented-plane-wave method and
the tight-binding interpolation scheme for the similar
to perovskite Re03 compound [92, 93] and for the
cubic perovskite-type compounds KNiF3, SrTi03 [94],
KMo03, and KTa03 [95, 96] and BaTi03 [97].
The ferroelectric phase transitions have been exten-

sively studied from the viewpoint of lattice dynamics
since the initial theoretical papers by Anderson [98]
and Cochran [99]. The soft phonon mode theory is a
particularly suitable explanation of ferroelectricity in
displacive-type ferroelectrics such as BaTi03. In

BaTi03, KTa03, KNb03 the soft mode is at the
zone centre, in SrTi03, KMnF3 and LaA’03 at

the R point [46, 51, 52].
Phase transitions have been theoretically investi-

gated for KTa03 and SrTi03 [73, 44, 95]. Aleksan-
drov et al. [100] have applied the Landau theory of
second order phase transitions to calculate possible
symmetries resulting from the Oh symmetry and have
found as one possible symmetry, after the phase transi-
tion, the tetragonal nonsymmorphic space group Dl"
The irreducible small representations for the four

space groups D’7 to D" based on the bodycentred
tetragonal lattice can be read off from the repre-
sentations of the point groups of the wave vector
groups given in tables T 2,10,16, 30, 68, 107, 1 10, 1 1 8 ,
l19, 126, 127, 146, 147, 166, 168, 175, 184 and P with
the same indices, of Kovalev [9], and small represen-
tations for the symmetry points, lines and planes can be
found in the paper by Sek [101] where, however, in
table 3 the numbering of thé tables has to be corrected
by adding 3 to the printed table numbers.

5. Sélection rules. - Selection rules are useful in
the investigation of the electron band symmetries,
optical transitions, infrared lattice absorption, electron
scattering and tunnelling, neutron scattering, magnon
side bands, Brillouin scattering, Raman scattering,
etc. [102]. Analysis of scattering processes involving
photons, phonons or magnons in crystalline solids
generally requires the appropriate selection rules to be
worked out. Recently attention has been directed to
the calculations of the Clebsch-Gordan coefficients of
the space group representations [103-110], Birman
et al. [107-110] have shown that the elements of the
first order, one excitation, scattering tensor are pre-
cisely certain Clebsch-Gordan coefficients or pres-
cribed linear combinations ; the elements of the second
order, two-excitation process are a particular sum of
products of Clebsch-Gordan coefficients.
The factorisation of a matrix element or a scattering

tensor element into a Clebsch-Gordan coefficient and
a reduced matrix element yields a maximum realization
of the simplifications from to the symmetry of a
problem.
The Clebsch-Gordan coefficients for the irreducible
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representations of the crystal space groups or the
crystal point groups are useful in analysis of the
Brillouin scattering tensor, scattering tensors for

morphic effects, two photon absorption matrix ele-
ments, scattering tensors for multipole-dipole reso-
nance Raman scattering, higher order moment expan-
sions in infrared absorption, and diagonalization of
the dynamical matrix of crystal vibrations. For a cal-
culation of the Clebsch-Gordan coefficients or scat-

tering tensors an elaboration of the selection rules is a
first necessary step. In fact, a reduction of products
of the irreducible representations of the revelant

crystal group gives the frequency of occurence of each
irreducible representation in a product and thus a
survey of the matrix elements which vanish by sym-
metry alone and of those remaining for which the
calculation of the Clebsch-Gordan coefficients is

required. 
Birman et al. [110] have shown that in the effective

Hamiltonian matrix each element is a prescribed sum
of symmetry adapted components of the Hamiltonian
operator times a Clebsch-Gordan coefficient.

6. Decomposition formula. - The transition ampli-
tude of an electron from the state ’1’:: to the state ll’t
due to an interaction described by the operator P; is
proportional to the integral

The integral vanishes unless the representation D:
is contained in the product D) x D:;. Thus the
selection rules are obtained from decomposition of the
Kronecker product of two irreducible representations
into irreducible ones

The irreducible representations are labelled by the
wave vectors k, m, h and the indices p, q, r, respectively.
The frequency of occurrence C",’ of the represen-
tation D’ in D’ x Dq can be expressed in terms of
the characters t/J of the small representations dp
which induce the representations Dk of the space
groups G [111] :

Here the sum indexed by a is taken over the revelant
leading wave vector selection rules L.W.V.S.R.,
see Lewis [111], i.e. over the elements determinéd by
the expansion of the point group G into double
cosets [8, 11], G = 1 G" rxGk, where G" is the point

a

group of the wave vector group G" of h and Gk is the
point group of Gk. The index P(a) means that fl is
dependent on a : : it is an arbitrary element of G
satisfying

where = means equality modulo a vector of the

reciprocal lattice of the group G. The symbol l’ is to
remind that, if for given k, m, h and a no element fl of G
satisfying eq. (4) exists, then we have zero instead of the
sum over S. La is the point group of La = Gak A Gh,
the intersection of the group Gak of the vector ak and
the group Gh of h. In the symmorphic space group 0’
the t/Jp and t/J’q are given by the relations of the type

For the small representation dp of the unbarred
primitive translation { E ( t } we assume the conven-
tion

i.e. we choose the + sign in the exponent on the right-
hand side. î is the unit matrix of dimension of the
representation d;. In the above considerations G can
be a single or a double space group. Correspondingly
all the groups considered, except G, are single groups
or double groups, respectively. If G is a double space
group, we use the same symbols for the point opera-
tions of a double group as for corresponding opera-
tions of the single group. For given k, m from the
representation domain 0 all the vectors h for which
the coefficient (3) may be different from zero can be
found as follows : we consider the vectors ki from the
star of k and mj from the star of m. We construct the
vectors ki + mj with one of the vectors ki, m. fixed
and the second varied. In this way, on account of

eq. (4), we obtain representants h = ki + mj of the
star of the vector h for which the coefficient (3) may be
nonvanishing [112-115].

Recently Cracknell and Davies have written two
Algol programs, one to determine the wave vector
selection rules [116], the other for determining the
reductions of the Kronecker products of the irre-
ducible representations of crystallographic space

groups [117]. 
’

7. Description of tables. - We give in table 1 the
coordinates of the symmetry points of the repre-
sentation domain in the cubic Brillouin zone of the

01-perovskite, Oh, 0’-beta-wolfram, and 0’-cuprite
structure.

In table II we list the leading wave vector selection
rules, L.W.V.S.R. [111], ak + Pm = h, and inter-
sections
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TABLE 1

The symmetry points

of the wave vector groups Gak, GO’ and Oh, see

eq. (4). For instance, the wave vector selection rule
kR + 5 km = kx means that kR + hs km = kx modulo
a vector of the reciprocal lattice, where hs is the

operation numbered 5 in the table 1 of M-L [4], p. 123.
The N = Glx is the intersection of the three wave
vector groups of the vectors kR, 5 km and kx, i.e.
GkP- A Gs’‘M n GkX. For the L.W.V.S.R.

1 n 1- 1-

the intersection N consists of space operations 1, 2, 3, 4,
25, 26, 27, 28 of M-L. Notice that these wave vector
selection rules apply equally to all crystal symmetries
with space groups Oh, Oh, 0’ and Oh.

In tables III, IV and V we give the decompositions
of the Kronecker products of the irreducible repre-
sentations of the space group 0’ into irreducible

representations, according to eq. (2) where k and m
are vectors to the four high symmetry points of the
Brillouin zone.

In table III it is understood that the selection rules
for r x R are obtained from those of r x r by
substituting in the left-hand side for the second
factor Fi the corresponding factor Ri and in the
right-hand side for rk the corresponding Rk. As can be
seen from the character tables, the equality

Fi x Ri = Fi x Ri
holds, thus for the decomposition of r x R there is no
need to write out the empty part of table III. Similarly
Mi x Xi = Mi x Xi in table V. The decompositions
of R x R are obtained from those of r x r by
substituting in the left-hand side r --&#x3E; R. Similar
substitutions will do for the selection rules in table IV
and table V. We present also the decompositions of the
Kronecker squares D’ x D’ of the irreducible repre-
sentations of the group into symmetrized and anti-
symmetrized squares, [D;]i and [D;]:., respecti-
vely [111]. We do this by writing in the tables the
labels of irreducible representations D’ appearing in
the decomposition of [D;]i in square brackets. In the
tables the irreducible representations of the group 0’
are labelled by the Miller and Love [4] labels of the
corresponding small representations, numbers in

position of power exponents mean frequency of

occurence Ci of the given irreducible representation.
In table VI we summarize the notations of the single
valued and the double valued representations accord-
ing to BSWE [5, 6], Kovalev [9] and M-L [4] for the
points T and R and in table VII for the single valued
representations for the points M and X.

8. Applications. - One of the most important
applications of the selection rules concem the photon-

TABLE III
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TABLE IV

TABLE V

TABLE VI TABLE VII

Labels of the irreducible representations Labels of the irreducible representations
for the points rand R in 0’ for the points M and X in 0’
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and phonon-involving electronic transitions. The
matrix element for the interaction between a conduc-
tion electron in state k and a phonon with wave
vector q and branch index j is given in accordance
with eq. (1) by

The matrix element g°(qj) is different from zero if
the inner Kronecker product of the representation
of ’pk 1 q and Pk contains the representation according
to which Hpert transforms [90]. Therefore the selection
rules determine matrix elements which vanish by
symmetry alone.

In the special case q = 0, the matrix element is

finite, if the symmetric Kronecker product between
the representations of IF, contains the q = 0 phonon
symmetry. The symmetry of the q = 0 displacement
field is higher than that for any finite q. Consequently,
if the matrix element is finite for q = 0, it will also be
finite near q = 0.

It is to be stressed that for high symmetry like Oh
there appear many selections rules which are parti-
cularly simple in the sense that the decomposition of
direct product of irreducible representations consists
of only one irreducible representation. Examples can
be seen in tables III-V. Referring to the intervalley

scattering between r 25’ and X3 conduction band
minima, in SrTi03, mentioned in section 4, we read
from table IV and table VI, VII the decomposition
F25’ x X3 = Xi + X5 in the notation of BSW [5].
Therefore the phonons in the intervalley scattering
between the F2., and X3 minima can be of the sym-
metry X1 and X5.

Appendix. - Dr. A. P. Cracknell has kindly pointed
out to us, from the output of his programs [116, 117],
the misprints in our published selection rules for the
beta-wolfram structure [114]. The correct entries in
table III of [ 114] read

In table "

We also thank Drs. A. P. Cracknell and B. L. Davies
for their output of the computer program for reduc-
tion of the Kronecker products of the irreducible

representations for the Oh space group which allowed
us a visual check of our tables.
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