From IR thermal images to heat source assessments
André Chrysochoos, Xavier Balandraud, Bertrand Wattrisse

To cite this version:
André Chrysochoos, Xavier Balandraud, Bertrand Wattrisse. From IR thermal images to heat source assessments. Doctoral. Summer School Identification procedures using full-field measurements, applications in mechanics of materials and structures, Montpellier, France. 2013. cel-02057614

HAL Id: cel-02057614
https://hal.archives-ouvertes.fr/cel-02057614
Submitted on 5 Mar 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
From IR thermal images to heat source assessments

Part 1

Measurements of temperature fields

A. Chrysochoos\(^{(1)}\), X. Balandraud\(^{(2)}\), B. Wattrisse\(^{(1)}\)

\(^{(1)}\) Mechanics and Civil Engineering Laboratory, UMR CNRS 5508, Montpellier
\(^{(2)}\) Pascal Institute, UMR CNRS 6602, Clermont-Ferrand
What are the necessary investments?

Part 1
1 - Thermal sciences and heat diffusion 9 slides
2 - Thermal sensors 3 slides
3 - Quantitative Infrared thermography 3 slides

Part 2
4 - Theoretical framework (CM + TIP) 11 slides
5 - Image processing and heat source assessment 11 slides
6 - Illustrative examples 6 slides

Part 3
7 - Tutorial session
Notion of temperature

temperature T:

– intensive physical quantity objectively characterizing the subjective sensation of “coldness” or “hotness” in contact of a body

– several definitions:

 “macroscopic”: following the 2nd principle of Thermodynamics (see IHS-1)

 \forall non-negative scalar such as: $s \geq \delta Q/T$

 “thermo-statistics”: increasing function of the kinetic energy of the system

...
Heat equation

\[\rho C T - k \ \text{grad} \ (T) = w \downarrow c h \uparrow \cdot \]

\text{hyp.:} \text{ conduction follows Fourier’s law}

\[q = -k \ \text{grad} \ (T) \]

\text{regularizing effect of heat diffusion} \ \text{of heat diffusion} \ \text{inverse estimation} \text{ of the heat sources from the temperature: very instable!}

cf. IHS–PS1 and the (old) following example ...
Example of heat diffusion

1990, 20 years ago !!
Agema 880 camera,
digitized video signal
2 Hz
IBM 80286
Dos 4.1, HD 60 Mo
(NETD : 200 mK)

temperatures maps :
1 « hot spot »
$q = 3.5 \, ^\circ C$

heat sources map :
2 wires heated via Joule effect
power : $3. \times 10^{-2} \, W$

screen capture, Turbo Pascal programming
Example of heat diffusion

- steel plate: 4 spots:
 - active before \(t_0 \), then deactivated

- temperature variations can be observed (somewhere) …
 … while no heat sources are active!

- no temperature variations can be observed …
 … while heat sources are active (somewhere else)!
Measurement of temperatures

measurement chain:

```
sensor ➔ transmission/conversion ➔ recorder
```

common types of sensors:

- thermo-mechanic effect: dilatation of a gas/liquid/solid
- thermo-electric effect: thermocouples
- radiation: pyrometers, bolometers, (cf. IR cameras)
- electric resistance: thermistances
- …
thermocouples are made of two different metals \(M_A \) and \(M_B \), connected by two junctions:
- a reference “cold” junction \(R \)
- a measuring “hot” junction \(M \)

\[\text{voltage difference (} V \text{) generation through the thermo-electric Thomson effect} \]
Characteristics

– most common thermocouples:

 type K: NiCr (Chromel) / NiAl (Alumel).

 operating temperature \(T_{\text{ext}} \) [90K, 1000K]

 accuracy: 1.5K (Class 1), 2.5K (for Class 2)

– necessity to protect the thermocouples:

 electrical insulation/thermal protection

 - PTFE: \(T_{\text{ext}} \) [200K, 520K]

 - silk glass: \(T_{\text{ext}} < 720K, \ldots \)
Advantages:
- low cost (a few € to a few hundred €).
- good accuracy: 1.5K (Class 1), 2.5K (Class 2)
- good response time (depending on the thermocouple):
 time constant $t_{63\%}$ [0.05 s, 5s], even 0.007s (0.25mm)
- wide range of temperature (depending on the type)

Drawbacks:
- contact measurement
- punctual measurement fields?

... collections of sensors!
any body at a temperature > 0 K emits a thermal radiation

- the infrared radiation occupies only one part of the thermal radiation spectrum (IR-visible-UV : cooler warmer)

- the spectral band covered by the infra-red thermography is narrower: [2μm, 15 μm]
Principles of IR radiometry

Motives: surface temperature measurements
(… for heat sources identification, see IHS–1)

radiating target

I.R. radiation

atmosphere

IR detector
(single, linear, matrix sensor)

Medium: pyrometer, IR focal plane array camera

detector: produces an electrical signal (V) related to the radiated power (W)
exitance: overall flux emitted by the target per unit surface (W.m⁻²)
… for a given bandwidth

\[R = \int_{\Delta \lambda} \frac{\partial R(\lambda, T)}{\partial \lambda} d\lambda \]

spectral exitance varies with \(T \)!
A simple common situation ...

- **target = « black body »**: able to absorb every incident radiation, \(\text{j} \), \(\text{j} \), \(\text{j} \), (i.e. no reflexion, no transmission: see slide 14).

- **atmosphere = small distance, dry air** (transparent to IR radiations)
 - perfect transmission
 (i.e. every radiation emitted by the target is received on the detector)
Radiation laws

for a black body …

- Planck’s law

\[
\frac{\partial R_{cn}(\lambda, T)}{\partial \lambda} = \frac{2\pi h c^2 \lambda^{-5}}{\exp\left(\frac{hc}{\lambda kT}\right) - 1}
\]

- Stefan-Boltzmann’s law

\[
R_{cn} = \sigma_s T^4
\]

\(\sigma_s\) : Stephan’s constant

\[
\sigma_s = \frac{2\pi^5 k^4}{15c^2h^3} = 5.67 \times 10^{-8} \text{ W.m}^{-2}.\text{K}^{-4}
\]

\(R\) : exitance, W.m\(^{-2}\)
\(h\) : Planck, 6.66.10\(^{34}\) J.s
\(k\) : Bolzmann, 1.38.10\(^{23}\) J.K\(^{-1}\)
\(c\) : light celerity, 3.10\(^{8}\) m.s\(^{-1}\)
\(T\) : temperature, K
Remarks on Planck’s law

- the emission spectrum of a black body is continuous
- if $T<2300K$, the totality of emitted energy is in the infrared spectrum
- at fixed l, the exitance increases if T increases
- when T increases the maximum of energy moves to the weak wavelength (cf. Wien’s law)

 this displacement explains the change of color during the heating of a body.

white yellow orange red

displacement of max(R) when T increases
Target and environment

\[A(\lambda) + R(\lambda) + T(\lambda) = 1 \]

- Energy conservation:
- « Thermal » equilibrium:

\[A(\lambda) = \varepsilon(\lambda) \]

\[\text{emissivity} \]

\(A, R \) and \(T \) depend on \(\lambda \), but also on \(j, T, \) surface roughness, …
Classification of several bodies

opaque body: \(\mathcal{T}(l) = 0 \)

black body: \(e(l) = 1, \ R(l) = 0, \ \mathcal{T}(l) = 0 \)

grey body: \(e(l) = cte, \ R(l) = cte \)

selective body

reflective body: \(R(l) \) large, \(e(l) \neq 0 \)

(Reflection and absorption are surface phenomena (occur within a limited, less than 1 \(\mu m \), depth under the surface)

N.B.:
– no other surface can emit more energy than a blackbody, for given (\(T, l \))
– the emission of a blackbody is isotropic

\[
\frac{\partial R}{\partial \lambda}(\lambda, \varphi, T) = \varepsilon(\lambda, \varphi) \frac{\partial R_{cn}}{\partial \lambda}(\lambda, T)
\]

\[
R_{\Delta \lambda}(T, \varphi) = \int_{\Delta \lambda} \varepsilon(\lambda, \varphi) \frac{\partial R_{cn}}{\partial \lambda}(\lambda, T) d\lambda
\]
Radiations’ incidence angle

dielectric sphere
emissivity

up to \(j = 45-50 \) degrees, lambertian bodies …

small risks: flat samples

+ grey body with a large emissivity (paint, …)

+ small temperature variations

\[
R_{\Delta \lambda} (T) \approx \varepsilon R_{cn\Delta \lambda} (T)
\]

water emissivity for \(l=10 \mu m \)

\(j \) : observation angle

\(e \) : emissivity
Atmospheric transmittance (I)

\[T_{\text{at}} : \text{atmospheric transmittance for the standard atmosphere (thickness of 30 m)} \]

(source: Pajani D. ADD Ed.)

- **forbidden wavelength bands** (in \(\mu m \)):
 - [2.5,2.8] absorption of radiation by \(\text{CO}_2 \) and \(\text{H}_2\text{O} \)
 - [4.2,4.4] absorption of radiation by \(\text{CO}_2 \)
 - [5.5,7.3] absorption of radiation by \(\text{H}_2\text{O} \)

- **two common bands** used for infrared detectors:
 - SW: Short Wave [3 \(\mu m \), 5\(\mu m \)]
 - LW: Long Wave [8\(\mu m \), 12\(\mu m \)]
Atmospheric transmittance for the standard atmosphere (30 ppm of CO$_2$ and 50% of humidity)
(source: Pajani D. ADD Ed.)
Measurement by IR radiometry

• advantages:
 - no contact
 - response time (μs)
 - temperature fields (lines, arrays) at each recorded time
 - good accuracy: $2K$ or 2%
 - good spatial resolution (10 μm)

• drawbacks:
 - cost: from 5k€ to 100k€ …
 - calibration

• many products with many technologies:
 - thermo-detectors: bolometers, …
 - photo-detectors: semi-conductors (In-Sb, …)

• difference between imagery and measure
4 – Infrared Thermography

IR camera description

- image: 320 x 240 pixels
- coding: 14 bits
- frame rate: 250 im/s
- spatial resolution: ± 100 µm/pix.
- NETD: 20 mK at room temp.

NETD: (noise equivalent temperature difference)

\[\text{NETD} (T_0) = \frac{\text{std}(S)}{\left(\frac{\partial S}{\partial T} \right)_{T_0}} \]

\((*) \) DL: digital level
IR camera calibration (I) : NUC

manufacturer procedure

- 2 uniform thermal scenes (F_1 and F_2)
 - white paper sheet (F_1) + hand (F_2) ...
- DF [X] 50% of the sensors’ range (linear part)
- NUC and BPR operations

principle of NUC:

find the gains (a_{ij}) and the offset (b_{ij}) of each pixel in order to bring the linear part of the responses on the same curve :

$$\tilde{DL} = \alpha_{ij} DL + \beta_{ij}$$

- determination of **one set** of calibration parameters (a_{ij}) :

$$T = \sum_{k=0}^{\text{DF}} \alpha_k DL$$
IR camera calibration (II) : NUC

limits of the NUC

- hypothesis of the linear response of the sensor
- non intrinsic definition of \((a_{ij})\) and \((b_{ij})\)
IR camera calibration (III) : BPR

principle of BPR :
(i) detection of « dead » or « abnormal » pixels
(ii) possible replacement of the « defective » pixels

T (°C)

(i) search algorithm (3 criteria) :
– in « gain » :
 (i,j) : \(|\alpha_{ij} - 1| > a\)
– in « offset » :
 (i,j) : \(|\beta_{ij} | > b_2 \ \Uparrow \text{ dyn}\)
– in « noise » :
 (i,j) : \(\text{rms}(T_{ij}) > T_{ij} + c_{\text{std}}(T_{ij})\)

pixels whose response is « very » different from the others

☒ defective pixels
IR camera calibration (IV) : BPR

(ii) different replacement algorithms

drawbacks of the BPR :

– introduction of correlations between neighboring pixels

– errors in the estimation of gradients

– « clusters »
IR camera calibration (V)

laboratory procedure:
- pixel by pixel calibration

extended plane **black body**:
- \(e(I) \geq 0.98 \)
- \(T(x,y) = T_0 \) (±0.02°C uniformity
 0.008°C precision)

« **dead** » pixels
« **abnormal** » pixels
« **saturated** » pixels
IR camera calibration (VI)

Calibration relation:

\[T_{ij} = \sum_{k=0}^{d_k} a_{ijk} DL_{ij,k} \]

- (d_k+1) \(n_i n_j \) coefficients
- \(1,600,000 \) for a \((320\times240)\) image

« defective » pixels determination:

\[(i,j) : \exists k, |T_{ij,k} - T_{BB,k}| > \varepsilon_{dead}\]

- 539 « bad » pixels \(0.07\% \)
- homogeneous distribution
- a few « clusters »
IR camera calibration (VII)

- precision of the black body
- non-uniformity < 0.02°C

limits of the « laboratory » procedure:
- requires 1 extended black body (30 k€)
- thermal stability of the camera in its environment (4-5 h)
- 1 calibration per shooting condition (integration time, image size, lens, focus, …)
Scales in Infrared Thermography

« microstructure », « mechanisms »

IR camera: 3-5 µm, ...
spatial resolution: ... 15 µm – 0.1 mm ...

Ms: macro

[L. Bodelot, LML]
[M. Poncelet, LMT]
[R. Fillit, ENSM-SE]
Temperature fields for IHS

– « dense » temperature fields on the boundaries
 multiple punctual sensors (thermocouples, optical fibres pyrometers, …)
 IR cameras

– high temporal resolution:
 ultra-fast imaging devices (1 MHz frame rate, scanning devices)

– emissivity determination:
 multi-spectral thermography, …

– multiple physics:
 simultaneous knowledge of other state variables (strain, phase proportion, …)

– IR tomography?
 identification of heat sources: see IHS–1