ILWIS GIS for monitoring landscapes in tundra ecosystems: Yamal peninsula, Russia
Polina Lemenkova

To cite this version:

HAL Id: cel-01973028
https://hal.archives-ouvertes.fr/cel-01973028
Submitted on 8 Jan 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons CCO - Public Domain Dedication| 4.0 International License
ILWIS GIS for Monitoring Landscapes in Tundra Ecosystems: Yamal Peninsula, Russia

Polina Lemenkova

Dresden University of Technology (TU Dresden)

✉: Polina.Lemenkova@mailbox.tu-dresden.de

This presentation is made using \LaTeX

May 30, 2012
Outline

Introduction
   Research aim
   Research objective

Study area
   Geographic location
   Environmental settings

Methods
   Remote Sensing
      Data capture
      Data processing
   ILWIS GIS
      Supervised classification
      Thematic mapping

Results
   Thematic maps
   Assessment of areas

Discussion

Résumé

Conclusion

Thanks

References
Brief Summary

Research aim:

- distribution of various land cover types in Yamal Peninsula
- monitoring changes in tundra landscapes
- analysis of the landscape dynamics during the past two decades (1988-2011).

Data:
Landsat TM scenes for 1988 and 2011 years.

Originality:
Application of ILWIS GIS spatial analysis tools and Landsat imagery for Bovanenkovo region in Yamal.
Brief Summary

Research aim:

- distribution of various land cover types in Yamal Peninsula
- monitoring changes in tundra landscapes
- analysis of the landscape dynamics during the past two decades (1988-2011).

Data:
Landsat TM scenes for 1988 and 2011 years.

Originality:
Application of ILWIS GIS spatial analysis tools and Landsat imagery for Bovanenkovo region in Yamal.
Brief Summary

Research aim:

- distribution of various land cover types in Yamal Peninsula
- monitoring changes in tundra landscapes
- analysis of the landscape dynamics during the past two decades (1988-2011).

Data:
Landsat TM scenes for 1988 and 2011 years.

Originality:
Application of ILWIS GIS spatial analysis tools and Landsat imagery for Bovanenkovo region in Yamal.
Brief Summary

Methodology

Technical tools:
The RS data processing was performed in ILWIS GIS software: Fig.1

Research method:
Image interpretation applied to Landsat TM scenes, and supervised classification

Figure: 1. ILWIS GIS.
Source: www.ilwis.org/
Brief Summary

Methodology

Technical tools:
The RS data processing was performed in ILWIS GIS software: Fig.1

Research method:
Image interpretation applied to Landsat TM scenes, and supervised classification

Figure: 1. ILWIS GIS.
Source: www.ilwis.org/
Research Area

Geographic location: Yamal Peninsula, north Russia

(a) Geographic location of Yamal Peninsula. Map source: google.com

(b) Location of the study area on Yamal (western coast). Source: Bruce Forbes
Environment of Yamal, part 1

Yamal Peninsula: geomorphology

Specific climatic-environmental settings of Yamal Peninsula: flat geomorphology, elevations < 90 m. Processes:

- seasonal flooding,
- active erosion processing,
- permafrost distribution and
- intensive local landslides formation.

Figure: 4. Landscapes of Yamal. Source: http://pixtale.net/
Environment of Yamal, part 2

Yamal Peninsula: environmental settings

One of the typical process in Yamal tundra: cryogenic landslides. Landslides affect local ecosystem structure, because they change vegetation types recovering after the disaster.

Figure: 5. Landscapes of Yamal.
Landscapes of Yamal Peninsula

Land cover classes: 1-4 from 11

(a) Type 1. Shrub tundra. 
Source: www.novaonline.nvcc.edu/

(b) 2. Dwarf willows. 
from: www.travelanguist.com

(c) Type 3. Arctic willows. 
Source: http://nature-plants.com

(d) 4. Sparse short shrub tundra. (www.polarfield.com)
Landscapes of Yamal Peninsula (continue)

Land cover classes (5-8 from 11)

(e) Type 5. Dry grass heath tundra. (from polarfield.com)

(f) 6. Sedge grass tundra. Source: arcticatlas.org

(g) 7. Dry short shrub tundra. (www.arcticatlas.org)

(h) Sphagnum moss. Source: google.com
Landscapes of Yamal Peninsula (continue)

Land cover classes (9 to 11 from 11)

(i) Type 9. Dry short shrub sedge tundra.
Source: www.britannica.com

(j) Type 10. Wetlands.
Source: google.com

(k) Type 11. Short shrub tundra.
(Image source: www.arctic-predators.uit.no)
Human activities on Yamal: part 1

Yamal Peninsula: reindeer herding

The most typical anthropogenic activity on Yamal Peninsula is reindeer herding (Fig.3). Yamal is a homeland for ca 5000 nomadic Nenets tribes migrating with herds up to 1200 km annually.

Herding is natural process. However, it may have negative effects: pasture overgrazing and pressure on vegetation coverage.
Human activities on Yamal: part 2

Yamal Peninsula: gas exploration

Yamal Peninsula is a place where the gas field "Bovanenkovo" is being explored (Fig. 3). Geological gas exploration cause serious anthropogenic pressure on the environment. Indirectly it also includes additional construction of roads, settlements, human facilities, etc.

(n) Yamal: scheme of gas exploration. (www.reindeerblog.org)

(o) View on the gas exploration station. Photo: http://barentsobserver.com
Research Methods: Step 1.

Data pre-processing

a) import .img into ASCII raster format (GDAL).
After converting, each image contained collection of 7 raster bands
b) visual color and contrast enhancement
c) geographic referencing of Landsat scenes, initially based on WGS 1984 datum: UTM (Universal Transverse Mercator) Projection, Eastern Zone 42, Northern Zone W, (Georeference Corner Editor, ILWIS).
d) crop of study area The area of interest (AOI) was identified and cropped on the raw images. This area shows Bovanenkovo region in a large scale and best represents typical tundra landscapes.
Research Methods: Step 1.

Data pre-processing

a) import .img into ASCII raster format (GDAL).
After converting, each image contained collection of 7 raster bands
b) visual color and contrast enhancement

c) geographic referencing of Landsat scenes, initially based on WGS 1984 datum: UTM (Universal Transverse Mercator) Projection, Eastern Zone 42, Northern Zone W, (Georeference Corner Editor, ILWIS).
d) crop of study area The area of interest (AOI) was identified and cropped on the raw images. This area shows Bovanenkovo region in a large scale and best represents typical tundra landscapes.
Research Methods: Step 1.

Data pre-processing

a) import .img into ASCII raster format (GDAL). After converting, each image contained collection of 7 raster bands
b) visual color and contrast enhancement
c) geographic referencing of Landsat scenes, initially based on WGS 1984 datum: UTM (Universal Transverse Mercator) Projection, Eastern Zone 42, Northern Zone W, (Georeference Corner Editor, ILWIS).
d) crop of study area The area of interest (AOI) was identified and cropped on the raw images. This area shows Bovanenkovo region in a large scale and best represents typical tundra landscapes.
Research Methods: Step 1.

Data pre-processing
a) import .img into ASCII raster format (GDAL). After converting, each image contained collection of 7 raster bands
b) visual color and contrast enhancement
c) geographic referencing of Landsat scenes, initially based on WGS 1984 datum: UTM (Universal Transverse Mercator) Projection, Eastern Zone 42, Northern Zone W, (Georeference Corner Editor, ILWIS).
d) crop of study area The area of interest (AOI) was identified and cropped on the raw images. This area shows Bovanenkovo region in a large scale and best represents typical tundra landscapes.
Research Methods: Step 2.

Image classification

- The key research method is supervised classification (Minimal Distance), which is based on the spatial analysis of spectral signatures of object variables, i.e. vegetation types.
- The classes sampling was performed using Sample Set tool in ILWIS GIS.
- The training pixels for each land cover type were selected as representative samples and stored as classification key.
- Requirement for training pixels: they have contrasting colors, visually visible and distinguishable on the image.
Thematic mapping

Layouts of main research results represent maps of the land cover classes.

The created domain Land classes includes legend with representation colors visualizing each category.

Figure: 21. Thematic mapping
GIS Mapping (1988)

Landsat TM scene

Figure: 22. Landsat TM, 1988

Figure: 23. Map of land cover classes, 1988
GIS Mapping (2011)

Landsat TM scene

Figure: 24. Landsat TM, 2011

Figure: 25. Land cover classes
Results

Land cover classes: assessment of changes

Table: 1. Statistics on land cover classes, Bovanenkovo region, Yamal

<table>
<thead>
<tr>
<th>Land Cover Class</th>
<th>1988, # pixels</th>
<th>2011, # pixels</th>
<th>1988, ha</th>
<th>2011, ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shrub tundra</td>
<td>220447</td>
<td>168226</td>
<td>1146.3244</td>
<td>874.7752</td>
</tr>
<tr>
<td>Short shrub tundra</td>
<td>165079</td>
<td>270158</td>
<td>858.4108</td>
<td>1404.8216</td>
</tr>
<tr>
<td>Willows</td>
<td>193645</td>
<td>457004</td>
<td>1006.954</td>
<td>2376.4208</td>
</tr>
<tr>
<td>Tall willows</td>
<td>103954</td>
<td>71952</td>
<td>540.5608</td>
<td>374.1504</td>
</tr>
<tr>
<td>Sparse short shrub tundra</td>
<td>176511</td>
<td>759380</td>
<td>917.8572</td>
<td>3948.776</td>
</tr>
<tr>
<td>Dry grass heath</td>
<td>641420</td>
<td>231719</td>
<td>3335.384</td>
<td>1204.9388</td>
</tr>
<tr>
<td>Sedge grass tundra</td>
<td>27545</td>
<td>57052</td>
<td>143.234</td>
<td>296.6704</td>
</tr>
<tr>
<td>Dry short shrub tundra</td>
<td>8984</td>
<td>16993</td>
<td>46.7168</td>
<td>88.3636</td>
</tr>
<tr>
<td>Wet peatland</td>
<td>761231</td>
<td>531809</td>
<td>3958.4012</td>
<td>2765.4068</td>
</tr>
<tr>
<td>Peatland (sphagnum)</td>
<td>120328</td>
<td>93979</td>
<td>625.7056</td>
<td>488.6908</td>
</tr>
<tr>
<td>Dry short shrub-sedge tundra</td>
<td>173693</td>
<td>92242</td>
<td>903.2036</td>
<td>479.6584</td>
</tr>
</tbody>
</table>
Discussion

Environmental Analysis

Results show:

- overall increase of woody vegetation (willows and shrubs)
- decrease of peatlands, grass and heath areas.

This illustrates environmental process of greening in Arctic, i.e. the unnatural increase of woody plants. The gradual changes in patterns and distribution of plant species affect landscape structure in Yamal.

Triggering factors:

- complex environmental changes in Arctic
- local cryogenic processes (e.g. successive change in vegetation recovering after cryogenic landslides)
Résumé

Summary

* Current research details changes in spatial distribution of land cover types in selected area of western Yamal Peninsula
* The time span covers past 2 decades (1988 - 2011)
* The research is technically performed by means of ILWIS GIS, based on spatial analysis of classified Landsat TM images.
* The results of spatial analysis are presented as thematic maps illustrating changes in land cover types on Yamal Peninsula. GIS mapping is based on the image classification.
* As a result of climate and environmental impacts, there are detected changes in the vegetation structure.
* Main outcome: overall increase in woody plants, e.g. "short shrub tundra", "sparse short shrub tundra" and "dry short shrub tundra"), and slight decrease in grasses, heath and peatland.
* There is process of greening detected in Yamal tundra. It indicates structural variations in ecosystems.
...to conclude:

- GIS-based mapping (e.g. ILWIS GIS) is an important tool for the landscape monitoring and management.
- Processing of remote sensing data (e.g. Landsat TM scenes) by means of GIS improves technical aspects of the landscape studies.
- Application of RS data is especially important for studies of northern ecosystems, since it enables to perform spatial analysis of remotely located areas in Arctic regions.
- Spatial analysis of land cover types can help to detect local environmental changes.
Acknowledgement

Thanks
The financial support of this research has been provided by the Fellowship of the Center for International Mobility (CIMO) of Finland. Contract No. TM-10-7124 (Decision 9.11.2010).

This research was done at the Arctic Center, University of Lapland.

I thank my scientific chief Prof. Dr. Bruce C. Forbes from the Arctic Center and colleague Dr. Timo Kumpula from the University of Eastern Finland for our collaboration.
Russian Arctic warming and greening are closely tracked by tundra shrub willows.
*Global Change Biology, 16 (5), 1542-1554.*


Land use and land cover change in Arctic Russia: Ecological and social implications of industrial development.
*Global Environmental Change 21, 550-562.*

Cryogenic Landslides of the Yamal and Yugorsky Peninsula (Kriogennyie opolzni Yamala Yugorskovo poluostrova). Moscow: Earth Cryosphere Institute, Siberian Branch, Russian Academy of Science (in Russian)

Mapping land cover change in a reindeer herding area of the Russian Arctic using Landsat TM and ETM+ imagery and indigenous knowledge.
The End