
HAL Id: hal-00008557
https://hal.science/hal-00008557v2

Preprint submitted on 25 Oct 2005 (v2), last revised 13 Nov 2007 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A linear algorithm for coloring vertices of a graph or
finding a Meyniel obstruction

Kathie Cameron, Jack Edmonds, Benjamin Lévêque, Frédéric Maffray

To cite this version:
Kathie Cameron, Jack Edmonds, Benjamin Lévêque, Frédéric Maffray. A linear algorithm for coloring
vertices of a graph or finding a Meyniel obstruction. 2005. �hal-00008557v2�

https://hal.science/hal-00008557v2
https://hal.archives-ouvertes.fr

cc
sd

-0
00

08
55

7,
 v

er
si

on
 2

 -
 2

5
O

ct
 2

00
5

A linear algorithm for coloring vertices of a

graph or finding a Meyniel obstruction 1

Kathie Cameron

Wilfrid Laurier University, Waterloo, Ontario, Canada N2L 3C5

Jack Edmonds

EP Institute, Kitchener, Ontario, Canada, N2M 2M6

Benjamin Lévêque

Laboratoire Leibniz-IMAG, 46 avenue Félix Viallet, 38031 Grenoble Cedex, France

Frédéric Maffray 2

Laboratoire Leibniz-IMAG, 46 avenue Félix Viallet, 38031 Grenoble Cedex, France

Abstract

A Meyniel obstruction is an odd cycle with at least five vertices and at most one
chord. A graph is Meyniel if and only if it has no Meyniel obstruction. Here we give
a linear-time algorithm that, for any graph, finds either a clique and coloring of the
same size or a Meyniel obstruction. We also give a polytime algorithm that, for any
graph, finds either an easily recognizable strong stable set or a Meyniel obstruction.

Key words: Perfect graphs, Meyniel graphs, Coloring, Robust algorithm, Strong
stable set, Existentially polytime theorem

Email addresses: kcameron@wlu.ca (Kathie Cameron),
jackedmonds@rogers.com (Jack Edmonds), benjamin.leveque@imag.fr
(Benjamin Lévêque), frederic.maffray@imag.fr (Frédéric Maffray).
1 This work was partially supported by the Algorithmic Discrete Optimization
Network (ADONET), the Natural Sciences and Engineering Research Council of
Canada (NSERC), and the Research Grants Program of Wilfrid Laurier University
2 C.N.R.S.

Preprint submitted to Elsevier Science 25 October 2005

1 Introduction

This work is motivated by the Perfect Graph Robust Algorithm Problem pro-
posed by the first and second authors. In [2], they advocated seeking a poly-
time algorithm which, for any graph G, finds either a clique and a coloring of
the same size or an easily recognizable combinatorial obstruction to G being
perfect. A simple obstruction to perfectness is the existence of an odd hole or
odd antihole.

Here we present a linear-time algorithm that gives a solution to a similar
problem on the class of Meyniel graphs. A graph is Meyniel [13] if every odd
cycle of length at least five has at least two chords. We call an odd cycle
of length at least five with at most one chord a Meyniel obstruction. Thus
a graph is Meyniel if and only if it does not contain a Meyniel obstruction.
Meyniel [13] and Markosyan and Karapetyan [12] proved that Meyniel graphs
are perfect. This theorem can be stated in the following way:

For any graph G, either G contains a Meyniel obstruction, or G contains a
clique and coloring of the same size (or both).

We give a linear-time algorithm which finds, in any graph, an instance of what
the Meyniel-Markosyan-Karapetyan theorem says exists. By linear time, we
mean linear in the number of vertices plus the number of edges of the input
graph. This is an improvement in the complexity of the algorithm of the first
and second authors [3,4], which finds, in any graph, a clique and coloring of
the same size, or a Meyniel obstrution. It is also an enhancement of the linear-
time algorithm of the third and fourth authors [10], which finds, for any graph,
either a clique and coloring of the same size, or declares the graph not to be
Meyniel, but in the latter case, does not find a Meyniel obstruction.

A stable set in a graph G is a set of vertices, no two of which are joined by
an edge of G. A strong stable set in G is a stable set that contains a vertex
of every maximal clique of G. By maximal, we mean maximal with respect
to inclusion. Note that if one can find a strong stable set in every induced
subgraph of a graph G, one can easily find an optimal coloring of G : if S1 is
a strong stable set of G, S2 is a strong stable set of G\S1, . . ., Sl is a strong
stable set of G\(S1 ∪ . . . ∪ Sl−1), and Sl is the last non-empty such set, then
S1, . . . , Sl is an optimal coloring of G.

Ravindra [14] presented the theorem that

For any graph G, either G contains a Meyniel obstruction, or G contains a
strong stable set (or both).

Ravindra’s proof is an informal description of an algorithm which finds, in any

2

graph, an instance of what the theorem says exists.

Hoàng [9] strengthened this to the following:

For any graph G and vertex v of G, either G contains a Meyniel obstruction,
or G contains a strong stable set containing v (or both).

A disadvantage of the Ravindra-Hoàng theorem is that it is not an existentially
polytime theorem in the sense of the first two authors [2]. A theorem is called
existentially polytime (EP) if it is a disjunction of NP predicates which is
always true. The predicate “G contains a strong stable set” may not be an
NP-predicate because the definition of strong stable set is not a polytime
certificate.

The Ravindra-Hoàng theorem is strengthened by the first two authors in [3,4]
to:

For any graph G and vertex v of G, either G contains a Meyniel obstruction,
or G contains a nice stable set containing v (or both),

where nice stable sets are a particular type of strong stable set which have
the following polytime-certifiable meaning. A nice stable set in a graph G is
a maximal stable set linearly ordered so that there is no induced P4 between
any vertex x of S and the vertex which arises from the contraction in G of all
the vertices of S that precede x. (As usual, P4 is a path on four vertices.) The
proof of the theorem in [3,4] is a polytime algorithm which for any graph and
any vertex in that graph, finds an instance of what the theorem says exists.
Combining ideas of [3,4,10,11], we give in Section 4 an O(n3) algorithm that
finds, for any graph G and vertex v of G, either a Meyniel obstruction in G
or a nice stable set of G containing v, where n is the number of vertices of the
input graph.

2 The coloring algorithm

We recall the algorithm MCColor of [10] which is a linear-time algorithm
for optimally coloring the vertices of a Meyniel graph, thereby improving the
complexity of previous coloring algorithms due to Roussel and Rusu O(n2)
[16], Hertz O(nm) [8] and Hoàng O(n8) [9].

MCColor is a rather simple version of the greedy coloring algorithm. Colors
are viewed as integers 1, 2, . . . At each step, the algorithm considers, for every
uncolored vertex x, the number of colors that appear in the neighbourhood of
x, selects an uncolored vertex for which this number is maximum, assigns to

3

this vertex the smallest color not present in its neighbourhood, and iterates
this procedure until every vertex is colored. More formally:

Algorithm MCColor

Input: A graph G with n vertices.
Output: A coloring of the vertices of G.
Initialization: For every vertex x of G do label(x) := ∅;
General step: For i = 1, . . . , n do:

1. Choose an uncolored vertex x that maximizes |label(x)|;
2. Color x with the smallest color in {1, 2, . . . , n} \ label(x);
3. For every uncolored neighbor y of x, add color(x) to label(y).

Given a coloring of a graph, there is a greedy algorithm that chooses one
vertex of each color to try to find a clique of the same size. Algorithm Clique

below is a linear-time implementation. In [10] it was shown that, starting
with a Meyniel graph G and a coloring of its vertices obtained by Algorithm
MCColor, Algorithm Clique produces a clique of maximum size.

Algorithm Clique

Input: A graph G and a coloring of its vertices using l colors.
Output: A set Q that consists of l vertices of G.
Initialization: Set Q := ∅, c := l;
General step: While c 6= 0 do:

Select a vertex x of color c that maximizes N(x)∩Q, do Q := Q∪{x}, and
do c := c − 1.

3 Finding an obstruction

Let G be a general (not necessarily Meyniel) graph on which Algorithm MC-

Color is applied. Let l be the total number of colors used by the algorithm.
For each color c ∈ {1, . . . , l}, let kc be the number of vertices colored c. Then
every vertex of G can be renamed xi

c, where c ∈ {1, . . . , l} is the color as-
signed to the vertex by the algorithm and i ∈ {1, . . . , kc} is the integer such
that xi

c is the i-th vertex colored c. Thus V (G) = {x1
1, x

2
1, . . . , x

k1

1 , x1
2, . . . , x

k2

2 ,
. . . , x1

l , . . . , x
kl

l }.

Then we apply Algorithm Clique. At each step of Algorithm Clique, we
check if the selected vertex x of color c has q(x) = l − c. If this equality is
satisfied at each step then Q is a clique of cardinality l, and so we have a clique
and a coloring of the same size, which proves the optimality of both. If not,
then stop Algorithm Clique the first time the equality is not satisfied, and
record the current color c and the current clique Q. We know that no vertex
colored c is adjacent to all of Q. Our task is now to find a Meyniel obstruction

4

in G.

Let G∗ = G\{x1
1, . . . , x

k1

1 , . . . , x1
c−1, . . . , x

kc−1

c−1 }, and for 1 ≤ i ≤ kc, let G∗

i be
the graph obtained from G∗ by removing x1

c , . . . , x
i
c and adding a new vertex

wi
c with edges to N(x1

c) ∪ · · · ∪ N(xi
c) (in other words, vertices x1

c , . . . , x
i
c are

contracted to become wi
c). A path is called odd (even) if it has an odd (even)

number of edges. The algorithm works roughly as follows. Starting from the
fact that no vertex colored c is adjacent to all of Q, it finds an odd path R
in G∗

i with certain properties (for a value of i which we specify later), and a
vertex z adjacent to both ends of R. If it happens that R has only vertices of
G∗, and it has at most one chord, and z is not adjacent to any interior vertex
of R, then R∪{z} induces an obstruction. However, these conditions may fail
to hold, so we have two procedures to handle the difficulties. The first part of
the algorithm consists in using the procedure Loop, called iteratively, which
eventually finds a path R and a vertex z that is adjacent to both ends of R,
where z and the vertices of R are vertices of G∗ (and thus of G). Vertex z may
be adjacent to interior vertices of R. Path R has at most one chord, and if
the chord exists, it is a short chord. In the second part of the algorithm, Loop
calls the procedure FindObstruction on R and z to find a Meyniel obstruction.
Variants 1, 2, 3, 4 of FindObstruction correspond to the possible positions of
the chord of R. Now we describe these procedures formally.

Initialization: For each vertex v of color > c of G∗, let n(v) be the smallest
integer h such that xh

c is adjacent to v. The integer n(v) exists because v
has received a color strictly greater than c. (Clearly the function n can be
computed in linear time.) Let i = max{n(v) | v ∈ Q}. We have i > 1 because
x1

c is not adjacent to all of Q. Let v1 be a vertex of Q not adjacent to xi
c.

Vertex v1 exists because xi
c is not adjacent to all of Q. Note that v1 is adjacent

to wi−1
c in G∗

i−1. Let v2 be a vertex of Q such that n(v2) = i. Vertex v2 is
adjacent to xi

c but not to wi−1
c in G∗

i−1. Then R = wi−1
c -v1-v2-x

i
c is an odd

chordless path in G∗

i−1. Let P = v1-v2-x
i
c. Call Loop(P, i, ∅).

Loop(P, i, e)

[where i > 1, P = v1-· · ·-vp with vp = xi
c and wi−1

c -P is an odd path in G∗

i−1

with at most one chord, and such a chord (if any) is vt−1vt+1 with 1 < t < p−1,
e is the set that consists of the chord of P , if any]

Claim. There exists a vertex z, colored before xi
c with a color > c, that is

adjacent to xi
c and satifies the following property. If v1v3 is the chord of P , z

is not adjacent to at least one of v1 and v3. If v1v3 is not a chord of P , z is
not adjacent to at least one of v1 and v2.

Proof. Let R = wi−1
c -P . We know that every vertex of G∗

i−1 will have a color

5

from {c, c+1, . . . , l} when the algorithm terminates. So, if c ≥ 2, every vertex
v of G∗

i−1 (in particular every vertex of R) satisfies label(v) ⊇ {1, 2, . . . , c−1}.

Let us consider the situation when the algorithm selects xi
c to be colored. Let

U be the set of vertices of G that are already colored at that moment. For
any X ⊆ V , let color(X) be the set of colors of the vertices of X ∩ U . So
for every vertex v ∈ V \ U we have label(v) = color(N(v)). Put T = {v ∈
N(xi

c) ∩ U | color(v) ≥ c + 1}. We have |label(xi
c)| = (c − 1) + |color(T)|.

Every vertex of T is adjacent to at least one vertex colored c in G and thus
is adjacent to wi−1

c in G∗

i−1. Specify one vertex vr of R as follows: put r = 3
if v1v3 is a chord of R; else put r = 2. Note that vr is not adjacent to v0 and
vr 6= xi

c according to the possible position of the chord of R.

Suppose the claim is false: every vertex of T is adjacent to v1 and vr.

Suppose v1 is not colored yet (i.e., v1 /∈ U). Since label(v1) ⊇ {1, 2, . . . , c− 1}
if c ≥ 2, and N(v1) ⊇ T ∪ {v0} and v0 has color c, we have |label(v1)| =
|color(N(v1))| ≥ c + |color(T)| > |label(xi

c)|, which contradicts the fact that
the algorithm is about to color xi

c. So v1 is already colored; moreover color(v1)
/∈ {1, . . . , c} ∪ color(T).

Suppose vr is not colored yet. Since label(vr) ⊇ {1, 2, . . . , c − 1} if c ≥ 2
and vr is adjacent to all of T ∪ {v1}, we have |label(vr)| = |color(N(vr))| ≥
(c−1)+ |color(T ∪{v1})| = c+ |color(T)| > |label(xi

c)|, again a contradiction.
So vr is already colored. However, vr is not adjacent to wi−1

c , so c was the
smallest color available for vr when it was colored; but this contradicts the
definition of wi−1

c and xi
c. This completes the proof of the claim. 2

Let z be a vertex that satisfies the claim above. Vertex z is adjacent to wi−1
c

in G∗

i−1 because z was colored before xi
c and received a color strictly greater

than c. (It takes time deg(xi
c) to find such a vertex z.)

Let j = max(n(z), n(v1)). We have j < i because z and v1 are adjacent to
wi−1

c .

Suppose n(z) = n(v1). Then xj
c is adjacent to v1 and z. If v1v3 is the chord of

P , call FindObstruction2(z, xj
c-P). If v1v3 is not a chord of P and z is not ad-

jacent to v1, call FindObstruction3(z, xj
c-P, e). If v1v3 is not a chord of P and z

is adjacent to v1 (and thus is not adjacent to v2), call FindObstruction4(z, xj
c-

P, e).

Now suppose n(z) 6= n(v1). Then j > 1, one of wj−1
c , xj

c is adjacent to v1 and
is not adjacent to z, and the other is not adjacent to v1 and is adjacent to z.
Let k be the smallest integer such that z is adjacent to vk. Such a k exists
because z is adjacent to vp. (It takes time deg(z) to compute k.)

6

Suppose that k is odd. If n(z) = j, then let P ′ = v1-· · ·-vk-z-xj
c; else let

P ′ = z-vk-· · ·-v1-x
j
c. If e is a chord of P ′, then call Loop(P ′, j, e); else call

Loop(P ′, j, ∅).

Now suppose that k is even. Then k < p since p is odd. We consider the
following cases:

Case 1 : P has a chord vt−1vt+1 with t < k. If n(z) = j, then let P ′ = v1-· · ·-
vt−1-vt+1-· · ·-vk-z-xj

c; else let P ′ = z-vk-· · ·-vt+1-vt−1-· · ·-v1-x
j
c. Call Loop(P ′, j,

∅).

Case 2 : P has a chord vk−1vk+1. When z is adjacent to both vk+1 and vk+2,
if n(z) = j, then let P ′ = v1-· · ·-vk−1-vk+1-vk+2-z-xj

c; else let P ′ = z-vk+2-
vk+1-vk−1-· · ·-v1-x

j
c; call Loop(P ′, j, zvk+1). When z is not adjacent to vk+1,

call FindObstruction3(z, vk-· · ·-vp, ∅). When z is adjacent to vk+1 and is not
adjacent to vk+2, call FindObstruction4(z, vk-· · ·-vp, ∅).

Case 3 : P has a chord vkvk+2. When z is adjacent to vk+1, if n(z) = j, then let
P ′ = v1-· · ·-vk-vk+1-z-xj

c; else let P ′ = z-vk+1-vk-· · ·-v1-x
j
c; call Loop(P ′, j, zvk).

When z is not adjacent to vk+1 and is adjacent to vk+2, if n(z) = j, then let
P ′ = v1-· · ·-vk-vk+2-z-xj

c; else let P ′ = z-vk+2-vk-· · ·-v1-x
j
c; call Loop(P ′, j, zvk).

When z is not adjacent to vk+1 or to vk+2, call FindObstruction1(z, vk-· · ·-vp).

Case 4 : P has no chord vt−1vt+1 with t ≤ k + 1. When z is adjacent to vk+1,
if n(z) = j, then let P ′ = v1-· · ·-vk-vk+1-z-xj

c; else let P ′ = z-vk+1-vk-· · ·-v1-x
j
c;

call Loop(P ′, j, zvk). When z is not adjacent to vk+1, call FindObstruction3(z,
vk-· · ·-vp, e).

FindObstruction1(z, P)

[where P = v0-· · ·-vp is an odd path with only one chord v0v2, z is adjacent to
both v0 and vp and is not adjacent to either v1 or v2]

Let r be the smallest integer > 0 such that z is adjacent to vr. This integer
r exists because z is adjacent to vp. We have r ≥ 3 because z is not adjacent
to v1 or v2. When r is odd, return z, v0, . . . , vr, which induce an odd cycle
with only one chord v0v2. When r is even, we have r < p and r ≥ 4; return
z, v0, v2, . . . , vr, which induce an odd hole.

FindObstruction2(z, P)

[where P = v0-· · ·-vp is an odd path p > 3 with only one chord v1v3, z is
adjacent to both v0 and vp and is not adjacent to one of v1, v3]

7

Case 1 : z is not adjacent to either v1 or v2. Let r be the smallest integer
> 0 such that z is adjacent to vr; we have r ≥ 3. When r is odd, return
z, v0, . . . , vr, which induce an odd cycle with only one chord v1v3. When r is
even, we have r ≥ 4; return z, v0, v1, v3, . . . , vr, which induce an odd hole.

Case 2 : z is not adjacent to v1, is adjacent to v2, is not adjacent to v3. Call
FindObstruction3(z, v2-· · ·-vp, ∅).

Case 3 : z is not adjacent to v1, is adjacent to v2, is adjacent to v3, is not
adjacent to v4. Call FindObstruction4(z, v2-· · ·-vp, ∅),

Case 4 : z is not adjacent to v1, is adjacent to v2, is adjacent to v3, is adjacent
to v4. Return z, v0, v1, v3, v4, which induce an odd cycle with only one chord
zv3.

Case 5 : z is adjacent to v1. The vertex z is not adjacent to v3 because z is
not adjacent to one of v1 or v3; call FindObstruction3(z, v1-v3-· · ·-vp, ∅).

FindObstruction3(z, P, e)

[where P = v0-· · ·-vp is an odd path p ≥ 3 with at most one chord, and this
chord is vt−1vt+1 with 1 < t < p − 1, z is adjacent to both v0 and vp and is
not adjacent to v1, and e is the set that consists of the chord of P , if any]

Let r be the smallest integer > 0 such that z is adjacent to vr (r ≥ 2). When
r is odd, return z, v0, . . . , vr, which induce an odd hole or an odd cycle with
only one chord e. When r is even, we consider the different following cases :

Case 1 : P has a chord vt−1vt+1 with t < r. Return z, v0, · · · , vt−1, vt+1, · · · , vr,
which induce an odd hole.

Case 2 : P has a chord vr−1vr+1. When z is adjacent to both vr+1 and vr+2,
return z,v0, · · · , vr−1,vr+1,vr+2, which induce an odd cycle with only one chord
zvr+1. When z is not adjacent to vr+1, call FindObstruction3(z,vr-· · ·-vp,∅).
When z is adjacent to vr+1 and is not adjacent to vr+2, call FindObstruction4(
z,vr-· · ·-vp,∅).

Case 3 : P has a chord vrvr+2. When z is adjacent to vr+1, return z, v0, · · · ,
vr+1, which induce an odd cycle with only one chord zvr. When z is not
adjacent to vr+1 and is adjacent to vr+2, return z, v0, · · · , vr, vr+2, which induce
an odd cycle with only one chord zvr. When z is not adjacent to either vr+1

or vr+2, call FindObstruction1(z, vr-· · ·-vp).

Case 4 : P has no chord vt−1vt+1 with t ≤ r + 1. When z is adjacent to vr+1,
return z, v0, · · · , vr+1, which induce an odd cycle with only one chord zvr.

8

When z is not adjacent to vr+1, call FindObstruction3(z, vr-· · ·-vp, e).

FindObstruction4(z, P, e)

[where P = v0-· · ·-vp is an odd path p ≥ 3 with at most one chord, and this
chord is vt−1vt+1 with 2 < t < p − 1, z is adjacent to v0, v1 and vp and is not
adjacent to v2, and e is the set that consists of the chord of P , if any]

Let r be the smallest integer > 1 such that z is adjacent to vr; we have r ≥ 3.

Case 1 : P has a chord vt−1vt+1 with 2 < t < r. When r is odd, return
z, v1, . . . , vt−1, vt+1, . . . , vr, which induce an odd hole. When r is even, return
z, v1, . . . , vr, which induce an odd cycle with only one chord vt−1vt+1.

Case 2 : P has no chord vt−1vt+1 with 2 < t < r. When r is odd, return
z, v0, . . . , vr, which induce an odd cycle with only one chord zv1. When r is
even, return z, v1, . . . , vr which induce an odd hole.

We show now that this algorithm can be implemented in linear time. At each
pass of Loop(P, i), i decreases by at least 1, so there are at most kc passes
of this loop. Each pass takes time O(deg(xi

c) + deg(z)), and xi
c is different at

each pass since i decreases. Vertex z is also different at each pass, because if
n(z) = j, then z is not adjacent to wc

j−1 and so z will not be adjacent to any
future vertex xi

c, while if n(z) 6= j then z becomes the second vertex on the
path P until in a future loop we have n(z) = j.

Each call to a variant of FindObstruction happens with the same vertex z,
so we need only run once through the adjacency array of z, the first time
FindObstruction is called. Then computing the value of r takes time O(r)
and the rest of each FindObstruction takes constant time. At each pass of
FindObstruction, the length of path P decreases by at least r.

4 Strong stable sets

It was shown in [10] that in the case of a Meyniel graph, the set of vertices
colored 1 by Algorithm MCColor is a strong stable set. But there are non-
Meyniel graphs for which Algorithm MCColor and Algorithm Clique give
a coloring and a clique of the same size but none of the color classes of the
coloring is a strong stable set (see the example at the end of this section). In
that case we would like to be able to find a Meyniel obstruction. This can be

9

done in time O(n3) as described below.

Lemma 1 Every nice stable set is a strong stable set.

Proof. Let S = {x1, . . . , xk} be a nice stable set of a graph G. Suppose there
exists a maximal clique Q with Q∩S = ∅. Let Gi be the graph obtained from
G by contracting x1, . . . , xi into wi. For i = 1, . . . , k, consider the following
Property P i: “In the graph Gi, vertex wi is adjacent to all of Q.” Note that
Property P k holds by the maximality of S and by the definition of wk and
that Property P 1 does not hold by the maximality of Q. So there is an integer
i ∈ {2, . . . , k} such that P i holds and P i−1 does not. Vertex xi is not adjacent
to all of Q by the maximality of Q. So, in the graph Gi−1, the clique Q contains
vertices a and b such that a is adjacent to wi−1 and not to xi and b is adjacent
to xi and not to wi−1, and then the path wi−1-a-b-xi is a P4, which contradicts
the property that S is nice. 2

Now, for any graph G and any vertex v of G, we can find a Meyniel obstruction
or a strong stable set containing v by the following algorithm :

Apply the algorithm MCColor on a graph G, choosing v to be the first vertex
to be colored. With the same notation as in Section 3, let S = {x1

1, . . . , x
k1

1 }
be the set of vertices colored 1. So S is a maximal stable set. We can check
in time O(n3) if S is a nice stable set. If S is a nice stable set, then S is a
strong stable set by Lemma 1. If S is not a strong stable set, then the checking
procedure returns i ∈ {2, . . . , k1} such that there is an induced P4 : wi−1

1 -v1-v2-
xi

1. Let P = v1-v2-x
i
1. Applying the procedure Loop(P, i, ∅) of Section 3 gives

a Meyniel obstruction in G.

Here is an example of a non-Meyniel graphs for which Algorithm MCColor

followed by Algorithm Clique can give a coloring and a clique of the same
size but none of the color classes of the coloring is a strong stable set. Consider
the graph G form by the 3 triangles {a, d, e}, {b, f, g}, {c, h, i} plus the edges
af , ah, bd, bi, ce, cg. Algorithm MCColor can color the vertices in that
order and with the given color: d-1, b-2, f -1, g-3, e-2, a-3, c-1, h-2, i-3, and
Algorithm Clique returns the clique {a, d, e}. The algorithms give a coloring
and a clique of the same size but none of the color classes {c, d, f}, {b, e, h}
or {a, g, i} is a strong stable set.

5 Comments

The algorithms presented here are not recognition algorithms for Meyniel
graphs. It can happen that the input graph is not Meyniel and yet the output
is a clique and a coloring of the same size.

10

The fastest known recognition algorithm for Meyniel graph is due to Roussel
and Rusu [15] and its complexity is O(m(m + n)), (where n is the number
of vertices and m is the number of edges), which beats the complexity of the
algorithm of Burlet and Fonlupt [1]. So it appears to be easier to solve the
Meyniel Graph Robust Algorithm Problem than to recognize Meyniel graphs.
It could be the same for perfect graphs: it might be simpler to solve the
Perfect Graph Robust Algorithm Problem than to recognize perfect graphs.
Currently, the recognition of perfect graphs is done by an O(n9) algorithm
due to Chudnovsky, Cornuéjols, Liu, Seymour and Vušković [5] which actually
recognizes Berge graphs (graphs that do not contain an odd hole or an odd
antihole). The class of Berge graphs is exactly the class of perfect graphs by
the Strong Perfect Graph Theorem of Chudnovsky, Robertson, Seymour and
Thomas [6].

References

[1] M. Burlet, J. Fonlupt, Polynomial algorithm to recognize a Meyniel graph, Ann.
Disc. Math. 21 (1984) 225–252.

[2] K. Cameron, J. Edmonds, Existentially polytime theorems, DIMACS Series
Discrete Mathematics and Theoretical Computer Science 1 (1990) 83–99.

[3] K. Cameron, J. Edmonds, If it’s easy to recognize, and you know it’s there,
can it be hard to find?, SIAM Conference on Discrete Mathematics, San Diego,
August 2002.

[4] K. Cameron, J. Edmonds, Finding a strong stable set or a Meyniel obstruction in
any graph, manuscript, presented at EuroComb 2005, Berlin, Germany, August
2005.

[5] M. Chudnovsky, G. Cornuéjols, X. Liu, P. Seymour, K. Vušković, Recognizing
Berge graphs, Combinatorica 25 (2005) 143–186.

[6] M. Chudnovsky, N. Robertson, P. Seymour, R. Thomas, The strong perfect
graph theorem, Manuscript, Princeton Univ., 2002, to appear in Annals of
Mathematics.

[7] J. Fonlupt, J.P. Uhry, Transformations which preserve perfectness and h-
perfectness of graphs, Ann. Disc. Math. 16 (1982) 83–85.

[8] A. Hertz, A fast algorithm for coloring Meyniel graphs, J. Comb. Th. B 50
(1990) 231–240.

[9] C.T. Hoàng, On a conjecture of Meyniel, J. Comb. Th. B 42 (1987) 302–312.

[10] B. Lévêque, F. Maffray, Coloring Meyniel graphs in linear time, Cahiers Leibniz
105 (2004), to appear in Information Processing Letters, available on http:

//hal.ccsd.cnrs.fr/ccsd-00001574.

11

http://hal.ccsd.cnrs.fr/ccsd-00001574
http://hal.ccsd.cnrs.fr/ccsd-00001574

[11] B. Lévêque, F. Maffray, A linear algorithm for coloring vertices of a graph
or finding a Meyniel obstruction, manuscript, 2005, available on http://hal.

ccsd.cnrs.fr/ccsd-00008557_v1.

[12] S.E. Markosyan, I.A. Karapetyan, Perfect graphs, Akad. Nauk Armjan. SSR.
Dokl. 63 (1976) 292–296.

[13] H. Meyniel, On the perfect graph conjecture, Disc. Math. 16 (1976) 334–342.

[14] G. Ravindra, Meyniel’s graphs are strongly perfect, Ann. Disc. Math. 21 (1984)
145–148.

[15] F. Roussel, I. Rusu, Holes and dominoes in Meyniel graphs, Int. J. Found.
Comput. Sci. 10 (1999) 127–146.

[16] F. Roussel, I. Rusu, An O(n2) algorithm to color Meyniel graphs, Disc. Math.
235 (2001) 107–123.

12

http://hal.ccsd.cnrs.fr/ccsd-00008557_v1
http://hal.ccsd.cnrs.fr/ccsd-00008557_v1

