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Groups of order 8 and 16

J. Lapuyade-Lahorgue

1 Introduction

This document is inspirated of the work of David Clausen (University of Puget Sound,
USA) with simplification in the proofs. The reader has to have basic knowledge on
group theory including:

• Abelian and cyclic groups.

• Lagrange theorem.

• Normal subgroup and quotient group.

• Direct and semi-direct products.

• Cauchy theorem.

• Operation of groups on a set.

2 Preliminaries

Definition 1 (Center of a group). Let G be a group, the center of G is defined as:

Z(G) = {h : ∀g, hg = gh}

Definition 2 (Commutator subgroup). Let G be a group, the commutator of G is
the smallest subgroup containing the commutators [g1, g2] = g1g2g

−1
1 g−12

Proposition 1. If the quotient group G/Z(G) is cyclic then G is Abelian and con-
sequently G/Z(G) ∼= {e}.
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Proof. Suppose G/Z(G) = {Z(G), gZ(G), g2Z(G), . . . , gn−1Z(G)}. Let gixi and
gjxj, with xi, xj ∈ Z(G) be two elements of G. Then:

gixig
jxj = gigjxixj

= xjg
i+jxi

= xjg
jgixi

= gjxjg
ixi

Proposition 2. If |G| = pn, where p is a prime number, then |Z(G)| = pk for k ≥ 1.

Proof. G operates on itself by conjugaison g.h = ghg−1. For any h, the stabi-
lizer of h is the centralizer Sh = {g : gh = hg} and its orbital is the set O(h) =
{ghg−1 : g ∈ G}. We recall that O(h) is in bijection with the quotient set (G/Sh)l =
{gSh : g ∈ G} and consequently has the same cardinal. It is easy to show that the
cardinal |O(h)| = 1 if and only if h ∈ Z(G), consequently:

|G| = |Z(G)|+
∑

h/∈Z(G)

|G|
|Sh|

,

where the sum is indexed for the h which are not in the same orbital.

The term
∑

h/∈Z(G)

|G|
|Sh|

is a multiple of p, consequently |Z(G)| also. Using the La-

grange’s theorem, we deduce the result.

Theorem 1 (Burnside’s theorem). If the order of a group G is equal to p2, with p a
prime number; then G is abelian.

Proof. Easy: use the two previous propositions.

Proposition 3. The commutator subgroup, denoted D(G), is the smallest normal
subgroup such that G/D(G) is Abelian.

Proof. First step: D(G) is a normal subgroup:

h[g1, g2]h
−1 = hg1g2g

−1
1 g−12 h−1

= hg1g2g
−1
1 (hg2)

−1

= hg1h
−1(hg2)g

−1
1 (hg2)

−1

= hg1h
−1g−11 g1(hg2)g

−1
1 (hg2)

−1

= [h, g1][g1, hg2] ∈ D(G)
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Second step: G/D(G) is Abelian:
It is trivial by construction of D(G). Indeed, g−11 g−12 g1g2 ∈ D(G), consequently,
g1g2D(G) = g2g1D(G). Third step: If H is a normal subgroup such that G/H is
Abelian, then H contains the commutator. The conclusion is trivial.

Theorem 2 (Correspondance theorem). Let H be a normal subgroup of a group G,
then there is a bijection between the set of the subgroups S of G containing H and
the set of the subgroups S/H of G/H.

Proposition 4. Let H and K be two subgroups of a group G. We define the set
HK = {hk : h ∈ H, k ∈ K}, which is not necessarily a group. Then:

|HK| = |H| × |K|
|H ∩K|

3 Groups of order 8

We now classify all groups of order 8. The neutral element will be denoted e.

3.1 Abelian groups of order 8

Name Character presentation
Z8 a8 = e

Z4 × Z2 a4 = b2 = e and D(G) = {e}
(Z2)

3 a2 = b2 = c2 = e and D(G) = {e}.

3.2 No Abelian groups of order 8

Proposition 5. We have necessarily:

Z(G) ∼= Z2

and:
G/Z(G) ∼= Z2 × Z2

Proof. As G/Z(G) cannot be cyclic and |Z(G)| is a non trivial power of 2 different
of 8, we deduce the result.
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From the previous proposition, as G is not Abelian and G/Z(G) is Abelian; we
deduce that D(G) = Z(G).
Moreover, we remark that:

Z2 × Z2 = {(0, 0), (1, 0), (0, 1), (1, 1)} ,

has three subgroups of order 2. Consequently, by the correspondance theorem, G
has three subgroups of order 4, denoted G1, G2, G3, containing the center.

Proposition 6. If g1 ∈ G1\Z(G) and g2 ∈ G2\Z(G), then g1g2 ∈ G3\Z(G).

Proof. Suppose, by the correspondance theorem, that G1 (resp. G2) corresponds to
the subgroup {(0, 0), (1, 0)} (resp. {(0, 0), (0, 1)}). Then, g1 corresponds to (1, 0)
and g2 to (0, 1). As (1, 0) + (0, 1) = (1, 1) which corresponds to g1g2; we deduce the
conclusion.

Proposition 7. If g1 ∈ G1\Z(G) and g2 ∈ G2\Z(G), then g1g2 6= g2g1.

Proof. Suppose the converse. Then g1 commutes with the elements of Z(G), of
g1Z(G) and of g2Z(G). Consequently, the centralizer of g1 has at least 6 elements.
And, as the centralizer is a subgroup of G then it has exactly 8 elements. We deduce
that the centralizer of g1 is G, so g1 ∈ Z(G); which is contradictory.

Proposition 8. Let Gi, Gj be two distinct subgroups amongst G1, G2, G3, then:

G = GiGj

Gi ∩Gj = Z(G)

Proof. Use the formula:

|GiGj| =
|Gi| × |Gj|
|Gi ∩Gj|

=
16

|Gi ∩Gj|
,

and the fact that GiGj cannot have more elements than G.

As the sub-groups Gi has order equal to 4, they are either isomorphic to Z4 or
Z2 × Z2.

In the following, let Z(G) = {e, α} with α2 = e.
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3.2.1 G1, G2, G3
∼= Z2 × Z2

In this case, there are three elements a, b, c in G\Z(G) such that:

• G1 = {e, a, α, aα}.

• G2 = {e, b, α, bα}.

• G3 = {e, c, α, cα}.

From the Proposition 6., ba ∈ G3 and consequently has order 2; so baba = e. But,
as a and b have order 2, then baab = e. Consequently, ba = ab, which contradicts
Proposition 7.

3.2.2 G1
∼= Z4, G2, G3

∼= Z2 × Z2

There exists three elements a, b, c in G\Z(G) such that:

• G1 = {e, a, a2 = α, a3}.

• G2 = {e, b, α, bα}.

• G3 = {e, c, α, cα}.

ba has order 2, so baba = e. a has order 4 and b has order 2, so baa3b = e.
Consequently, ba = a3b. As G = G1G2, G is generated by a and b. Moreover,
| < a > | × | < b > | = 4 × 2 = 8 = |G| and < a > ∩ < b >= {e}; G is the
semi-direct product < a > o < b >∼= Z4 o Z2. It is the diedral group D4. Its
character representation is a4 = b2 = e and ba = a3b.

3.2.3 G1, G2
∼= Z4, G3

∼= Z2 × Z2

There exists three elements a, b, c in G\Z(G) such that:

• G1 = {e, a, a2 = α, a3}.

• G2 = {e, b, b2 = α, b3}.

• G3 = {e, c, α, cα}.

We have also baba = e and baa3b3 = e. Consequently ba = a3b3 = a2abb2 = αabα =
α2ab = ab because α ∈ Z(G) and has order 2. ba = ab leads to a contradiction.
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3.2.4 G1, G2, G3
∼= Z4

There exists three elements a, b, c in G\Z(G) such that:

• G1 = {e, a, a2 = α, a3}.

• G2 = {e, b, b2 = α, b3}.

• G3 = {e, c, c2 = α, c3}.

We have ba(ba)3 = e and baa3b3 = e. Consequently (ba)3 = a3b3 = ab; so (ba)2ba =
ab; so αba = ab; so ba = αab = a3b. It is the group of quaternions denoted H. It is
not a semi-direct product and its character representation is a4 = b4 = e, a2 = b2 and
ba = a3b. It is frequent that a and b are denoted i and j, ab is denoted k and a2 is
denoted −1. With these notation H = {1,−1, i,−i, j,−j, k,−k} with i2 = j2 = −1,
(−1)2 = 1, ji = −ij, ij = k.

We have classified all groups of order 8. The following table gives the non-Abelian
groups of order 8.

Name Character presentation
D4
∼= Z4 o Z2 a4 = b2 = e,ba = a3b

H a4 = b4 = e, a2 = b2, ba = a3b

4 Groups of order 16

4.1 Abelian groups of order 16

Name Character presentation
Z16 a16 = e

Z8 × Z2 a8 = b2 = e, D(G) = {e}
Z4 × Z4 a4 = b4 = e, D(G) = {e}

Z4 × (Z2)
2 a4 = b2 = c2 = e, D(G) = {e}

(Z2)
4 a2 = b2 = c2 = d2 = e, D(G) = {e}

4.2 Non-Abelian groups of order 16

As G/Z(G) cannot be cyclic, we show easily that |Z(G)| ∈ {2, 4}.
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4.2.1 First case: |Z(G)| = 4

In this case, as G/Z(G) is not cyclic, G/Z(G) ∼= Z2 × Z2. As G/Z(G) is Abelian,
then D(G) C Z(G).
As it has been done for the groups of order 8, we show that G has three sub-groups
G1, G2, G3 of order 8 which contain the center.

Proposition 9. The subgroups G1, G2, G3 are Abelian.

Proof. Indeed, as Z(G) < Gi, we deduce easily that Z(G) < Z(Gi). Consequently,
Z(Gi) has at least 4 elements. And as the center of a group of order 8 has either 2
elements or 8 elements, then |Z(Gi)| = 8 and we deduce that Gi is Abelian.

The following propositions can be proved in a similar way as for the groups of
order 8.

Proposition 10. If g1 ∈ G1\Z(G) and g2 ∈ G2\Z(G), then g1g2 ∈ G3\Z(G).

Proposition 11. If g1 ∈ G1\Z(G) and g2 ∈ G2\Z(G), then g1g2 6= g2g1.

Proposition 12. Let Gi, Gj be two distinct subgroups amongst G1, G2, G3, then:

G = GiGj

Gi ∩Gj = Z(G)

A) First sub-case: Z(G) ∼= Z2×Z2 Let Z(G) = {e, α, β, γ} with α2 = β2 = γ2 =
e.
The Abelian groups of order 8 which have Z2 × Z2 for subgroup are:

• Z4 × Z2 = {(0, 0), (1, 0), (2, 0), (3, 0), (0, 1), (1, 1), (2, 1), (3, 1)} with:

– {(0, 0), (2, 0), (0, 1), (2, 1)} ∼= Z2 × Z2.

• (Z2)
3 = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)} with:

– {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1)} ∼= Z2 × Z2.

– {(0, 0, 0), (0, 0, 1), (1, 0, 0), (1, 0, 1)} ∼= Z2 × Z2.

– {(0, 0, 0), (0, 0, 1), (1, 1, 0), (1, 1, 1)} ∼= Z2 × Z2.

– {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0)} ∼= Z2 × Z2.

– {(0, 0, 0), (0, 1, 0), (1, 0, 1), (1, 1, 1)} ∼= Z2 × Z2.

– {(0, 0, 0), (0, 1, 1), (1, 0, 0), (1, 1, 1)} ∼= Z2 × Z2.

– {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)} ∼= Z2 × Z2.
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A1) G1, G2, G3
∼= (Z2)

3: There exists three elements a, b, c which are not in the
center Z(G) such that:

• G1 = {e, α, β, γ, a, aα, aβ, aγ}.

• G2 = {e, α, β, γ, b, bα, bβ, bγ}.

• G3 = {e, α, β, γ, c, cα, cβ, cγ}.

ba has order 2, so baba = e. But, a and b have order 2, so baab = e. Consequently
ba = ab, which leads to a contradiction.

A2) G1
∼= Z4×Z2, G2, G3

∼= (Z2)
3: There exists three elements a, b, c which are

not in the center Z(G) such that:

• G1 = {e, a, a2 = α, a3, β, aβ, a2β = γ, a3β}.

• G2 = {e, α, β, γ, b, bα, bβ, bγ}.

• G3 = {e, α, β, γ, c, cα, cβ, cγ}.

We show easily that ba = a3b (ba has order 2, a has order 4 and b has order 2).
As G = G1G2, G is generated by a, b, β. We have | < a > | × | < b > | = 8 and
< a > ∩ < b >= {e}. Consequently < a, b >∼= D4. Moreover, βa = aβ and βb = bβ,
as β ∈ Z(G). | < a, b > | × | < β > | = 16 = |G| and < a, b > ∩ < β >= {e}.
Consequently, the group G is:

G ∼= D4 × Z2

Its character presentation is x4 = y2 = z2, yx = x3y, zx = xz, zy = yz. (In order to
avoid confusion, we will prefer character presentation with letter x, y, z, w, ... rather
than a, b, c, ...)

A3) G1, G2
∼= Z4 × Z2, G3

∼= (Z2)
3: We consider two cases:

First case:
There exists three elements a, b, c which are not in the center Z(G) such that:

• G1 = {e, a, a2 = α, a3, β, aβ, a2β = γ, a3β}.

• G2 = {e, b, b2 = α, b3, β, bβ, b2β = γ, b3β}.

• G3 = {e, α, β, γ, c, cα, cβ, cγ}.
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Then we show by considering the order of elements that ba = a3b3. Consequently,
ba = a3b3 = a2abb2 = αabα = α2ab = ab, which leads to a contradiction.
Second case:
There exists three elements a, b, c which are not in the center Z(G) such that:

• G1 = {e, a, a2 = α, a3, β, aβ, a2β = γ, a3β}.

• G2 = {e, b, b2 = β, b3, α, bα, b2α = γ, b3α} = {e, b, b2 = β, b3, γ, bγ, b2γ = α, b3γ = bα}.

• G3 = {e, α, β, γ, c, cα, cβ, cγ}.

We show that ba = a3b3 = αabβ = γab. Without loss of generality, one can suppose
that ab = c, so ba = γc. We have bγ = γb and bc = bab = γcb, < γ, c >∼= Z2 × Z2,
< b >∼= Z4, | < γ, c > | × | < b > | = 4× 4 = 16 = |G| and < γ, c > ∩ < b >= {e}.
Consequently, G is the semi-direct product:

G ∼= (Z2 × Z2) oϕ Z4,

with:

ϕ : Z4 → Aut (Z2 × Z2)

1 →
(

(1, 0)→ (1, 0)
(0, 1)→ (1, 1)

)
Its minimal character presentation is x4 = y4 = e, yx = x3y3, x2, y2 ∈ Z(G).
(another possible presentation can be x2 = y2 = z4 = e, yx = xy, zx = xyz, zy = yz
but needs more generators).

A4) G1, G2, G3
∼= Z4 × Z2: We consider two cases:

First case:
There exists three elements a, b, c which are not in the center Z(G) such that:

• G1 = {e, a, a2 = α, a3, β, aβ, a2β = γ, a3β}.

• G2 = {e, b, b2 = β, b3, α, bα, b2α = γ, b3α}.

• G3 = {e, c, c2, c3, . . .} (the structure of G3 will be precised latter).

As ba is not in the center but in G3 then ba has order 4. In all case, (ba)2 = c2.
Indeed, in Z4 × Z2, the square of all elements of order 4 is (2, 0). We show that
(ba)2ba = a3b3 = a2abb2 = αabβ = γab. Consequently, (ba)2 6= γ. Without loss of
generality, one can suppose that c2 = (ba)2 = β; which gives the entire structure of
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G3. Consequently, ba = βγab = αab = a2ab = a3b. We have < a >∼= Z4 (idem for
< b >), | < a > | × | < b > | = 16 = |G| and < a > ∩ < b >= {e}. Consequently, G
is the semi-direct product:

G ∼= Z4 o Z4

Its character presentation is x4 = y4 = e, yx = x3y.
Second case:
From the first case, one can see that amongst the square a2, b2, c2, at least two are
equal. The second case is when a2 = b2 = c2. Without loss of generality:

• G1 = {e, a, a2 = α, a3, β, aβ, a2β = γ, a3β}.

• G2 = {e, b, b2 = α, b3, β, bβ, b2β = γ, b3β}.

• G3 = {e, c, c2 = α, c3, β, cβ, c2β = γ, c3β}

We show that (ba)3 = a3b3 = a2abb2 = ab, so (ba)2ba = ab, so ba = a3b. As
the character presentation of < a, b > is a4 = b4 = e, a2 = b2, ba = a3b, we
deduce that < a, b >∼= H. Moreover, G = G1G2 =< a, b, β >. As β ∈ Z(G),
| < β > | × | < a, b > | = 2× 8 = 16 and < β > ∩ < a, b >= {e}, we deduce that G
is the direct product:

H× Z2

Its character presentation is x4 = y4 = z2 = e, x2 = y2, yx = x3y, zx = xz, zy = yz.
We have classified all groups of order 16 such that Z(G) ∼= Z2 × Z2:

Name Character presentation
D4 × Z2 x4 = y2 = z2 = e,yx = x3y,zx = xz,zy = yz

(Z2 × Z2) o Z4 x4 = y4 = e, yx = x3y3, x2, y2 ∈ Z(G)
Z4 o Z4 x4 = y4 = e, yx = x3y
H× Z2 x4 = y4 = z2 = e, x2 = y2, yx = x3y, zx = xz, zy = yz

Groups of order 16 with Z(G) ∼= Z2 × Z2

B) Second sub-case: Z(G) ∼= Z4.
Let Z(G) = {e, α, α2, α3}.
The Abelian groups of order 8 which have Z4 for subgroups are:

• Z8 = {0, 1, 2, 3, 4, 5, 6, 7} with:

– {0, 2, 4, 6} ∼= Z4

• Z4 × Z2 = {(0, 0), (1, 0), (2, 0), (3, 0), (0, 1), (1, 1), (2, 1), (3, 1)} with:
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– {(0, 0), (1, 0), (2, 0), (3, 0)} ∼= Z4

– {(0, 0), (1, 1), (2, 0), (3, 1)} ∼= Z4

We remark that the square of any element of Z8 is in the subgroup of order 4 and the
square of any element of Z4×Z2 is equal to (0, 0) or (2, 0) and is in its two subgroups
of order 4. We deduce that the square of any element of Gi is in the center. From
this fact, we deduce the following proposition.

Proposition 13. For i 6= j, the commutator [gi, gj] = gigjg
−1
i g−1j between two ele-

ments respectively from Gi\Z(G) and Gj\Z(G) has an order equal to 2.

Proof. As g2i ∈ Z(G) and using D(G) < Z(G), we deduce gjg
2
i = g2i gj = gigigj =

gi[gi, gj]gjgi = [gi, gj]gigjgi = [gi, gj]
2gjg

2
i and we deduce the conclusion.

B1) G1, G2, G3
∼= Z4 × Z2: By considering how Z4 × Z2 is built from one of

its subgroup of order 4 and an element of order 2 which is not in the considered
subgroup, we deduce that there exists a, b, c not in the center and of order 2 such
that:

• G1 = {e, α, α2, α3, a, aα, aα2, aα3} with |aα| = 4, |aα2| = 2 and |aα3| = 4.

• G2 = {e, α, α2, α3, b, bα, bα2, bα3} with |bα| = 4, |bα2| = 2 and |bα3| = 4.

• G3 = {e, α, α2, α3, c, cα, cα2, cα3} with |cα| = 4, |cα2| = 2 and |cα3| = 4.

The order of ba is either 2 or 4.
Suppose that |ba| = 2. Then baba = e and as a and b have order 2, then baab = e.
We deduce ba = ab, which leads to a contradiction.
Suppose that |ba| = 4. Then ba(ba)3 = e and baab = e. Consequently, (ba)3 = ab.
From the structure of Z4 × Z2, we show easily that (ba)2 = α2, so ba = α2ab. As
< α, a >= G1

∼= Z4 × Z2, < b >∼= Z2, | < α, a > | × | < b > | = 8 × 2 = 16 and
< α, a > ∩ < b >= {e}; G is the semi-direct product:

G ∼= (Z4 × Z2) oϕ Z2

with:

ϕ : Z2 → Aut (Z4 × Z2)

1 →
(

(1, 0)→ (1, 0)
(0, 1)→ (2, 1)

)
Its character presentation is x4 = y2 = z2 = e, xy = yx, zx = xz, zy = x2yz.
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B2) G1
∼= Z8, G2, G3

∼= Z4 × Z2: There exists an element a not in the center
and of order 8 and two elements b, c not in the center of order 2 such that:

• G1 = {e, a, a2 = α, a3, a4 = α2, . . .}.

• G2 = {e, α, α2, α3, b, bα, bα2, bα3} with |bα| = 4, |bα2| = 2 and |bα3| = 4.

• G3 = {e, α, α2, α3, c, cα, cα2, cα3} with |cα| = 4, |cα2| = 2 and |cα3| = 4.

Let us consider that |ba| = 2, then baba = e and baa7b = e. Consequently, ba =
a7b = a6ab = α3ab. But α3, which is the commutator [b, a] is of order 4; which is
contradictory.
Consider |ba| = 4, then we show that (ba)2ba = a7b = α3ab. As (ba)2 = α2; then
ba = αab; which is also contradictory.

B3) G1, G2
∼= Z8, G3

∼= Z4 × Z2: There exists two elements a, b which are not
in the center and of order 8 and an element c not in the center of order 2 such that:

• G1 = {e, a, a2 = α, a3, a4 = α2, . . .}.

• G2 = {e, b, b2 = α, b3, b4 = α2, . . .}.

• G3 = {e, α, α2, α3, c, cα, cα2, cα3} with |cα| = 4, |cα2| = 2 and |cα3| = 4.

If |ba| = 2, then ba = a7b7 = a6abb6 = α3abα3 = α2ab. We have also |ab| = 2.
Without loss of generality, one can suppose ab = c. We deduce ca = aba = aα2ab =
aα2c = a5c. < a >∼= Z8, < c >∼= Z2, | < a > | × | < c > | = 8 × 2 = 16 and
< a > ∩ < c >= {e}. Consequently, G is the semi-direct product:

G ∼= Z8 oϕ1 Z2,

where:

ϕ1 : Z2 → Aut (Z8)

1 → ( 1→ 5 )

Its character presentation is x8 = y2 = e, yx = x5y.
If |ba| = 4, then (ba)3 = α2ab. As (ba)2 = α2, then ba = ab, which is contradictory.
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B4) G1, G2, G3
∼= Z8: Then, there exists a, b not in the center of order 8 and

such that ba is also of order 8. We deduce (ba)7 = a7b7 = α3abα3 = α2ab. As
(ba)6 = α2 then ba = ab; which leads to a contradiction.

We have classified all groups of order 16 such that Z(G) ∼= Z4:

Name Character presentation
(Z4 × Z2) o Z2 x4 = y2 = z2 = e,xy = yx,zx = xz,zy = x2yz

Z8 oϕ1 Z2 x8 = y2 = e,yx = x5y
Groups of order 16 with Z(G) ∼= Z4

4.2.2 Second case: |Z(G)| = 2

This case is more difficult as G/Z(G) is not necessarily Abelian.
In the following, we will denote Z(G) = {e, z}.
We have to study the different cases for G/Z(G). G/Z(G) is not cyclic. The different
cases are presented below.

A) G/Z(G) ∼= Z4 × Z2:
The maximal subgroups of Z4×Z2 = {(0, 0), (1, 0), (2, 0), (3, 0), (0, 1), (1, 1), (2, 1), (3, 1)}
are:

• {(0, 0), (1, 0), (2, 0), (3, 0)} ∼= Z4 and has only one subgroup of order 2.

• {(0, 0), (1, 1), (2, 0), (3, 1)} ∼= Z4 and has only one subgroup of order 2.

• {(0, 0), (0, 1), (2, 0), (2, 1)} ∼= Z2 × Z2 and has three subgroups of order 2.

Consequently, G has 3 subgroups G1, G2, G3 of order 8 containing the center such
that G1, G2 has only one subgroup of order 4 containing the center and G3 has three
subgroups of order 4 containing the center. We show that G1 (resp. G2) is Abelian.
Indeed, Z(G) < Z(G1). If G1 were not Abelian, then it has three subgroups of order
4 containing Z(G1) and consequently containing Z(G); which is contradictory.
The following proposition conducts to a contradiction:

Proposition 14. If G has at least two Abelian subgroups of order 8 then |Z(G)| ≥ 4.

Proof. Using:

|G1G2| =
|G1||G2|
|G1 ∩G2|

=
64

|G1 ∩G2|
,

we deduce that G = G1G2 and |G1 ∩G2| = 4.
If G1 and G2 are Abelian, then taking g ∈ G1 ∩ G2 and g1g2 ∈ G. gg1g2 = g1gg2 =
g1g2g. Consequently, G1 ∩G2 ⊂ Z(G). We deduce the result.
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B) G/Z(G) ∼= (Z2)
3: In this case, for any g ∈ G, g2 ∈ Z(G). As G is not Abelian,

then there exists an element g such that g2 = z, so |g| = 4. The group G has no
element of order 8 nor 16. Let < g >= {e, g, g2 = z, g3} ∼= Z4. It is a subgroup of G
containing Z(G). Consequently, by the correspondance theorem, < g > /Z(G) is a
subgroup of order 2 of G/Z(G). Without loss of generality, one can suppose that this
subgroup is identified to the subgroup {(0, 0, 0), (0, 0, 1)} of (Z2)

3. This subgroup is
contained to the following three subgroups of order 4:

• {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1)}.

• {(0, 0, 0), (0, 0, 1), (1, 0, 0), (1, 0, 1)}.

• {(0, 0, 0), (0, 0, 1), (1, 1, 0), (1, 1, 1)}.

Consequently, G has three subgroupsG1, G2, G3 of order 8 containing< g >. One can
easily show, using the correspondance theorem, that for i 6= j and for gi ∈ Gi\ < g >,
gj ∈ Gj\ < g > then gigj ∈ Gk\ < g > for k /∈ {i, j}. From the proposition 14,
the maximum number of Abelian subgroups of order 8 is 1. Consequently, one can
suppose that G2 and G3 are non-Abelian. Consequently, one can take g2 ∈ G2\ <
g > (resp. g3 ∈ G3\ < g >) which does not commute with g. As G/Z(G) is
Abelian, then D(G) = Z(G). Consequently, gg2 = zg2g and gg3 = zg3g. We deduce
gg2g3 = zg2gg3 = zg2zg3g = z2g2g3g = g2g3g. Consequently, g commutes with all
elements of G1\ < g >; and as a consequence, g ∈ Z(G1). Z(G1) contains {e, z, g}.
We deduce that G1 is Abelian. As G does not contains element of order 8 and as
g ∈ G1 is of order 4 then G1

∼= Z4 × Z2. Let us denote:
G1 = {e, g, g2 = z, g3, g1, gg1, g

2g1, g
3g1}. Let g2 ∈ G2\ < g > (corresponds to a

symmetry in D4 or one of the four other elements of order 4 in H). If one of the
4 elements of G1\ < g > commutes with one of the elements of G2\ < g >, then
it commutes with all elements of G2 and the center of G2 has at least 3 elements,
which is contradictory. Consequently; none element of G1\ < g > commutes with
one element of G2\ < g >.
Let g1 ∈ G1\ < g > and g2 ∈ G2\ < g >, then g1g2 = zg2g1. We show that
gg1g2 = gzg2g1 = zgg2g1 = z2g2gg1 = g2gg1. Consequently, g2 commutes with gg1; it
leads to a contradiction.

C) G/Z(G) ∼= H:
The maximal subgroups of H = {1,−1, i,−i, j,−j, k,−k} are:

• {1, i,−1,−i} ∼= Z4, which has only one subgroup of order 2.

• {1, j,−1,−j} ∼= Z4, which has only one subgroup of order 2.

14



• {1, k,−1,−k} ∼= Z4, which has only one subgroup of order 2.

Consequently, G has three Abelian subgroups of order 8. Using the proposition 14,
it leads to a contradiction.

D) G/Z(G) ∼= D4:
The maximal subgroups of D4 = {Id, r, r2, r3, s, rs, r2s, r3s} are:

• {Id, r, r2, r3} ∼= Z4 which has only one subgroup of order 2.

• {Id, s, r2, r2s} ∼= Z2 × Z2 which has three subgroups of order 2.

• {Id, rs, r2, r3s} ∼= Z2 × Z2 which has three subgroups of order 2.

Consequently, G has three subgroups of order 8, G1, G2, G3 which contain the center
such that G1 has only one subgroup of order 4 which contains the center and G2, G3

have three subgroups of order 4 which contain the center. G1 is Abelian and G2, G3

are necessarily non-Abelian. We show easily Z(G) = Z(G2) = Z(G3) as the center
of a non-Abelian group of order 8 has two elements. If G2

∼= D4, as r2 = rsr3s,
then r2 ∈ D(G). If G2

∼= H, as −1 = ij(−i)(−j), then −1 ∈ D(G). In all cases,
Z(G) < D(G) and the inclusion is strict as G/Z(G) is non-Abelian. As, in D4, s
and rs do not commute; then there exists g2 ∈ G2 and g3 ∈ G3 such that g2Z(G)
(identified to s) and g3Z(G) (identified to rs) do not commute. Consequently, there
exists g′ ∈ G (such g′Z(G) is identified to r2) such g2g3Z(G) = g3g2g

′Z(G). We
deduce that there exists z0 ∈ Z(G) such g2g3 = g3g2g

′z0. Consequently, g′z0 ∈ D(G)
and as z0 ∈ D(G), we deduce that g′ ∈ D(G).
We have {e, g′, z, g′z} ⊂ D(G) and forms a group. Let us show that this group
is a normal subgroup of G. We have hg′zh−1Z(G) = hg′h−1Z(G) = g′Z(G) as
g′Z(G) ∈ Z (G/Z(G)). Consequently hg′h−1, hg′zh−1 ∈ {g′, g′z}; we deduce that
{e, g′, z, g′z} is a normal subgroup of G. As G/ {e, g′, z, g′z} is of order 4, it is nec-
essarily Abelian.
Consequently, D(G) = {e, g′, z, g′z}. Moreover, D(G)/Z(G) = Z (G/Z(G)) and cor-
responds to {Id, r2}. We deduce that D(G) < Gi for any i = 1, 2, 3. Using the

formula |GiGj =
|Gi||Gj|
|Gi ∩Gj|

|, we deduce G = GiGj and Gi ∩Gj = D(G).

D1) D(G) ∼= Z2 × Z2:
G1 cannot be isomorphic to (Z2)

3, as any subgroup of order 2 is included in three
subgroups of order 4. The only possibility is G1

∼= Z4 × Z2. The unique subgroup
of order 4 containing the center is then identified to {(0, 0), (2, 0), (0, 1), (2, 1)}. As
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the square of any element of Z4 × Z2 is either (0, 0) or (2, 0) and (2, 0) is in three
subgroups of order 4; we deduce that there exists an element a of order 4 in G\D(G)
such that:

• G1 = {e, a, a2 = g′, a3, z, az, a2z = g′z, a3z} ∼= Z4 × Z2.

As H has no subgroup isomorphic to Z2 × Z2; we deduce G2, G3
∼= D4. As Z(G) =

Z(G2) = Z(G3), then there exists b, c in G\D(G) of order 4 such that:

• G2 = {e, b, b2 = z, b3, g′, bg′ = g′b3, b2g′ = zg′, b3g′ = g′b}.

• G3 = {e, c, c2 = z, c3, g′, cg′ = g′c3, c2g′ = zg′, c3g′ = g′c}.

By correspondance theorem, we show that baZ(G) = abg′Z(G) = g′abZ(G).
Suppose that ba = g′ab. If |ba| = 2, then ba = a3b3 = a2abb2 = g′abz = g′zab.
Consequently, g′ = g′z, which is contradictory. We have ab = g′ba. If we suppose
that |ba| = 4, as g′ is a symmetry, then |ab| = 2 and it conducts to the same
contradiction.
Suppose that ba = g′zab. If |ba| = 4, then (ba)2ba = a3b3 = g′abz = g′zab. As
(ba)2 = z then ba = g′ab which is contradictory. We have ab = g′zba. If |ba| = 2, as
ba is not in D(G), we deduce |ab| = 4 which leads to the same contradiction.
Consequently, it is impossible that D(G) ∼= Z2 × Z2.

D2) D(G) ∼= Z4:
In this case, D(G) = {e, g′, g′2 = z, g′3} We have seen that G1 cannot be isomorphic
to (Z2)

3. However, as Z4 × Z2 has two groups isomorphic to Z4 which contains a
common subgroup of order 2; G1 cannot be isomorphic to Z4×Z2 (as the center will
be included in two subgroups of order 4). Consequently, G1

∼= Z8 and there exists
a ∈ G\D(G) of order 8 such that:

• G1 = {e, a, a2 = g′, a3, a4 = z, . . .}.

D2-1) G2, G3
∼= D4:

There exists b, c not in D(G) and of order 2 such that:

• G2 = {e, g′, g′2 = z, g′3, b, g′b = bg′3, g′2b, g′3b = bg′}.

• G3 = {e, g′, g′2 = z, g′3, c, g′c = cg′3, g′2c, g′3c = cg′}.
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By the correspondance theorem and the structure of the maximal subgroups ofD4, we
deduce that ba ∈ G3\D(G). Consequently, |ba| = 2 and ba = a7b. < a >= G1

∼= Z8,
< b >∼= Z2, | < a > | × | < b > | = 8 × 2 = 16 and < a > ∩ < b >= {e}.
Consequently, G is the semi-direct product, also called diedral group D8:

G ∼= Z8 oϕ2 Z2,

with:

ϕ2 : Z2 → Aut (Z8)

1 → (1→ 7)

Its character presentation is x8 = y2 = e, yx = x7y.

D2-2) G2
∼= D4, G3

∼= H:
There exists b, c not in D(G) respectively of order 2 and 4 such that:

• G2 = {e, g′, g′2 = z, g′3, b, g′b = bg′3, g′2b, g′3b = bg′}.

• G3 = {e, g′, g′2 = z, g′3, c, g′c, g′2c, g′3c}.

ba ∈ G3\D(G), then |ba| = 4. Consequently, (ba)2ba = a7b. As (ba)2 = g′2 = z = a4,
then ba = a3b. With the same method as previously, we deduce that G is the
semi-direct product (also called semi-diedral group SD8):

G ∼= Z8 oϕ3 Z2,

with:

ϕ3 : Z2 → Aut (Z8)

1 → (1→ 3)

Its character presentation is x8 = y2 = e, yx = x3y.

D2-3) G2, G3
∼= H:

There exists b and c not in D(G) of order 4 such that:

• G2 = {e, g′, g′2 = z, g′3, b, g′b, g′2b, g′3b}.

• G3 = {e, g′, g′2 = z, g′3, c, g′c, g′2c, g′3c}.
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|ba| = 4 then (ba)2ba = a7b3. As (ba)2 = z = a4 then ba = a3b3. It is not a
semi-direct product. Its character presentation is x8 = y4 = e, x4 = y2, yx = x3y3.

The following Table gives the groups of order 16 such that Z(G) ∼= Z2:

Name Character presentation
Z8 oϕ2 Z2 x8 = y2 = e,yx = x7y
Z8 oϕ3 Z2 x8 = y2 = e,yx = x3y

Generalized Quaternions x8 = y4 = e, x4 = y2, yx = x3y3

5 Conclusion

The groups of order 16 are given in the following table:

Name Character presentation Center
Z16 a16 = e Z(G) = G

Z8 × Z2 a8 = b2 = e,ba = ab Z(G) = G
Z4 × Z4 a4 = b4 = e,ba = ab Z(G) = G

Z4 × (Z2)
2 a4 = b2 = c2 = e,D(G) = {e} Z(G) = G

(Z2)
4 a2 = b2 = c2 = d2 = e,D(G) = {e} Z(G) = G

D4 × Z2 x4 = y2 = z2 = e,yx = x3y,zx = xz,zy = yz {e, x2, z, zx2} ∼= Z2 × Z2

(Z2 × Z2) o Z4 x4 = y4 = e,yx = x3y3 {e, x2, y2, x2y2} ∼= Z2 × Z2

Z4 o Z4 x4 = y4 = e,yx = x3y {e, x2, y2, x2y2} ∼= Z2 × Z2

H× Z2 x4 = y4 = z2 = e,x2 = y2,yx = x3y,zx = xz,zy = yz {e, x2, z, x2z} ∼= Z2 × Z2

(Z4 × Z2) o Z2 x4 = y2 = z2 = e,xy = yx,zx = xz,zy = x2yz {e, x, x2, x3} ∼= Z4

Z8 oϕ1 Z2 x8 = y2 = e,yx = x5y {e, x2, x4, x6} ∼= Z4

Z8 oϕ2 Z2 x8 = y2 = e,yx = x7y {e, x4} ∼= Z2

Z8 oϕ3 Z2 x8 = y2 = e,yx = x3y {e, x4} ∼= Z2

Gen. Quat. x8 = y4 = e,x4 = y2,yx = x3y3 {e, x4} ∼= Z2
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