Linear response in neuronal networks: from neurons dynamics to collective response

Bruno Cessac
Biovision Team, INRIA Sophia Antipolis, France.

14/15-01-2019

LACONEU summer school 2019.
Neuron response to a stimulus

[Diagram showing a CA2 Pyramidal Cell with electrodes injecting current and recording membrane potential changes.]

https://www.plasticitylab.com/methods/
From firing rate neurons dynamics to linear response. From spiking neurons dynamics to linear response. General conclusions

Appendix: Linear response theory in physics vs linear response in neuronal networks

Neuron response to a stimulus

Bruno Cessac Linear response in neuronal networks: from neurons dynamics
Network response to a stimulus
Network response to a stimulus
Network response to a stimulus

1. How does an input/stimulation applied to a subgroup of neurons in a population affect the dynamics of the whole network?
Network response to a stimulus

1. How does an input/stimulation applied to a subgroup of neurons in a population affect the dynamics of the whole network?
2. How to measure the influence of a stimulated neuron on another neuron?
Network response to a stimulus

1. How does an input/stimulation applied to a subgroup of neurons in a population affect the dynamics of the whole network?

2. How to measure the influence of a stimulated neuron on another neuron?

3. How does this "effective connectivity" relates to:

 (a) Synaptic connectivity;
 (b) Pairwise correlations;
 (c) "Information" transport.
1. From firing rate neurons dynamics to linear response.

2. From spiking neurons dynamics to linear response.

3. General conclusions

4. Appendix: Linear response theory in physics vs linear response in neuronal networks
From firing rate neurons dynamics to linear response.
Amari-Wilson-Cowan model

Amari, 1971; Wilson-Cowan, 1972; Cohen-Grossberg, 1983; Sompolinsky et al, 1988; …

\[\frac{dV_i}{dt} = -\mu V_i + \sum_{j=1}^{N} J_{ij} f(V_j(t)) + S_i(t); \quad i = 1 \ldots N. \] (1)

Network
Ex: \(J_{ij} \sim N(0, J^2 N) \) (Sompolinsky et al, 1988)

Non linearity
Ex: \(f(x) = \frac{1}{2} (1 + \tanh(gx)) \), \(f(x) = \tanh(gx) \).
Amari-Wilson-Cowan model

Amari, 1971; Wilson-Cowan, 1972; Cohen-Grossberg, 1983; Sompolinsky et al, 1988; ...

\[\frac{dV_i}{dt} = -\mu V_i + \sum_{j=1}^{N} J_{ij} f(V_j(t)) + S_i(t); \quad i = 1 \ldots N. \]

(Network)

Ex: \(J_{ij} \sim \mathcal{N}\left(0, \frac{J^2}{N}\right) \)
(Sompolinsky et al, 1988)

(Non linearity)

Ex: \(f(x) = \frac{1}{2} \left(1 + \text{tanh}(gx)\right) \),
\(f(x) = \text{tanh}(gx) \).
Amari-Wilson-Cowan model

Amari, 1971; Wilson-Cowan, 1972; Cohen-Grossberg, 1983; Sompolinsky et al, 1988; ...

\[
\frac{d \vec{V}}{dt} = -\mu \vec{V} + \mathcal{J} \cdot f(\vec{V}) + \vec{S}(t); \quad i = 1 \ldots N. \tag{1}
\]

Network

Ex: \(J_{ij} \sim \mathcal{N} \left(0, \frac{J^2}{N} \right) \)

(Sompolinsky et al, 1988)

Non linearity

Ex: \(f(x) = \frac{1}{2} \left(1 + \tanh(gx) \right), \quad f(x) = \tanh(gx). \)
From firing rate neurons dynamics to linear response. From spiking neurons dynamics to linear response. General conclusions

Amari-Wilson-Cowan model

Amari, 1971; Wilson-Cowan, 1972; Cohen-Grossberg, 1983; Sompolinsky et al., 1988; …

\[
\frac{d \vec{V}}{dt} = -\mu \vec{V} + J \cdot f(\vec{V}) + \vec{S}(t); \quad i = 1 \ldots N. \quad (1)
\]

Network

Ex: \(J_{ij} \sim \mathcal{N}\left(0, \frac{J^2}{N}\right) \)
(Sompolinsky et al., 1988)

Non linearity

Ex: \(f(x) = \frac{1}{2} \left(1 + \tanh(gx)\right) \), \(f(x) = \tanh(gx) \).
Low gain g dynamics

Theorem. If g is small enough $	ilde{G}$ is contractive.

\[
\forall \vec{V}, \vec{V}' \in \mathcal{M}, \quad \| \tilde{G}(\vec{V}') - \tilde{G}(\vec{V}) \| \leq \eta \| \vec{V}' - \vec{V} \|, \quad 0 < \eta < 1
\]

\Rightarrow

For $\vec{S} = 0$, there is a unique stable fixed point \vec{V}^*, $\tilde{G}(\vec{V}^*) = \vec{0}$.
Low gain g dynamics

Small perturbation of the fixed point. $\vec{V} = \vec{V}^* + \vec{\xi}$.

$$
\frac{d\vec{\xi}}{dt} = DG_{\vec{V}^*} \cdot \vec{\xi} + \vec{S}(t) + O\left(||\vec{\xi}||^2\right)
$$

$$
\vec{\xi}(t) = \int_{-\infty}^{t} e^{DG_{\vec{V}^*}(t-s)} \cdot \vec{S}(s) \, ds
$$

$$\Lambda = P^{-1} \cdot DG_{\vec{V}^*} \cdot P; \quad \vec{\xi} = P\vec{\xi}'; \quad \vec{S} = P\vec{S}' \quad \Rightarrow \quad \vec{\xi}'(t) = \int_{-\infty}^{t} e^{\Lambda(t-s)} \cdot \vec{S}'(s) \, ds
$$

$$
\xi_k'(t) = \int_{-\infty}^{t} e^{\lambda_k(t-s)} \cdot S'_k(s) \, ds
$$
Low gain g dynamics

Harmonic perturbation. \(S'_k(t) = A'_k e^{i\omega t}. \)

\[
\lambda_k = \lambda_{k,r} + i\lambda_{k,i}; \quad \omega = \omega_r + i\omega_i.
\]

The integral is finite if \(\omega_i < -\lambda_{k,r}. \)

\[
\xi'_k(t) = \hat{\chi}'_k(\omega)e^{i\omega t}.
\]

Complex susceptibility matrix.

\[
\bar{\xi}(t) = \hat{\chi}(\omega).\bar{S}e^{i\omega t}. \tag{2}
\]
Low gain g dynamics
Low gain g dynamics
Low gain g dynamics

Example 1. $f(x) = \tanh(gx) \Rightarrow$

$$\vec{V}^* = \vec{0}; \quad DG\vec{V}^* = -\mu I + g J$$

Let $s_k \equiv s_{k,r} + is_{k,i}$ eigenvalues of J.

$$\lambda_k = -\mu + g s_{k,r} \pm i g s_{k,i}$$

When J is random, $J_{ij} \sim \mathcal{N}(0, \frac{J^2}{N})$ the probability distribution of eigenvalues is known.

(Girko, V. L., Theory Probab. Appl. 29, 694-706, 1984.)
Low gain g dynamics

Example 2. $f(x) = \frac{1+\tanh(gx)}{2} \Rightarrow$

$$\vec{V}^* \equiv \vec{V}^*(\mathcal{J}); \quad DG\vec{V}^* = -\mu\mathcal{I} + gD(\vec{V}^*)\mathcal{J}$$

where $D(\vec{V}^*) = \text{diag}(\frac{1-\tanh^2(gV_i^*)}{2})$.

The eigenvalues of $D(\vec{V}^*)\mathcal{J}$ cannot be determined from the eigenvalues of \mathcal{J}. However, when \mathcal{J} is random, $J_{ij} \sim \mathcal{N}(0, \frac{J^2}{N})$ the probability distribution of eigenvalues can be determined.

Summary:

- The linear response to a signal of weak amplitude is controlled by the Jacobian matrix $DG_{\overrightarrow{V}^*}$.
- Eigenvalues of $DG_{\overrightarrow{V}^*}$ \Rightarrow Poles of the complex susceptibility \Rightarrow Resonances.
- What is the phenomenological/neuronal interpretation of $DG_{\overrightarrow{V}^*}$?
Low gain g dynamics

Summary:

- The linear response to a signal of weak amplitude is controlled by the Jacobian matrix $DG_{\vec{V}^*}$.
- Eigenvalues of $DG_{\vec{V}^*}$ \Rightarrow Poles of the complex susceptibility \Rightarrow Resonances.
- What is the phenomenological/neuronal interpretation of $DG_{\vec{V}^*}$?

\[
DG_{\vec{V}^*} = -\mu I + g \begin{array}{c} \text{Leak} \\ \text{Gain} \end{array} D(\vec{V}^*) + \mathcal{J}
\]

Bruno Cessac
Linear response in neuronal networks: from neurons dynamics
Low gain g dynamics

Summary:

- The linear response to a signal of weak amplitude is controlled by the Jacobian matrix DG_{V^*}.
- Eigenvalues of $DG_{V^*} \Rightarrow$ Poles of the complex susceptibility \Rightarrow Resonances.
- What is the phenomenological/neuronal interpretation of DG_{V^*}?

$$DG_{V^*} = -\mu I + g \underbrace{D(V^*)}_{\text{Gain}} + \underbrace{J}_{\text{Synapses}}$$

Bruno Cessac

Linear response in neuronal networks: from neurons dynamics
Expansion/Contraction

Saturation

Amplification
Expansion/Contraction
Expansion/Contraction

[Diagram with labeled nodes 1 to 7 and arrows indicating connections with plus and minus signs]

Bruno Cessac Linear response in neuronal networks: from neurons dynamics
Expansion/Contraction
From firing rate neurons dynamics to linear response. From spiking neurons dynamics to linear response. General conclusions

Appendix: Linear response theory in physics vs linear response in neuronal networks

Expansion/Contraction

Bruno Cessac
Linear response in neuronal networks: from neurons dynamics
Linear response in a dynamical regime

\[
\frac{dV_i}{dt} = -\mu V_i + \sum_{j=1}^{N} J_{ij} f(V_j(t)) + I_i(t); \quad i = 1 \ldots N.
\]

\[
V_i(t + dt) = V_i(t)(1 - \mu dt) + \sum_{j=1}^{N} J_{ij} f(V_j(t))dt + S_i(t)dt
\]

\[
V_i(t + 1) = \sum_{j=1}^{N} J_{ij} f(V_j(t)) + S_i(t).
\]
Linear response in the chaotic regime

B. Cessac, J.A. Sepulchre, PRE (2004); Chaos (2006); Physica D (2006)

\[\vec{V}(t+1) = J \cdot f(\vec{V}(t)) + \epsilon \vec{S}(t) \]

\[f(x) = \tanh(g \cdot x) \]
From firing rate neurons dynamics to linear response. From spiking neurons dynamics to linear response. General conclusions

Appendix: Linear response theory in physics vs linear response in neuronal networks

Transition to chaos by quasi periodicity as g increases

g

Cessac B. et al, Physica D, 74, 24-44 (1994)
Chaotic dynamics and strange attractors

$\gamma=3.5, \lambda=0.158$
Chaotic dynamics and strange attractors

\[
\begin{align*}
 x(t+1) &= 1 - ax^2(t) + y(t) \\
 y(t+1) &= bx(t)
\end{align*}
\]

\[a = 1.4; b = 0.3\]

https://upload.wikimedia.org/wikipedia/commons/a/ac/
Chaotic dynamics and strange attractors

Hénon map

\[
\begin{align*}
 x(t+1) &= 1 - ax^2(t) + y(t) \\
 y(t+1) &= bx(t)
\end{align*}
\]

\[a = 1.4; b = 0.3\]

https://upload.wikimedia.org/wikipedia/commons/a/ac/
Chaotic dynamics and strange attractors

Hénon map

\[
\begin{align*}
 x(t+1) &= 1 - ax^2(t) + y(t) \\
 y(t+1) &= bx(t)
\end{align*}
\]

\(a = 1.4; b = 0.3\)

http://www.demonstrations.wolfram.com/OrbitDiagramOfTheHenonMap/
Chaotic dynamics and strange attractors

Decomposition of Hénon’s Transformation

The gridded square in the upper left is transformed in three steps: a non-linear bending (upper right) in the y-direction, the contraction towards the y-axis (lower left) and a reflection at the diagonal (lower right). The region shown is $-2.2 \leq x \leq 2.2$ and $-2.2 \leq y \leq 2.2$.

Hénon map

\[
\begin{align*}
 x(t+1) &= 1 - ax^2(t) + y(t) \\
 y(t+1) &= bx(t)
\end{align*}
\]

$a = 1.4; b = 0.3$

http://www.sfu.ca/~rpyke/335/W00/
Chaotic dynamics and strange attractors
Chaotic dynamics and strange attractors

Expansive
Positive Lyapunov exponent

Lyapunov spectrum, g=3.5

Bruno Cessac
Chaotic dynamics and strange attractors

Evolution d’une perturbation:
Directions d’Oseledec 1,2,3

Lyapunov spectrum, g=3.5
Time dependent perturbation

\[\vec{V}(t + 1) = \vec{G}(\vec{V}(t)); \quad \vec{V}'(t + 1) = \vec{G}(\vec{V}'(t)) + \epsilon \vec{S}(t) \]
Time dependent perturbation

\[\vec{V}(t+1) = \vec{G}(\vec{V}(t)); \quad \vec{V}'(t+1) = \vec{G}(\vec{V}'(t)) + \epsilon \vec{S}(t) \]

Switch the stimulus on at time \(t_0 \); \(\vec{V}(t_0) = \vec{V}'(t_0) \).
Time dependent perturbation

$$\vec{V}(t+1) = \vec{G}(\vec{V}(t)); \quad \vec{V}'(t+1) = \vec{G}(\vec{V}'(t)) + \epsilon \vec{S}(t)$$

Switch the stimulus on at time t_0; \(\vec{V}(t_0) = \vec{V}'(t_0) \).

$$\vec{\delta}(t) = \vec{V}'(t) - \vec{V}(t) \Rightarrow \vec{\delta}(t_0 + 1) = \vec{V}'(t_0 + 1) - \vec{V}(t_0 + 1) = \epsilon \vec{S}(t_0)$$
Time dependent perturbation

\[\vec{V}(t+1) = \vec{G}(\vec{V}(t)); \quad \vec{V}'(t+1) = \vec{G}(\vec{V}'(t)) + \epsilon \vec{S}(t) \]

Switch the stimulus on at time \(t_0 \); \(\vec{V}(t_0) = \vec{V}'(t_0) \).

\[\vec{\delta}(t) = \vec{V}'(t) - \vec{V}(t) \Rightarrow \vec{\delta}(t_0 + 1) = \vec{V}'(t_0 + 1) - \vec{V}(t_0 + 1) = \epsilon \vec{S}(t_0) \]

\[\vec{\delta}(t_0 + 2) = \vec{G}(\vec{V}'(t_0 + 1)) + \epsilon \vec{S}(t_0 + 1) - \vec{G}(\vec{V}(t_0 + 1)) \]

\[\vec{\delta}(t_0 + 2) = \vec{G}(\vec{V}(t_0 + 1) + \epsilon \vec{S}(t_0)) + \epsilon \vec{S}(t_0 + 1) - \vec{G}(\vec{V}(t_0 + 1)) \]

\[\vec{\delta}(t_0 + 2) = \epsilon \left[DG_{\vec{V}(t_0+1)} \cdot \vec{S}(t_0) + \vec{S}(t_0 + 1) \right] + \epsilon^2 \vec{\eta}(t_0 + 1) \]
Time dependent perturbation

\[\vec{V}(t+1) = \vec{G}(\vec{V}(t)); \quad \vec{V}'(t+1) = \vec{G}(\vec{V}'(t)) + \epsilon \vec{S}(t) \]

Switch the stimulus on at time \(t_0 \); \(\vec{V}(t_0) = \vec{V}'(t_0) \).

\[\delta(t) = \vec{V}'(t) - \vec{V}(t) \Rightarrow \delta(t_0 + 1) = \vec{V}'(t_0 + 1) - \vec{V}(t_0 + 1) = \epsilon \vec{S}(t_0) \]

\[\delta(t_0 + 2) = \vec{G}(\vec{V}'(t_0 + 1)) + \epsilon \vec{S}(t_0 + 1) - \vec{G}(\vec{V}(t_0 + 1)) \]

\[\delta(t_0 + 2) = \vec{G}(\vec{V}(t_0 + 1) + \epsilon \vec{S}(t_0)) + \epsilon \vec{S}(t_0 + 1) - \vec{G}(\vec{V}(t_0 + 1)) \]

\[\delta(t_0 + 2) = \epsilon \left[DG\vec{V}(t_0 + 1) \cdot \vec{S}(t_0) + \vec{S}(t_0 + 1) \right] + \epsilon^2 \vec{S}(t_0 + 1) \]

\[\delta(t) = \epsilon \sum_{\tau = t_0}^{t-1} DG_{\vec{V}(t_0 + 1)}^{t-\tau+1} \cdot \vec{S}(\tau) + \epsilon^2 \vec{S}(t) \]
Time dependent perturbation

\[\vec{\delta}(t) = \epsilon \sum_{\tau = t_0}^{t-1} (DF_{\vec{V}})^{t-\tau+1} \cdot \vec{S}(\tau) + \epsilon^2 \vec{R}(t) \]
Time dependent perturbation

\[\vec{\delta}(t) = \epsilon \sum_{\tau=t_0}^{t-1} (DF_{\vec{V}})^{t-\tau+1} \vec{S}(\tau) + \epsilon^2 \vec{R}(t) \]

Controlled by the spectrum of \(DF_{\vec{V}}^* \)

Linear stability analysis

\[\tilde{G}(\vec{V}) = J f(g \vec{V}) \]

\[DF_{\vec{V}} = g J \Lambda(\vec{V}) \]

\[\Lambda_{ij} = f'(g u_j) \delta_{ij} \]
Time dependent perturbation

\[\delta(t) = \epsilon \sum_{\tau=t_0}^{t-1} (DF_{\vec{V}})^{t-\tau+1} \cdot \bar{S}(\tau) + \epsilon^2 \bar{R}(t) \]

Controlled by the spectrum of \(DF_{\vec{V}} \)

Linear stability analysis

\[\tilde{G}(\vec{V}) = \mathcal{J} f(g \cdot \vec{V}) \]

\[DF_{\vec{V}} = g \mathcal{J} \Lambda(\vec{V}) \]

\[\Lambda_{ij} = f'(g \cdot u_j) \delta_{ij} \]
From firing rate neurons dynamics to linear response. From spiking neurons dynamics to linear response. General conclusions

Appendix: Linear response theory in physics vs linear response in neuronal networks

Time dependent perturbation

\[\tilde{\delta}(t) = \epsilon \sum_{\tau = t_0}^{t-1} (DF_{\vec{V}})^{t-\tau+1} \tilde{S}(\tau) + \epsilon^2 \tilde{R}(t) \]

Controlled by the spectrum of \(DF_{\vec{V}} \)

Linear stability analysis

\[\tilde{G}(\vec{V}) = \mathcal{J} f(g \vec{V}) \]

\[DF_{\vec{V}} = g \mathcal{J} \Lambda(\vec{V}) \]

\[\Lambda_{ij} = f'(g u_j) \delta_{ij} \]
Time dependent perturbation

\[\vec{\delta}(t) = \epsilon \sum_{\tau=t_0}^{t-1} DF_{\vec{V}(t+1)}^{t-\tau+1} \cdot \vec{S}(\tau) + \epsilon^2 \vec{R}(t) \]

\[\vec{G}(\vec{V}) = J f(g \vec{V}) + \theta \]
\[DF_{\vec{V}} = g J \Lambda(\vec{V}) \]
\[\Lambda_{ij} = f'(g u_j) \delta_{ij} \]
Time dependent perturbation

\[\vec{\delta}(t) = \epsilon \sum_{\tau=t_0}^{t-1} DF_{V(t+1)} \cdot \vec{S}(\tau) + \epsilon^2 \vec{R}(t) \]

\[\vec{G}(\vec{V}) = J f(g \cdot \vec{V}) + \theta \]
\[DF_{\vec{V}} = g J \Lambda(\vec{V}) \]
\[\Lambda_{ij} = f'(g \cdot u_j) \delta_{ij} \]
Time dependent perturbation

\[\vec{\delta}(t) = \epsilon \sum_{\tau=t_0}^{t-1} DF^{t-\tau+1} \vec{V}(t+1) \cdot \vec{S}(\tau) + \epsilon^2 \vec{R}(t) \]
Time dependent perturbation

\[\mathbf{\delta}(t) = \epsilon \sum_{\tau = t_0}^{t-1} DF_{t-\tau + 1} \mathbf{\tilde{V}}(t+1) \cdot \mathbf{\tilde{S}}(\tau) + \epsilon^2 \mathbf{\tilde{R}}(t) \]

Expansive positive Lyapunov exponent

Bruno Cessac

Linear response in neuronal networks: from neurons dynamics...
From firing rate neurons dynamics to linear response. From spiking neurons dynamics to linear response. General conclusions

Appendix: Linear response theory in physics vs linear response in neuronal networks

Time dependent perturbation

\[\delta(t) = \epsilon \sum_{\tau = t_0}^{t-1} DF^{t-\tau+1} \cdot \vec{S}(\tau) + \epsilon^2 \vec{R}(t) \]

Lyapunov spectrum, \(g = 3.5 \)

Evolution d’une perturbation:

Directions d’Oscillog 1,2,3
Time dependent perturbation

\[\delta(t) = \epsilon \sum_{\tau = t_0}^{t-1} DF_{\bar{V}(t+1)}^{t-\tau+1} \bar{S}(\tau) + \epsilon^2 \bar{R}(t) \]

Linear response vs chaotic

Butterfly effect
Van Kampen objection

The linear expansion provided by the positive Lyapunov exponent prevents linear response theory.
Time dependent perturbation
The Sinai-Ruelle-Bowen measure

Time averaging is robust to perturbation.

\[
\lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \Phi(\vec{G}^t(\vec{V})) = \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \Phi(\vec{G}^t(\vec{V} + \vec{\delta}))
\]

\(\mu_L\) Lebesgue measure on the phase-space.

\[
\mu \overset{w}{=} \lim_{t \to +\infty} \vec{G}^* t \mu_L, \quad \text{SRB measure}
\]

\[
\lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \Phi \left[\vec{G}^t(\vec{V}) \right] \overset{\mu_L}{=} \text{a.s.} \int_\Omega \Phi(\vec{V}) \mu(d\mathbf{X})
\]

Natural notion of averaging ”on” the attractor.
The Sinai-Ruelle-Bowen measure

Time averaging is robust to perturbation.

$$\lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \Phi(\vec{G}^t(\vec{V})) = \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \Phi(\vec{G}^t(\vec{V} + \vec{\delta}))$$

μ_L Lebesgue measure on the phase-space.

$$\mu = \lim_{t \to +\infty} \vec{G}^* \mu_L, \quad \text{SRB measure}$$

$$\lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \Phi \left[\vec{G}^t(\vec{V}) \right] = \int_{\Omega} \Phi(\vec{V}) \mu(d\vec{X})$$

Natural notion of averaging "on" the attractor.
From firing rate neurons dynamics to linear response. From spiking neurons dynamics to linear response. General conclusions

The Sinai-Ruelle-Bowen measure

Time averaging is robust to perturbation.

\[
\lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \Phi(\mathbf{G}^t(\mathbf{V})) = \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \Phi(\mathbf{G}^t(\mathbf{V} + \delta))
\]

\(\mu_L\) Lebesgue measure on the phase-space.

\[
\mu = \lim_{t \to +\infty} \mathbf{G}^t \mu_L, \quad \text{SRB measure}
\]

\[
\lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \Phi \left[\mathbf{G}^t(\mathbf{V}) \right] \mu_L = \int_{\Omega} \Phi(\mathbf{V}) \mu(d\mathbf{X})
\]

Natural notion of averaging "on" the attractor.

Decomposition of Hénon's Transformation

The gridded square in the upper left is transformed in three steps: a non-linear bending (upper right) in the y-direction, the contraction towards the y-axis (lower left) and a reflection at the diagonal (lower right). The region shown is \(-2.2 \leq x \leq 2.2\) and \(-2.2 \leq y \leq 2.2\).

Figure 12.3
Out of equilibrium SRB state

\[\mu_t = \mu + \delta_t \mu = \lim_{n \to +\infty} \tilde{G}_t \cdots \tilde{G}_{t-n} \mu \]

\[\delta_t \mu [\Phi] = \epsilon \sum_{\tau = -\infty}^{t-1} \int \mu(d\tilde{V}) D \tilde{G}_{\tilde{V}}^{t-\tau-1} S_\tau \left[\tilde{G}^{-1}(\tilde{V}) \right] \cdot \nabla \tilde{V} (t-\tau-1) \Phi + NL \]

\[\delta_t \mu [\Phi] = \epsilon \sum_{\sigma} \left\langle \kappa_{\sigma} \tilde{S}_{t-\sigma-1} \circ \tilde{G}^{-1} | \Phi \right\rangle_{eq} \]
Linear response in the firing rate neural network

B. Cessac, J.A. Sepulchre, PRE (2004); Chaos (2006); Physica D (2006)

Convolution

\[\delta_t \rho[u_i] = \epsilon [\chi * S]_i(t) \]

\[= \epsilon \sum_{j=1}^{N} \sum_{\sigma=-\infty}^{t} \chi_{i,j}(\sigma)S_j(t - \sigma - 1) \]
Linear response in the firing rate neural network

B. Cessac, J.A. Sepulchre, PRE (2004); Chaos (2006); Physica D (2006)

Convolution

\[\delta_t \rho[u_i] = \epsilon [\chi * S]_i(t) \]

\[= \epsilon \sum_{j=1}^{N} \sum_{\sigma=-\infty}^{t} \chi_{i,j}(\sigma) S_j(t - \sigma - 1) \]

\[\chi_{i,j}(\sigma) = \sum_{\gamma_{ij}(\sigma)} \prod_{l=1}^{\sigma} J_{k_l k_{l-1}} \langle \prod_{l=1}^{\sigma} f'(u_{k_{l-1}}(l - 1)) \rangle_{eq} \]
Linear response in the firing rate neural network

B. Cessac, J.A. Sepulchre, PRE (2004); Chaos (2006); Physica D (2006)

Convolution

\begin{align*}
\delta_t \rho[u_i] &= \varepsilon \left[\chi * S \right]_i(t) \\
&= \varepsilon \sum_{j=1}^{N} \sum_{\sigma=-\infty}^{t} \chi_{i,j}(\sigma) S_j(t - \sigma - 1)
\end{align*}

Linear response

\[
\chi_{i,j}(\sigma) = \sum_{\gamma_{ij}(\sigma)} \prod_{l=1}^{\sigma} J_{k_l k_{l-1}} \left\langle \prod_{l=1}^{\sigma} f'(u_{k_{l-1}}(l - 1)) \right\rangle_{eq}
\]
Linear response in the firing rate neural network

B. Cessac, J.A. Sepulchre, PRE (2004); Chaos (2006); Physica D (2006)

Convolution

\[
\delta_t \rho[u_i] = \epsilon [\chi * S]_i(t)
\]

\[
= \epsilon \sum_{j=1}^{N} \sum_{\sigma=-\infty}^{t} \chi_{ij}(\sigma) S_j(t - \sigma - 1)
\]

Linear response

\[
\chi_{ij}(\sigma) = \sum_{\gamma_{ij}(\sigma)} \prod_{l=1}^{\sigma} J_{k_lk_{l-1}} \left\langle \prod_{l=1}^{\sigma} f'(u_{k_{l-1}}(l - 1)) \right\rangle_{\text{eq}}
\]
Linear response in the firing rate neural network

B. Cessac, J.A. Sepulchre, PRE (2004); Chaos (2006); Physica D (2006)

Convolution

\[
\delta_t \rho[u_i] = \epsilon \left[\chi * S \right]_i(t)
\]

\[
= \epsilon \sum_{j=1}^{N} \sum_{\sigma=-\infty}^{t} \chi_{i,j}(\sigma) S_j(t - \sigma - 1)
\]

Linear response

\[
\chi_{i,j}(\sigma) = \sum_{\gamma_{ij}(\sigma)} \prod_{l=1}^{\sigma} J_{k_l k_{l-1}} \left\langle \prod_{l=1}^{\sigma} f'(u_{k_{l-1}}(l - 1)) \right\rangle_{eq}
\]
Linear response in the firing rate neural network

B. Cessac, J.A. Sepulchre, PRE (2004); Chaos (2006); Physica D (2006)

Convolution

\[\delta_t \rho [u_i] = \epsilon [\chi * S]_i (t) \]

\[= \epsilon \sum_{j=1}^{N} \sum_{\sigma=-\infty}^{t} \chi_{i,j}(\sigma) S_j(t-\sigma-1) \]

Linear response

\[\chi_{i,j}(\sigma) = \sum_{\gamma_{ij}(\sigma)} \prod_{l=1}^{\sigma} J_{k_lk_{l-1}} \left\langle \prod_{l=1}^{\sigma} f'(u_{k_{l-1}} (l-1)) \right\rangle_{eq} \]
Resonances

Ruelle resonances

- Ruelle-Pollicott resonances: In the power spectrum. Absolutely continuous part of the SRB measure.
Resonances

Complex susceptibility

- Ruelle-Pollicott resonances: In the power spectrum. Absolutely continuous part of the SRB measure.
- Exotic resonances. Not in the power spectrum. Singular part of the SRB measure.
- Predicted by D. Ruelle (J. Stat. Phys, 1999)
Response to a time-dependent stimulus

Connectivity matrix

Response matrix
Response to a time-dependent stimulus

\[7 \rightarrow 3, \omega = 0.57 \]
\[\omega_0 = 2.97 \times 10^6, \varepsilon = 10^{-3}, T = 10^6 \]
Response to a time-dependent stimulus

Bruno Cessac

Linear response in neuronal networks: from neurons dynamics
Response to a time-dependent stimulus

\[u_{0,t+1} = \sum_{j} J_{0,j} f(u_{j,t}) + \varepsilon \cos(\omega_M t) \sin(\omega t) \]
\((\varepsilon \sim 10^{-3}) \)

\[\langle u_{3,t+1} e^{i\omega t} \rangle \]

\[\langle u_{5,t+1} e^{i\omega t} \rangle \]
\((\varepsilon = 0) \)

\[\langle u_{5,t+1} \rangle = \varepsilon \chi_{50}(\omega) \cos(\omega_M t) \sin(\omega t + \phi_{50}(\omega)) + O(\varepsilon^2) \]
Main conclusions

- Linear response is possible in a chaotic neural network.
- Convolution kernel depending on synaptic graph and dynamics built on equilibrium (SRB) correlations.
- The response graph is different from the synaptic weights graph and depends on the stimulus.
From spiking neurons dynamics to linear response.
How are spike correlations modified by a time-dependent stimulus?
An Integrate and Fire neural network model with chemical and electric synapses

R. Cofré, B. Cessac, Chaos, Solitons and Fractals, 2013

Spikes are time-discrete events (time resolution $\delta > 0$).

Spike state $\omega_k(n) \in \{0, 1\}$.

Spike pattern $\omega_k(n)$.

Spike block $\omega_k(n_m)$.

The figure shows a plot of $V_k(t)$ and V_{res} against time t, with spikes occurring at discrete times indicated by Δ. The spike pattern $\omega_k(n)$ is also shown as a sequence of 0s and 1s.
An Integrate and Fire neural network model with chemical and electric synapses

R. Cofré, B. Cessac, Chaos, Solitons and Fractals, 2013

Spikes

- Voltage dynamics is time-continuous.
- Spikes are time-discrete events (time resolution $\delta > 0$).

$t_k^{(l)} \in [n\delta, (n + 1)\delta[\Rightarrow \omega_k(n) = 1$
An Integrate and Fire neural network model with chemical and electric synapses

R.Cofré, B. Cessac, Chaos, Solitons and Fractals, 2013

Spikes

- Voltage dynamics is time-continuous.
- Spikes are time-discrete events (time resolution $\delta > 0$).
- Spike state $\omega_k(n) \in 0, 1$.
An Integrate and Fire neural network model with chemical and electric synapses

R. Cofré, B. Cessac, Chaos, Solitons and Fractals, 2013

Spikes
- Voltage dynamics is time-continuous.
- Spikes are time-discrete events (time resolution $\delta > 0$).
- Spike state $\omega_k(n) \in 0, 1$.
- Spike pattern $\omega(n)$.
Spikes

- Voltage dynamics is time-continuous.
- Spikes are time-discrete events (time resolution $\delta > 0$).
- Spike state $\omega_k(n) \in 0, 1$.
- Spike pattern $\omega(n)$.
- Spike block ω_m^n.

An Integrate and Fire neural network model with chemical and electric synapses

R.Cofré, B. Cessac, Chaos, Solitons and Fractals, 2013
Sub-threshold dynamics:

\[C_k \frac{dV_k}{dt} = -g_{L,k}(V_k - E_L) \]

\[- \sum_j g_{kj}(t, \omega)(V_k - E_j) \]

\[\alpha_{kj}(t) = \frac{t}{\tau} e^{-\frac{t}{\tau_{kj}}} H(t), \]
A conductance-based Integrate and Fire model

M. Rudolph, A. Destexhe, Neural Comput. 2006, (GIF model)
R. Cofré, B. Cessac, Chaos, Solitons and Fractals, 2013

Sub-threshold dynamics:

\[C_k \frac{dV_k}{dt} = -g_{L,k}(V_k - E_L) \]

\[- \sum_j g_{kj}(t, \omega)(V_k - E_j)\]

\[g_{kj}(t) = g_{kj}(t_j) + G_{kj} \alpha_{kj}(t - t_j) \]

\[t > t_j \]
A conductance-based Integrate and Fire model

M. Rudolph, A. Destexhe, Neural Comput. 2006, (GIF model)
R.Cofré, B. Cessac, Chaos, Solitons and Fractals, 2013

Sub-threshold dynamics:

\[C_k \frac{dV_k}{dt} = -g_{L,k}(V_k - E_L) \]

\[- \sum_j g_{kj}(t, \omega)(V_k - E_j) \]

\[g_{kj}(t) = G_{kj} \sum_{n \geq 0} \alpha_{kj}(t - t_j^{(n)}) \]
A conductance-based Integrate and Fire model

M. Rudolph, A. Destexhe, Neural Comput. 2006, (GIF model)
R. Cofré, B. Cessac, Chaos, Solitons and Fractals, 2013

Sub-threshold dynamics:

\[C_k \frac{dV_k}{dt} = -g_{L,k}(V_k - E_L) \]

\[- \sum_j g_{kj}(t, \omega)(V_k - E_j) \]

\[g_{kj}(t, \omega) = G_{kj} \sum_{n \geq 0} \alpha_{kj}(t - n\delta)\omega_j(n) \]
A conductance-based Integrate and Fire model

M. Rudolph, A. Destexhe, Neural Comput. 2006, (GIF model)
R. Cofré, B. Cessac, Chaos, Solitons and Fractals, 2013

Sub-threshold dynamics:

\[
C_k \frac{dV_k}{dt} = -g_{L,k}(V_k - E_L) - \sum_j g_{kj}(t, \omega)(V_k - E_j) + S_k(t) + \sigma_B \xi_k(t)
\]

\[
g_{kj}(t, \omega) = G_{kj} \sum_{n \geq 0} \alpha_{kj}(t - n\delta) \omega_j(n)
\]
A conductance-based Integrate and Fire model

Sub-threshold dynamics:

\[C_k \frac{dV_k}{dt} + g_k(t, \omega) V_k = i_k(t, \omega). \]

\[W_{kj} \overset{\text{def}}{=} G_{kj} E_j \]

\[\alpha_{kj}(t, \omega) = \sum_{n \geq 0} \alpha_{kj}(t-n\delta) \omega_j(n) \]

\[i_k(t, \omega) = g_{L,k} E_L + \sum_j W_{kj} \alpha_{kj}(t, \omega) + S_k(t) + \sigma_B \xi_k(t) \]
A conductance-based Integrate and Fire model

Sub-threshold dynamics:

\[C_k \frac{dV_k}{dt} + g_k(t, \omega) V_k = i_k(t, \omega). \]

- Linear in \(V \).
- Spike history-dependent.

Dynamics integration

\[\Gamma_k(t_1, t, \omega) = e^{-\frac{1}{C_k} \int_{t_1 \vee \tau_k(t, \omega)}^t g_k(u, \omega) \, du} \]
A conductance-based Integrate and Fire model

Sub-threshold dynamics:

\[C_k \frac{dV_k}{dt} + g_k(t, \omega) V_k = i_k(t, \omega). \]

- Linear in \(V \).
- Spike history-dependent.

Dynamics integration

\[\Gamma_k(t_1, t, \omega) = e^{-\frac{1}{C_k} \int_{t_1}^{t} \tau_k(t, \omega) g_k(u, \omega) du} \]
A conductance-based Integrate and Fire model

Sub-threshold dynamics:

$$C_k \frac{dV_k}{dt} + g_k(t, \omega) V_k = i_k(t, \omega).$$

- Linear in V.
- Spike history-dependent.

Dynamics integration

$$\Gamma_k(t_1, t, \omega) = e^{-\frac{1}{C_k} \int_{t_1}^{t} \tau_k(t, \omega) g_k(u, \omega) \, du}$$

$$V_k(t, \omega) = V_k^{(sp)}(t, \omega) + V_k^{(S)}(t, \omega) + V_k^{(noise)}(t, \omega)$$
A conductance-based Integrate and Fire model

Sub-threshold dynamics:

\[C_k \frac{dV_k}{dt} + g_k(t, \omega) V_k = i_k(t, \omega). \]

- Linear in \(V \).
- Spike history-dependent.

Dynamics integration

\[\Gamma_k(t_1, t, \omega) = e^{-\frac{1}{C_k} \int_{t_1}^{t} \tau_k(u, \omega) g_k(u, \omega) du} \]

\[V_k(t, \omega) = V_k^{(sp)}(t, \omega) + V_k^{(S)}(t, \omega) + V_k^{(noise)}(t, \omega) \]

\[V_k^{(det)}(t, \omega) \]
Sub-threshold dynamics:

\[C_k \frac{dV_k}{dt} + g_k(t, \omega) V_k = i_k(t, \omega). \]

- Linear in \(V \).
- Spike history-dependent.

Dynamics integration:

\[\Gamma_k(t_1, t, \omega) = e^{-\frac{1}{C_k} \int_{t_1}^{t} \tau_k(u, \omega) g_k(u, \omega) du} \]

\[V_k(t, \omega) = V_k^{(sp)}(t, \omega) + V_k^{(S)}(t, \omega) + V_k^{(noise)}(t, \omega) \]

\[V_k^{(det)}(t, \omega) \]

\[V_k^{(sp)}(t, \omega) = V_k^{(syn)}(t, \omega) + V_k^{(L)}(t, \omega), \]
A conductance-based Integrate and Fire model

Sub-threshold dynamics:

\[C_k \frac{dV_k}{dt} + g_k(t, \omega) V_k = i_k(t, \omega). \]

- Linear in \(V \).
- Spike history-dependent.

\[V_k^{(syn)}(t, \omega) = \frac{1}{C_k} \sum_{j=1}^{N} W_{kj} \int_{\tau_k(t, \omega)}^{t} \Gamma_k(t_1, t, \omega) \alpha_{kj}(t_1, \omega) dt_1 \]
A conductance-based Integrate and Fire model

Sub-threshold dynamics:

\[C_k \frac{dV_k}{dt} + g_k(t, \omega) V_k = i_k(t, \omega). \]

- Linear in \(V \).
- Spike history-dependent.

\[V_k^{(\text{syn})}(t, \omega) = \frac{1}{C_k} \sum_{j=1}^{N} W_{kj} \int_{\tau_k(t, \omega)}^{t} \Gamma_k(t_1, t, \omega) \alpha_{kj}(t_1, \omega) dt_1 \]

Dynamics integration

\[\Gamma_k(t_1, t, \omega) = e^{-\frac{1}{C_k} \int_{t_1}^{t} \nu_k(t, \omega) g_k(u, \omega) du} \]

\[V_k(t, \omega) = V_k^{(\text{sp})}(t, \omega) + V_k^{(S)}(t, \omega) + V_k^{(\text{noise})}(t, \omega) \]

\[V_k^{(\text{det})}(t, \omega) \]
A conductance-based Integrate and Fire model

Sub-threshold dynamics:

\[C_k \frac{dV_k}{dt} + g_k(t, \omega)V_k = i_k(t, \omega). \]

- Linear in \(V \).
- Spike history-dependent.

\[\Gamma_k(t_1, t, \omega) = e^{-\frac{1}{C_k} \int_{t_1}^{t} \tau_k(t, \omega) g_k(u, \omega) du} \]

\[V_k(t, \omega) = V_k^{(sp)}(t, \omega) + V_k^{(S)}(t, \omega) + V_k^{(noise)}(t, \omega) \]

\[V_k^{(sp)}(t, \omega) = V_k^{(syn)}(t, \omega) + V_k^{(L)}(t, \omega), \]

\[V_k^{(syn)}(t, \omega) = \frac{1}{C_k} \sum_{j=1}^{N} W_{kj} \int_{\tau_k(t, \omega)}^{t} \Gamma_k(t_1, t, \omega) \alpha_{kj}(t_1, \omega) dt_1 \]
A conductance-based Integrate and Fire model

Sub-threshold dynamics:

$$C_k \frac{dV_k}{dt} + g_k(t, \omega) V_k = i_k(t, \omega).$$

- Linear in V.
- Spike history-dependent.

Dynamics integration

$$\Gamma_k(t_1, t, \omega) = e^{-\frac{1}{C_k} \int_{t_1}^{t} \tau_k(t, \omega) g_k(u, \omega) du}$$

$$V_k(t, \omega) = V_k^{(sp)}(t, \omega) + V_k^{(S)}(t, \omega) + V_k^{(\text{noise})}(t, \omega)$$

$$V_k^{(det)}(t, \omega)$$

$$V_k^{(sp)}(t, \omega) = V_k^{(syn)}(t, \omega) + V_k^{(L)}(t, \omega),$$

$$V_k^{(syn)}(t, \omega) = \frac{1}{C_k} \sum_{j=1}^{N} W_{kj} \int_{\tau_k(t, \omega)}^{t} \Gamma_k(t_1, t, \omega) \alpha_{kj}(t_1, \omega) dt_1$$
A conductance-based Integrate and Fire model

Variable length Markov chain

\[
P_n \left[\omega(n) \mid \omega_{-\infty}^{n-1} \right] \equiv \Pi \left(\omega(n), \frac{V_{th} - V_k^{(det)}(n-1, \omega)}{\sigma_k(n-1, \omega)} \right)
\]
Response to stimuli

How is the average of an observable $f(\omega, t)$ affected by the stimulus?
Response to stimuli

How is the average of an observable \(f(\omega, t) \) affected by the stimulus?

If \(S \) is weak enough: \(\delta \mu [f(t)] = [\kappa_f * S](t) \), (linear response).
Response to stimuli

How is the average of an observable $f(\omega, t)$ affected by the stimulus?

If S is weak enough: $\delta \mu [f(t)] = [\kappa_f * S](t)$, (linear response).

$$\kappa_{k,f}(t - t_1) = \frac{1}{C_k} \sum_{r=-\infty}^{t-t_1} C^{(sp)} \left[f(t - t_1, .), \frac{\mathcal{H}_{k(1)}(r, .)}{\sigma_k(r - 1, .)} \Gamma_k(0, r - 1, .) \right]$$
Response to stimuli

How is the average of an observable $f(\omega, t)$ affected by the stimulus?

If S is weak enough:

$$\delta \mu \left[f(t) \right] = \left[\kappa_f * S \right](t),$$
(linear response).

$$\kappa_{k,f}(t-t_1) = \frac{1}{C_k} \sum_{r=-\infty}^{t-t_1} C^{sp} \left[f(t-t_1, \cdot), \frac{\mathcal{H}^{(1)}_k(r, \cdot)}{\sigma_k(r-1, \cdot)} \Gamma_k(0, r-1, \cdot) \right]$$

History dependence.
Response to stimuli

How is the average of an observable $f(\omega, t)$ affected by the stimulus?

If S is weak enough: $\delta \mu [f(t)] = [\kappa_f * S](t)$, (linear response).

$$\kappa_{k,f}(t - t_1) = \frac{1}{C_k} \sum_{r = -\infty}^{t - t_1} C^{(sp)} \left[f(t - t_1, .), \frac{H_k^{(1)}(r, .)}{\sigma_k(r - 1, .)} \Gamma_k(0, r - 1, .) \right]$$

History dependence, observable
Response to stimuli

How is the average of an observable $f(\omega, t)$ affected by the stimulus?

If S is weak enough: $\delta \mu [f(t)] = [\kappa_f * S](t)$, (linear response).

$$\kappa_{k,f} (t - t_1) = \frac{1}{C_k} \sum_{r=-\infty}^{t - t_1} C^{(sp)} \left[f(t - t_1, .), \frac{\mathcal{H}^{(1)}_k(r, .)}{\sigma_k(r-1, .)} \Gamma_k(0, r - 1, .) \right]$$

History dependence, observable, network dynamics
Response to stimuli

How is the average of an observable \(f(\omega, t) \) affected by the stimulus?

If \(S \) is weak enough:

\[
\delta \mu [f(t)] = [\kappa_f \ast S](t), \quad \text{(linear response)}.
\]

\[
\kappa_{k,f}(t - t_1) = \frac{1}{C_k} \sum_{r=-\infty}^{t-t_1} C^{(sp)} \left[f(t - t_1, \cdot), \frac{\mathcal{H}_k^{(1)}(r, \cdot)}{\sigma_k(r - 1, \cdot)} \Gamma_k(0, r - 1, \cdot) \right]
\]

History dependence, (spontaneous) correlation between observable and network dynamics
Response to stimuli in a mean-field limit

Characteristic time

\[\tau_{d,k} = \frac{C_k}{g_L + \sum_{j=1}^{N} G_{kj} \nu_j \tau_{kj}} \]

Approximations

(i) Replace \(\tau_k(r-1,) \) by \(-\infty\);

(ii) Replace \(\Gamma_k(t_1, r-1, \omega) = e^{-\frac{1}{C_k} \int_{t_1}^{r-1} g_k(u,\omega) \, du} \) by \(e^{-\frac{(r-1-t_1)}{\tau_{d,k}}} \).
Response to stimuli in a mean-field limit

\[\delta^{(1)} \mu [f(t)] = - \frac{2}{\sigma_B} \sum_{k=1}^{N} \frac{1}{\sqrt{\tau_{d,k}}} \sum_{n=[t]}^{n=[t]} \left(S_k \ast e_{d,k} \right)(r - 1) \]

\[e_{d,k}(u) = e^{-\frac{u}{\tau_{d,k}}} \]
Response to stimuli in a mean-field limit

\[\delta^{(1)} \mu [f(t)] = \]
\[- \frac{2}{\sigma_B} \sum_{k=1}^{N} \frac{1}{\sqrt{\tau_{d,k}}} \sum_{r=-\infty}^{n=[t]} \left[(S_k * e_{d,k})(r - 1) \right] \]

Markov approximation with memory depth 1

\[+ \sum_{i=1}^{N} \gamma^{(2)}_{k;i} C^{(sp)} [f(t, \cdot), \omega_k(r) \omega_i(r - 1)] \]
\[+ \sum_{i,j=1}^{N} \gamma^{(3)}_{k;ij} C^{(sp)} [f(t, \cdot), \omega_k(r) \omega_i(r - 1) \omega_j(r - 1)] + \ldots \]
Response to stimuli in a mean-field limit

Markov approximation with memory depth 1

\[
\begin{bmatrix}
\gamma_{k}^{(1)} C^{(sp)} [f(t, \cdot), \omega_{k}(r)] \\
+ \sum_{i=1}^{N} \gamma_{k;i}^{(2)} C^{(sp)} [f(t, \cdot), \omega_{k}(r) \omega_{i}(r-1)] \\
+ \sum_{i,j=1}^{N} \gamma_{k;ij}^{(3)} C^{(sp)} [f(t, \cdot), \omega_{k}(r) \omega_{i}(r-1) \omega_{j}(r-1)] \\
+ \ldots \\
\end{bmatrix}
\]
Response to stimuli in a mean-field limit

Markov approximation with memory depth 1

\[
\begin{bmatrix}
\gamma_k^{(1)} C^{(sp)} [f(t, \cdot), \omega_k(r)] \\
\gamma_{k;i}^{(2)} C^{(sp)} [f(t, \cdot), \omega_k(r) \omega_i(r-1)] \\
\gamma_{k;ij}^{(3)} C^{(sp)} [f(t, \cdot), \omega_k(r) \omega_i(r-1) \omega_j(r-1)] \\
\end{bmatrix} + \sum_{i=1}^{N} \gamma_k^{(1)} C^{(sp)} [f(t, \cdot), \omega_k(r)] + \sum_{i,j=1}^{N} \gamma_{k;ij}^{(3)} C^{(sp)} [f(t, \cdot), \omega_k(r) \omega_i(r-1) \omega_j(r-1)] + \ldots
\]
Response to stimuli in a mean-field limit

Ex: Firing rate of neuron m

$$\delta^{(1)} \mu \left[\omega_m(t) \right] =$$

$$- \frac{2}{\sigma_B} \sum_{k=1}^{N} \frac{1}{\sqrt{\tau d, k}} \sum_{r=-\infty}^{n=[t]} \left[+ \sum_{i=1}^{N} \gamma_{k,i}^{(1)} C^{(sp)} \left[\omega_m(t), \omega_k(r) \right] + \sum_{i,j=1}^{N} \gamma_{k,ij}^{(2)} C^{(sp)} \left[\omega_m(t), \omega_k(r) \omega_i(r-1) \omega_j(r-1) \right] + \ldots \right] \left(S_k \ast e_{d,k} \right)(r-1)$$
Conclusions

- Linear response in a spiking neural network.
- Convolution kernel depending on synaptic graph and dynamics built on equilibrium correlations.
- Link with receptive fields for sensory neurons?
- Further steps. Handle this equation ... in a simple numerical example.
General conclusions
Network response to a stimulus
Network response to a stimulus

1. How does an input/stimulation applied to a subgroup of neurons in a population affect the dynamics of the whole network?

2. How to measure the influence of a stimulated neuron on another neuron?

3. How does this “effective connectivity” relates to:
 (a) Synaptic connectivity;
 (b) Pairwise correlations;
 (c) “Information” transport.
Network response to a stimulus

Spontaneous dynamics \Rightarrow complex, noise, chaos, non linear.
Network response to a stimulus

Spontaneous dynamics \Rightarrow complex, noise, chaos, non linear.

Stimulus effect \Rightarrow requires to filter the spontaneous part \Rightarrow suitable averaging.
Network response to a stimulus

Spontaneous dynamics \Rightarrow complex, noise, chaos, non linear.

Stimulus effect \Rightarrow requires to filter the spontaneous part \Rightarrow suitable averaging.

Linear response. The response to the stimulus is obtained in terms of correlations computed with respect to spontaneous activity (Kubo like relations).
Network response to a stimulus

Spontaneous dynamics \Rightarrow complex, noise, chaos, non linear.

Stimulus effect \Rightarrow requires to filter the spontaneous part \Rightarrow suitable averaging.

Linear response. The response to the stimulus is obtained in terms of correlations computed with respect to spontaneous activity (Kubo like relations).

Information transport ? Requires a suitable probabilistic characterization (entropy transport, Granger causality, ...).
Linear response theory in physics
Linear response theory in physics

\[P[S] = \frac{1}{Z} e^{-\beta H\{S\}} \]

\[H\{S\} = \sum_\alpha \lambda_\alpha X_\alpha \{S\} \]

\[\lambda_\alpha X_\alpha \sim E, P \times V, \mu \times N, h \times M, \ldots \]

\[PV = nRT, \ldots \]
Linear response theory in physics

- Non equilibrium stat. phys. Onsager theory.

\[\vec{j}_\alpha = \vec{F}_\alpha(\vec{\nabla}\lambda_1, \ldots, \vec{\nabla}\lambda_\beta, \ldots) \]

\[\vec{j}_\alpha \sim \sum_\beta L_{\alpha\beta} \vec{\nabla}\lambda_\beta + \ldots \]

\[\vec{j}_{el} = -\sigma_E \vec{\nabla}V; \quad \vec{j}_Q = -\lambda \vec{\nabla}T, \ldots \]
Linear response theory in physics

- Non equilibrium stat. phys. Onsager theory.
- Green-Kubo relations.

\[\vec{j}_\alpha = \vec{F}_\alpha(\vec{\nabla}\lambda_1, \ldots, \vec{\nabla}\lambda_\beta, \ldots) \]

\[\vec{j}_\alpha \sim \sum_\beta L_{\alpha\beta} \vec{\nabla}\lambda_\beta + \ldots \]

\[\vec{j}_{el} = -\sigma_E \vec{\nabla} V; \quad \vec{j}_Q = -\lambda \vec{\nabla} T, \ldots \]

Linear transport coefficients ← equilibrium correlations of currents.
Linear response theory in physics

Onsager theory in non equilibrium statistical mechanics.

\[\text{gradients} \Rightarrow \text{fluxes} \]

Linear relation between "small" gradients and fluxes.
Linear response theory in physics

Onsager-Ruelle - ... theory in dynamical systems.

Perturbation \Rightarrow response

Linear relation between "small" perturbations and response.
Gibbs distribution

- Non equ. stat. phys. Onsager theory.
- Ergodic theory, chaotic systems.

The Sinai-Ruelle-Bowen measure is a Gibbs measure

\[H = - \log \det \Pi^u D F_x \]
Gibbs distribution

- Non equ. stat. phys. Onsager theory.
- Ergodic theory.
- Markov chains - finite memory.

\[P[\omega] = \frac{1}{Z} e^{-\beta H(\omega)} \]

\[H(\omega) = \sum_{\alpha} \lambda_\alpha X_\alpha(\omega) \]

\[X_\alpha(\omega) = \text{Product of spike events} \]

Hammersley, Clifford, unpublished, 1971
Gibbs distribution

- Non equ. stat. phys. Onsager theory.
- Ergodic theory.
- Markov chains - finite memory.
- Chains with complete connections - infinite memory (Left Interval Specification).

\[P[\omega] = \frac{1}{Z} e^{-\beta H(\omega)} \]

\[H(\omega) = \sum_{\alpha} \lambda_{\alpha} X_{\alpha}(\omega) \]

\[X_{\alpha}(\omega) = \text{Product of spike events} \]

Hammersley, Clifford, unpublished, 1971

O. Onicescu and G. Mihoc. CRAS Paris, 1935

R. Fernandez, G. Maillard, A. Le Ny, J.R. Chazottes, ...
Thanks!!