Basics elements on linear elastic fracture mechanics and crack growth modeling

Sylvie Pommier

To cite this version:

HAL Id: cel-01636731
https://hal.archives-ouvertes.fr/cel-01636731
Submitted on 16 Nov 2017
Basics elements on linear elastic fracture mechanics and crack growth modeling

Sylvie Pommier,
LMT
(ENS Paris-Saclay, CNRS, Université Paris-Saclay)
Fail Safe Damage Tolerant Design

• Consider the eventuality of damage or of the presence of defects,

• predict if these defects or damage may lead to fracture,

• and, in the event of failure, predicts the consequences (size, velocity and trajectory of the fragments)
Foundations of fracture mechanics: The Liberty Ships

- **2700** Liberty Ships were built between 1942 and the end of WWII
- The production rate was of **70 ships / day**
- Duration of construction: 5 days
- **30%** of ships built in **1941** have suffered catastrophic failures
- **362** lost ships

The fracture mechanics concepts were still unknown

Causes of fracture:
- **Welded** Structure rather than bolted, offering a substantial assembly time gain but with a **continuous path** offered for cracks to propagate through the structure.
- **Low quality** of the **welds** (presence of cracks and internal stresses)
- **Low quality steel**, ductile/brittle transition around **0°C**
Liberty Ships, WWII, 1941· Brittle fracture

Constance Tipper
Best Known For:
Determining why the mass-produced Liberty Ships were breaking in half during World War II
LEFM - Linear elastic fracture mechanics

Georges Rankine Irwin “the godfather of fracture mechanics”

- Stress intensity factor K
- Introduction of the concept of fracture toughness K_{IC}
- Irwin’s plastic zone (monotonic and cyclic)
- Energy release rate G and G_c

(G in reference to Griffith)
Historical context

Previous authors

n.b. Joseph Staline died in 1953
Fatigue crack growth: De Havilland Comet

3 accidents
26/10/1952, departing from Rome Ciampino
March 1953, departing from Karachi Pakistan
10/01/1954, Crash on the Rome-London flight (with passengers)

Paris & Erdogan 1961
They correlated the cyclic fatigue crack growth rate $\frac{da}{dN}$ with the stress intensity factor amplitude ΔK

Introduction of the Paris’ law for modeling fatigue crack growth
Fatigue remains a topical issue

8 Mai 1842 - Meudon (France)
Fracture of an axle by fatigue

3 Juni 1998 - Eschede (Allemagne)
Fracture of a wheel by Fatigue
Development of rules for the EASA certification

Aloha April, 28th 1988,

Los Angeles, June, 2nd 2006,

Boeing 767 Los Angeles, 02 juin 2006
engine type : GE CF6-80A2
UAL 232, July 19, 1989 Sioux City, Iowa

- DC10-10 crashed on landing
- In-Flight separation of Stage 1 Fan Disk
- **Failed from cracks out of material anomaly**
 - Hard Alpha produced during melting
- Life Limit: 18,000 cycles. Failure: 15,503 cycles.
- 111 fatalities
- FAA Review Team Report (1991) recommended:
 - Changes in Ti melt practices, quality controls
 - Improved mfg and in-service inspections
 - Lifing Practices based on damage tolerance

AIA Rotor Integrity Sub-Committee (RISC) : Elaboration of AC 33.14-1
ELABORATION OF AC 33.70-2

- MD-88 engine failure on take-off roll
- Pilot aborted take-off
- Stage 1 Fan Disk separated; impacted cabin
- Failure from abusively machined bolthole
- 2 fatalities
- NTSB Report recommended ...
 - Changes in inspection methods, shop practices
 - Fracture mechanics based damage tolerance
Damage tolerance

Why?
- To prevent fatalities and disaster

Where?
- Public transportation (trains, aircraft, ships …)
- Energy production (nuclear power plant, oil extraction and transportation …)
- Any areas of risk to public health and environment

How?
- Critical components are designed to be damage tolerant / fail safe
- Rare events (defects and cracks) are assumed to be certain (deterministic approach) and are introduced on purpose for lab. tests and certification
Fracture mechanics

One basic assumption:
The structure contains a singularity (usually a geometric discontinuity, for example: a crack)

Two main questions:
What are the relevant variables to characterize the risk of fracture and to be used in fracture criteria?

What are the suitable criteria to determine if the crack may propagate or remain arrested, the crack growth rate and the crack path?
Classes of material behaviour: relevant variables

Linear elastic behaviour: linear elastic fracture mechanics (K)

Nonlinear behavior: non-linear fracture mechanics
Hypoelasticity: Hutchinson Rice & Rosengren, (J)
Ideally plastic material: Irwin, Dugdale, Barrenblatt etc.

Time dependent material behaviours: viscoelasticity, viscoplasticity (C*)

Complex non linear material behaviours:
Various local and non local approaches of failure, J. Besson, A. Pineau, G. Rousselier, A. Needleman, Tvergaard, S. Pommier etc.
Classes of fracture mechanisms: criteria

- Brittle fracture
- Ductile fracture
- Dynamic fracture
- Fatigue crack growth
- Creep crack growth
- Crack growth by corrosion, oxydation, ageing
- Coupling between damage mechanisms
Mechanisms acting at very different scales of time and space, an assumption of scales separation

- Atomic scale (surface oxidation, ageing, …)
- Microstructural scale (grain boundary corrosion, creep, oxidation, persistent slip band in fatigue etc…)
- Plastic zone scale or damaged zone (material hardening or softening, continuum damage, ductile damage…)
- Scale of the structure (wave propagation …)

Atomic cohesion energy
\[10 \text{ J/m}^2\]

Brittle fracture energy
\[10,000 \text{ J/m}^2\]
Classes of relevant assumptions : application of criteria

Long cracks (2D problem, planar crack with a straight crack)

Curved cracks, branched cracks, merging cracks (3D problem, non-planar cracks, curved crack fronts)

Short cracks (3D problem, influence of free surfaces, scale and gradients effects)

Other discontinuities and singularities:
- Interfaces / free surfaces,
- Contact front in partial slip conditions,
- acute angle ending on a edge,
Griffith’ theory
Threshold for unsteady crack growth (brittle or ductile)

Relevant variable: energy release rate G

Criteria: An unsteady crack growth occurs if the cohesion energy released by the structure because of the creation of new cracked surfaces reaches the energy required to create these new cracked surfaces

$$G = G_c$$

Data: critical energy release rate G_c
Griffith’ theory

\[W_{\text{ext}} : \text{work of external forces} \]

\[\Delta U_{\text{elastic}} : \text{variation of the elastic energy of the structure} \]

\[\Delta U_{\text{surface}} : \text{variation of the surface energy of the structure} \]

\[
\Delta U = \Delta U_{\text{elastic}} + \Delta U_{\text{surface}} = W_{\text{ext}}
\]

\[\Rightarrow \Delta U_{\text{surface}} = 2\gamma \, da = W_{\text{ext}} - \Delta U_{\text{elastic}} \]

Criteria:

\[G = 2\gamma \]

where

\[G = -\frac{\Delta U_{\text{elastic}} - W_{\text{ext}}}{da} \]
\[dU = W_{\text{ext}} + Q \quad \text{where} \quad TdS - Q \geq 0 \]
\[dU = dF + TdS + SdT \]
\[\text{in isothermal conditions} \quad dT = 0 \]
\[TdS - Q = -(dF - W_{\text{ext}}) \geq 0 \]
\[-(dF_{\text{volume}} + dF_{\text{surface}} - W_{\text{ext}}) \geq 0 \]

\[\Rightarrow (G - G_c) \, da \geq 0 \]

where
\[G_c = \frac{\Delta F_{\text{surface}}}{da} = 2\gamma \]
\[G = -\frac{(\Delta F_{\text{volume}} - W_{\text{ext}})}{da} \]
\[G = - \frac{\left(\Delta F_{\text{volume}} - W_{\text{ext}} \right)}{da} \]

Eschelby tensor: energy density

\[P_{ij} = \frac{1}{2} \sigma_{kl} \epsilon_{kl} \delta_{ij} - \sigma_{kj} u_{k,i} \]

J integral, (Rice’s integral if q is coplanar)

\[J = - \int_V q_{i,j} P_{ij} dV + \int_{S_+ \cup S_-} q_i P_{ij} n_j dS \]

q vector: the crack front motion
If the crack faces are free surfaces (no friction, no fluid pressure ...),

If volume forces can be neglected (inertia, electric field...)

Then the J integral is shown to be independent of the choice of the selected integration contour

\[G = J = \int_{\Gamma} \left(\varphi_{\text{free energy density}} \, dy - \frac{\sigma \cdot n}{x} \frac{\partial u}{\partial x} \right) \]
Applications

C. Stoisser, I. Boutemy and F. Hasnaoui
Limitations

- The crack faces must be free surfaces (no friction, no fluid pressure)
- G_c is a material constant (single mechanism, surfacic mechanism only)
- What if non isothermal conditions are considered?
- Unsteady crack growth criteria, non applicable to steady crack propagation,
- The surfacic energy 2γ may be negligible compared with the energy dissipated in plastic work or continuum damage / localization process
Linear Elastic Fracture Mechanics (LEFM)

Characterize the state of the structure where useful (near the crack front where damage occurs) for a linear elastic behavior of the material
Preliminary remarks:
From the discontinuity to the singularity

Stress concentration factor K_t of an elliptical hole,
With a length $2a$ and a curvature radius ρ

$$K_t = \frac{\sigma_{loc}}{\sigma_\infty} = 1 + 2\sqrt{\frac{a}{\rho}}$$

$\rho \to 0 \Rightarrow \frac{\sigma_{loc}}{\sigma_\infty} \to 2\sigma_{loc}\sqrt{\frac{a}{\rho}} \to \infty$

Singularity
Remarks: existence of a singularity

Geometry locally-self-similar → self-similar solution → principle of simulitude

\[\rho \to 0 \Rightarrow \bar{\sigma}(r, \theta) = f(r)g(\theta) \]

\[r^* = \alpha r \]

\[f(r^*) = q(\alpha)f(r) \]

\(r \): distance to the discontinuity

Warning: implicit choice of scale
Order of this singularity

Linear elasticity:

\[\varepsilon(r) \rightarrow Br^\lambda \quad r \rightarrow 0 \]

\[\sigma(r) \rightarrow Cr^\lambda \quad r \rightarrow 0 \]

\[E_{elast} \rightarrow A \int_{\theta=\pi}^{\theta=-\pi} \int_{r=0}^{r=r_{\text{max}}} r^\lambda r^\lambda (rd\theta)dr \]

\[E_{elast} \rightarrow 2\pi A \int_{r=0}^{r=r_{\text{max}}} r^{2\lambda+1} dr \]

\[E_{elast} \rightarrow 2\pi A \frac{r_{\text{max}}^{2\lambda+2}}{2\lambda + 2} \]

For a crack: \(\lambda = -0.5 \)

\[\Rightarrow \lambda < 0 \]

\[2\lambda + 2 > 0 \Rightarrow \lambda > -1 \]

\[2\lambda + 2 \neq 0 \Rightarrow \lambda \neq -1 \]

\[\Rightarrow -1 < \lambda < 0 \]
Non linear material behaviour?

\[\epsilon = \epsilon_o \left(\frac{\sigma}{\sigma_o} \right)^n \quad (n = 1 \text{ elastic}) \]

\[\sigma(r) \rightarrow A r^\lambda \quad r \rightarrow 0 \]

\[\epsilon(r) \rightarrow B r^{n\lambda} \quad r \rightarrow 0 \]

\[E_{elast} \rightarrow C \int_{\theta=-\pi}^{\theta=\pi} \int_{r=0}^{r_{\max}} r^\lambda r^{n\lambda} (rd\theta)dr \]

\[E_{elast} \rightarrow 2\pi C \int_{r=0}^{r_{\max}} r^{(1+n)\lambda+1} dr \]

\[E_{elast} \rightarrow 2\pi C \frac{r_{\max}^{(1+n)\lambda+2}}{(1+n)\lambda + 2} \]

\[(1+n)\lambda + 2 > 0 \]

\[\Rightarrow \lambda > -\frac{2}{1+n} \]
A. Modes
B. Airy stress functions
C. Westergaard’s solution
D. Irwin’s asymptotic development
E. Stress intensity factor
F. Williams analysis
G. Fracture Toughness
H. Irwin’s plastic zones

LEFM
KI, KII, KIII
T, Tz, Γ
Fracture modes

Mode I: Planar symmetric
Mode II: Planar anti-symmetric
Mode III: Anti-planar
Fracture modes

Tubes (pipe line)
Fracture modes

Mode II

Various fractures in compression
Fracture modes

Various fractures in torsion

Mode III
A. Modes
B. Airy stress functions
C. Westergaard’s solution
D. Irwin’s asymptotic development
E. Stress intensity factor
F. Williams analysis
G. Fracture Toughness
H. Irwin’s plastic zones
Case of mode I
Analysis of Irwin based on Westergaard’s analysis and Williams expansions

Planar Symmetric
Balance equation

\[\text{Div} \sigma + \frac{f}{v} = \rho a \]

2D problem, quasi-static, no volume force

\[\frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{xy}}{\partial y} + \frac{\partial \sigma_{xz}}{\partial z} = 0 \]

\[\frac{\partial \sigma_{xy}}{\partial x} + \frac{\partial \sigma_{yy}}{\partial y} + \frac{\partial \sigma_{yz}}{\partial z} = 0 \]

\[\frac{\partial \sigma_{xz}}{\partial x} + \frac{\partial \sigma_{yz}}{\partial y} + \frac{\partial \sigma_{zz}}{\partial z} = 0 \]
Linear isotropic elasticity: E, ν

\[\varepsilon = \frac{1+\nu}{E} \sigma - \frac{\nu}{E} \text{Tr}(\sigma) \frac{1}{2}\]

\[
\sigma_{xx} = \frac{E}{1-\nu^2} \left(\varepsilon_{xx} + \nu \varepsilon_{yy} \right)
\]

\[
\sigma_{yy} = \frac{E}{1-\nu^2} \left(\varepsilon_{yy} + \nu \varepsilon_{xx} \right)
\]

\[
\sigma_{xy} = \frac{E}{1+\nu} \varepsilon_{xy}
\]
Compatibility equations

\[\varepsilon_{xx} = \frac{\partial u_x}{\partial x} \]
\[\varepsilon_{yy} = \frac{\partial u_y}{\partial y} \]
\[\varepsilon_{xy} = \frac{1}{2} \left(\frac{\partial u_x}{\partial y} + \frac{\partial u_y}{\partial x} \right) \]

\[\frac{\partial^2 \varepsilon_{xx}}{\partial^2 y} = \frac{\partial^3 u_x}{\partial x \partial^2 y} \]
\[\frac{\partial^2 \varepsilon_{yy}}{\partial^2 x} = \frac{\partial^3 u_y}{\partial y \partial^2 x} \]
\[2 \frac{\partial^2 \varepsilon_{xy}}{\partial x \partial y} = \frac{\partial^3 u_y}{\partial y \partial^2 x} + \frac{\partial^3 u_x}{\partial x \partial^2 y} \]
Combination

Compatibility

\[
2 \frac{\partial^2 \varepsilon_{xy}}{\partial x \partial y} = \frac{\partial^2 \varepsilon_{yy}}{\partial^2 x} + \frac{\partial^2 \varepsilon_{xx}}{\partial^2 y}
\]

\[
2 \frac{\partial^2 \sigma_{xy}}{\partial x \partial y} = \frac{\partial^2 \sigma_{yy}}{\partial^2 x} + \frac{\partial^2 \sigma_{xx}}{\partial^2 y}
\]

Linear elasticity

\[
\sigma_{xx} = \frac{E}{1 - \nu^2} (\varepsilon_{xx} + \nu \varepsilon_{yy})
\]

\[
\sigma_{yy} = \frac{E}{1 - \nu^2} (\varepsilon_{yy} + \nu \varepsilon_{xx})
\]

\[
\sigma_{xy} = \frac{E}{1 + \nu} \varepsilon_{xy}
\]

Balance equations

\[
\frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{xy}}{\partial y} = 0
\]

\[
\frac{\partial \sigma_{xy}}{\partial x} + \frac{\partial \sigma_{yy}}{\partial y} = 0
\]

= 3 Equations, 3 unknowns
Airy function $F(x,y)$

Balance equation

$$\frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{xy}}{\partial y} = \frac{\partial \sigma_{xy}}{\partial x} + \frac{\partial \sigma_{yy}}{\partial y} = 0$$

Compatibility

$$2 \frac{\partial^2 \sigma_{xy}}{\partial x \partial y} = \frac{\partial^2 \sigma_{yy}}{\partial^2 x} + \frac{\partial^2 \sigma_{xx}}{\partial^2 y}$$

Assuming

$$\sigma_{xx} = \frac{\partial^2 F}{\partial y^2}$$
$$\sigma_{yy} = \frac{\partial^2 F}{\partial x^2}$$
$$\sigma_{xy} = -\frac{\partial^2 F}{\partial x \partial y}$$

1 equation, 1 unknown $F(x,y)$
\(Z(z) \), \(z \) complex,

\[
\frac{\partial^4 F}{\partial^4 x} + 2 \frac{\partial^4 F}{\partial^2 x \partial^2 y} + \frac{\partial^4 F}{\partial^4 y} = 0
\]

\[F = F(x, y) \]

A point in the plane is defined by a complex number \(z = x + i y \)

\(Z \) a function of \(z \):

\[Z(z) = F(x, y) \]

\[
\frac{\partial^4 Z}{\partial^4 x} = \frac{\partial^4 Z}{\partial^4 z}
\]

\[
\frac{\partial^4 Z}{\partial^2 x \partial^2 y} = -\frac{\partial^4 Z}{\partial^4 z}
\]

\[
\frac{\partial^4 Z}{\partial^4 y} = \frac{\partial^4 Z}{\partial^4 z}
\]

\(Z(z) \) always fulfill all the equations of the problem

\(Z(z) \) must verify the symmetry and the boundary conditions
A. Modes
B. Airy stress functions
C. Westergaard’s solution
D. Irwin’s asymptotic development
E. Stress intensity factor
F. Williams analysis
G. Fracture Toughness
H. Irwin’s plastic zones

LEFM
KI, KII, KIII
T, Tz, Γ
Irwin’s or Westergaard’s analyses

2D problem, plane \((x,y)\) : \(S_{zz} = \nu(S_{xx} + S_{yy})\)

Symmetric with respect to \(y=0 \) & \(x=0\)

Away from the crack \((x \text{ and } y \gg a)\) : \(s_{xx} = S\) \(s_{yy} = S\) & \(s_{xy} = 0\)

Singularities in \(y=0\) \(x=+a\) & \(y=0\) \(x=-a\)

6 boundary or symmetry conditions
2 singularities,
0 boundary conditions along the crack faces
Exact solution
Taylor’s development with respect to the distance to the crack front
Separated variables
Similitude principle
Boundary conditions & Symmetries

\[
\sigma_{xx}^\infty = \sigma_{yy}^\infty = S, \quad \sigma_{xy}^\infty = 0
\]

\[
\sigma_{xx} = \frac{\partial^2 F}{\partial y^2}, \\
\sigma_{yy} = \frac{\partial^2 F}{\partial x^2}, \\
\sigma_{xy} = -\frac{\partial^2 F}{\partial x \partial y}
\]

\[
F^\infty = \frac{S}{2} \left(y^2 + x^2 \right) + a_2 x + a_3 y + a_4
\]
Construction of $Z(z)$

$$F^\infty = \frac{S}{2} \left(y^2 + x^2 \right) + a_4$$
$$Z^\infty = \frac{S}{2} z^2 + a_4$$

Relation

$$F = R_e(Z) - y R_e \left(\frac{\partial Z}{\partial y} \right) = R_e(Z) + y I_m \left(\frac{\partial Z}{\partial z} \right)$$

$$\sigma_{xx} = \frac{\partial^2 F}{\partial y^2}$$
$$\sigma_{yy} = \frac{\partial^2 F}{\partial x^2}$$
$$\sigma_{xy} = -\frac{\partial^2 F}{\partial x \partial y}$$

$$\sigma_{xx} = R_e \left(\frac{\partial^2 Z}{\partial z^2} \right) - y I_m \left(\frac{\partial^3 Z}{\partial z^3} \right)$$
$$\sigma_{yy} = R_e \left(\frac{\partial^2 Z}{\partial z^2} \right) + y I_m \left(\frac{\partial^3 Z}{\partial z^3} \right)$$
$$\sigma_{xy} = -y R_e \left(\frac{\partial^3 Z}{\partial z^3} \right)$$
Solution

At infinity

\[\sigma_{xx}^\infty = \sigma_{yy}^\infty = S, \quad \sigma_{xy}^\infty = 0 \]

Valid for any 2D problem, with symmetries along the planes y=0 & x=0, and biaxial BCs

Solution:

\[\sigma_{xx} = R_e \left(\frac{\partial^2 Z}{\partial z^2} \right) - yI_m \left(\frac{\partial^3 Z}{\partial z^3} \right) \]

\[\sigma_{yy} = R_e \left(\frac{\partial^2 Z}{\partial z^2} \right) + yI_m \left(\frac{\partial^3 Z}{\partial z^3} \right) \]

\[\sigma_{xy} = -yR_e \left(\frac{\partial^3 Z}{\partial z^3} \right) \]

At infinity

\[Z^\infty = \frac{S}{2} z^2 + a_4 \]
A. Modes

B. Airy stress functions

C. Westergaard’s solution

D. Irwin’s asymptotic development

E. Stress intensity factor

F. Williams analysis

G. Fracture Toughness

H. Irwin’s plastic zones
Exact solution for a crack

\[
\sigma_{xx} = R_e \left(\frac{\partial^2 Z}{\partial z^2} \right) - y I_m \left(\frac{\partial^3 Z}{\partial z^3} \right)
\]

\[
\sigma_{yy} = R_e \left(\frac{\partial^2 Z}{\partial z^2} \right) + y I_m \left(\frac{\partial^3 Z}{\partial z^3} \right)
\]

\[
\sigma_{xy} = -y R_e \left(\frac{\partial^3 Z}{\partial z^3} \right)
\]

Singularities in \(y=0 \) \(x=+a \)

& \(y=0 \) \(x=-a \)

\[
Z^\infty = \frac{S}{2} z^2 + a_4
\]

\[
\frac{\partial Z^\infty}{\partial z} = S z \left(z^2 - a^2 \right)^{1/2}
\]

Exact solution
Asymptotic solution - Irwin-

Local coordinates \((r, \theta)\), \(r \to 0\)

\[z = a + re^{i\theta} \]

Exact Solution

\[\frac{\partial Z}{\partial z} = S\left(z^2 - a^2\right)^{1/2} \]

\[
\frac{\partial^2 Z}{\partial z^2} = \frac{S_z}{\left(z^2 - a^2\right)^{1/2}} \quad \rightarrow \quad \frac{\partial^2 Z}{\partial z^2} = \frac{Sa}{\left(2a r e^{i\theta}\right)^{1/2}} \rightarrow \frac{S\sqrt{a}}{\sqrt{2r}} e^{-i\frac{\theta}{2}}
\]

\[
\frac{\partial^3 Z}{\partial z^3} = -\frac{Sa^2}{\left(z^2 - a^2\right)^{3/2}} \quad \rightarrow \quad \frac{\partial^3 Z}{\partial z^3} = -\frac{Sa^2}{\left(2a r e^{i\theta}\right)^{3/2}} \rightarrow -\frac{1}{r} \frac{S\sqrt{a}}{\sqrt{2r}} e^{-i\frac{3\theta}{2}}
\]
Asymptotic solution - Irwin-

Westergaard’s stress function:

\[
\sigma_{xx} = Re\left(\frac{\partial^2 Z}{\partial z^2}\right) - yI_m\left(\frac{\partial^3 Z}{\partial z^3}\right)
\]

\[
\sigma_{yy} = Re\left(\frac{\partial^2 Z}{\partial z^2}\right) + yI_m\left(\frac{\partial^3 Z}{\partial z^3}\right)
\]

\[
\sigma_{xy} = -yRe\left(\frac{\partial^3 Z}{\partial z^3}\right)
\]

\[
\frac{\partial^2 Z}{\partial z^2} \rightarrow \frac{S\sqrt{a}}{\sqrt{2r}} e^{-\frac{i\theta}{2}}
\]

\[
\frac{\partial^3 Z}{\partial z^3} \rightarrow -\frac{1}{r} \frac{S\sqrt{a}}{\sqrt{2r}} e^{-\frac{i\frac{3\theta}{2}}}
\]

\[
\sigma_{xx} = \frac{S\sqrt{\pi a}}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \left(1 - \sin \frac{\theta}{2} \sin \frac{3\theta}{2}\right)
\]

\[
\sigma_{yy} = \frac{S\sqrt{\pi a}}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \left(1 + \sin \frac{\theta}{2} \sin \frac{3\theta}{2}\right)
\]

\[
\sigma_{xy} = \frac{S\sqrt{\pi a}}{\sqrt{2\pi r}} \left(\cos \frac{\theta}{2} \sin \frac{\theta}{2} \cos \frac{3\theta}{2}\right)
\]
Error associated to this Taylor development along $\theta=0$

Exact solution

$$\sigma_{yy}(r, \theta = 0) = \frac{S_{yy}(a + r)}{\sqrt{r(2a + r)}} = \frac{K_I(a + r)}{\sqrt{\pi ar(2a + r)}}$$

Asymptotic solution

$$\sigma_{yy}(r, \theta = 0) = \frac{K_I}{\sqrt{2\pi r}} \left(1 + \frac{3}{4} \left(\frac{r}{a} \right) + \frac{5}{32} \left(\frac{r}{a} \right)^2 \right) + o\left(\frac{5}{r^2} \right)$$

Error

<table>
<thead>
<tr>
<th>Term</th>
<th>r/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 term</td>
<td>0.013</td>
</tr>
<tr>
<td>2 terms</td>
<td>0.29</td>
</tr>
<tr>
<td>3 terms</td>
<td>0.69</td>
</tr>
</tbody>
</table>

Erreur $= 1\%$
A. Modes
B. Airy stress functions
C. Westergaard’s solution
D. Irwin’s asymptotic development
E. Stress intensity factor
F. Williams analysis
G. Fracture Toughness
H. Irwin’s plastic zones

LEFM
KI, KII, KIII
T, Tz, Γ
Mode I, non equi-biaxial conditions

\[\sigma_{xx} = \frac{S_{yy} \sqrt{\pi a}}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \left(1 - \sin \frac{\theta}{2} \sin \frac{3\theta}{2} \right) + S_{xx} - S_{yy} \]

\[\sigma_{yy} = \frac{S_{yy} \sqrt{\pi a}}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \left(1 + \sin \frac{\theta}{2} \sin \frac{3\theta}{2} \right) \]

\[\sigma_{zz} = \frac{S_{yy} \sqrt{\pi a}}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \sin \frac{\theta}{2} \cos \frac{3\theta}{2} \]

Equibiaxial

Biaxial (Superposition)

\[T = S_{xx} - S_{yy} \]

\[K_I = S_{yy} \sqrt{\pi a} \]
Stress intensity factors

Similitude principle
(geometry locally planar, with a straight crack front, self-similar, singularity)

Same K_I & T \rightarrow Same local field

\[
\sigma_{xx} = \frac{K_I}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \left(1 - \sin \frac{\theta}{2} \sin \frac{3\theta}{2} \right) + T
\]

\[
\sigma_{yy} = \frac{K_I}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \left(1 + \sin \frac{\theta}{2} \sin \frac{3\theta}{2} \right)
\]

\[
\sigma_{xy} = \frac{K_I}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \sin \frac{\theta}{2} \cos \frac{3\theta}{2}
\]

\[
g_{ij}(\theta) \quad f(r) = r^\lambda
\]

K_I & T
Crack geometry and boundary conditions

Spatial distribution, given once for all, in the crack front region
von Mises stress field

\[
\sigma^D (r, \theta) = \sigma(r, \theta) - \frac{Tr(\sigma(r, \theta))}{3}
\]

\[
\sigma_{eq} (r, \theta) = \sqrt{\frac{3}{2} \sigma^D (r, \theta) : \sigma^D (r, \theta)}
\]

Plane stress, Mode I, \(T=0 \)

Plane strain, Mode I, \(T=0 \)
von Mises stress field

Mechanisms controlled by shear
- Plasticity,
- Visco-plasticity
- Fatigue

\[T = S_{xx} - S_{yy} \]

\[\frac{T}{K} = -10 \text{ m}^{-1/2} \quad \frac{T}{K} = -5 \text{ m}^{-1/2} \quad \frac{T}{K} = 0 \text{ m}^{-1/2} \quad \frac{T}{K} = 5 \text{ m}^{-1/2} \quad \frac{T}{K} = 10 \text{ m}^{-1/2} \]
Hydrostatic pressure

\[Tr(\sigma(r, \theta)) \]

Fluid diffusion (Navier Stokes),
Diffusion creep (Nabarro-Herring)
Chemical diffusion

Plane stress, Mode I, T=0

Plane strain, Mode I, T=0
Hydrostatic pressure

\[T = S_{xx} - S_{yy} \]

\[T / K = -10 \text{ m}^{-1/2} \quad T / K = -5 \text{ m}^{-1/2} \quad T / K = 0 \text{ m}^{-1/2} \quad T / K = 5 \text{ m}^{-1/2} \quad T / K = 10 \text{ m}^{-1/2} \]
Other T components, in Mode I

General triaxial loading

Equibiaxial plane strain

Superposition non equibiaxial conditions

Superposition non plane strain conditions

\[K_I = S_{yy} \sqrt{\pi a} \]

\[T = S_{xx} - S_{yy} \]

\[T_z = S_{zz} - 2\nu S_{yy} - \nu T \]
Full solutions K_I, K_{II}, K_{III}, T, T_z & Γ

Mode I

<table>
<thead>
<tr>
<th>Term</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_{xx}</td>
<td>$\frac{K_I}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \left(1 - \sin \frac{\theta}{2} \sin \frac{3\theta}{2}\right) + T$</td>
</tr>
<tr>
<td>σ_{yy}</td>
<td>$\frac{K_I}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \left(1 + \sin \frac{\theta}{2} \sin \frac{3\theta}{2}\right)$</td>
</tr>
<tr>
<td>σ_{xy}</td>
<td>$\frac{K_I}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \frac{\theta}{2} \cos \frac{3\theta}{2}$</td>
</tr>
<tr>
<td>u_x</td>
<td>$\frac{K_I}{2\mu \sqrt{2\pi}} \cos \frac{\theta}{2} (\kappa - \cos \theta)$</td>
</tr>
<tr>
<td>u_y</td>
<td>$\frac{K_I}{2\mu \sqrt{2\pi}} \sin \frac{\theta}{2} (\kappa - \cos \theta)$</td>
</tr>
</tbody>
</table>

Mode II

<table>
<thead>
<tr>
<th>Term</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_{xx}</td>
<td>$-\frac{K_{II}}{\sqrt{2\pi r}} \sin \frac{\theta}{2} \left(2 + \cos \frac{\theta}{2} \cos \frac{3\theta}{2}\right)$</td>
</tr>
<tr>
<td>σ_{yy}</td>
<td>$\frac{K_{II}}{\sqrt{2\pi r}} \sin \frac{\theta}{2} \cos \frac{\theta}{2} \cos \frac{3\theta}{2}$</td>
</tr>
<tr>
<td>σ_{xy}</td>
<td>$\frac{K_{II}}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \left(1 - \sin \frac{\theta}{2} \sin \frac{3\theta}{2}\right)$</td>
</tr>
<tr>
<td>u_x</td>
<td>$\frac{K_{II}}{2\mu \sqrt{2\pi}} \sin \frac{\theta}{2} (2 + \kappa + \cos \theta)$</td>
</tr>
<tr>
<td>u_y</td>
<td>$\frac{K_{II}}{2\mu \sqrt{2\pi}} \cos \frac{\theta}{2} (2 + \kappa - \cos \theta)$</td>
</tr>
</tbody>
</table>

Mode III

<table>
<thead>
<tr>
<th>Term</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_{xz}</td>
<td>$-\frac{K_{III}}{\sqrt{2\pi r}} \sin \frac{\theta}{2} + \Gamma$</td>
</tr>
<tr>
<td>σ_{yz}</td>
<td>$\frac{K_{III}}{\sqrt{2\pi r}} \cos \frac{\theta}{2}$</td>
</tr>
<tr>
<td>u_z</td>
<td>$\frac{4K_{III}}{2\mu \sqrt{2\pi}} r \sin \frac{\theta}{2}$</td>
</tr>
</tbody>
</table>

Déformation plane

$\sigma_{zz} = \nu(\sigma_{xx} + \sigma_{yy}) + T_z$
$\kappa = (3 - 4\nu)$

Contrainte plane

$\kappa = \frac{(3 - \nu)}{(1 + \nu)}$
von Mises stress field

\[
\sigma^D (r, \theta) = \sigma(r, \theta) - \frac{Tr(\sigma(r, \theta))}{3} \\
\sigma_{eq} (r, \theta) = \sqrt{\frac{3}{2} \sigma^D (r, \theta) : \sigma^D (r, \theta)}
\]
Summary

- Exact solutions for the 3 modes, determined for one specific geometry
- Taylor development, 1st order \rightarrow asymptotic solution generalized to any other cracks
- First order
 - Solution expressed with separate variables $f\ (r)\ g\ (\theta)$ and $f\ (r)$ self-similar
 - Solution: $f\ (r)$ a power function, r^λ, with $\lambda = -1/2$
- Higher Orders
 - A unique stress intensity factor for all terms
 - The exponent of (r/a) increasing with the order of the Taylor’s development
- Boundary conditions
 - Singularity along the crack front, symmetries, planar crack and straight front
 - no prescribed BCs along the crack faces,
 - Boundary conditions defined at infinity

\textbf{6 independent components of the stress tensor at infinity \rightarrow 6 degrees of freedoms in MLER: KI, KII, KIII and T, Tz, and Γ}
A. Modes
B. Airy stress functions
C. Westergaard’s solution
D. Irwin’s asymptotic development
E. Stress intensity factor
F. Williams analysis
G. Fracture Toughness
H. Irwin’s plastic zones

LEFM
KI, KII, KIII
T, Tz, Γ
Williams expansion

A self-similar solution in the form is sought directly as follows:

\[F(r, \theta) = r^{\lambda + 2} g(\theta) \]

\[\frac{\partial^4 F}{\partial^4 x} + 2 \frac{\partial^4 F}{\partial^2 x \partial^2 y} + \frac{\partial^4 F}{\partial^4 y} = \nabla^4 F = 0 \]
Williams expansion

Dans ce cas \(g(\theta) \) doit vérifier

\[
\frac{d^4 g(\theta)}{d\theta^4} + \left[\lambda^2 + (\lambda + 2)^2 \right] \frac{d^2 g(\theta)}{d\theta^2} + \lambda^2 (\lambda + 2)^2 g(\theta) = 0
\]
The solution is sought as follows: \[g(\theta) = Ae^{ip\theta} \]

\[d^4g(\theta) \over d\theta^4 + \left[\lambda^2 + (\lambda + 2)^2 \right] d^2g(\theta) \over d\theta^2 + \lambda^2(\lambda + 2)^2 g(\theta) = 0 \]

\[\Rightarrow p^4 - \left[\lambda^2 + (\lambda + 2)^2 \right] p^2 + \lambda^2(\lambda + 2)^2 = 0 = (p^2 - \lambda^2)(p^2 - (\lambda + 2)^2) \]

\[p = \pm \lambda \]

\[p = \pm (\lambda + 2) \]
Williams expansion

\[F(r, \theta) = \text{Re} \left[r^{\lambda+2} \left(Ae^{i\lambda \theta} + Be^{-i\lambda \theta} + Ce^{i(\lambda+2)\theta} + De^{-i(\lambda+2)\theta} \right) \right] \]

Boundary conditions are defined along the crack faces which are defined as free surface (fluid pressure & friction between faces are excluded)

\[\sigma_{\theta\theta}(r, \theta = \pm \pi) = \frac{\partial^2 F}{\partial r^2}(r, \theta = \pm \pi) = 0 \]

\[\sigma_{r\theta}(r, \theta = \pm \pi) = -\frac{\partial}{\partial r} \left(\frac{\partial F}{r \partial \theta} \right)(r, \theta = \pm \pi) = 0 \]
Williams expansion

\[F(r, \theta) = \text{Re}\left[r^{\lambda+2} \left(A e^{i\lambda \theta} + B e^{-i\lambda \theta} + C e^{i(\lambda+2)\theta} + D e^{-i(\lambda+2)\theta} \right) \right] \]

\[\sigma_{\theta\theta}(r, \theta = \pm \pi) = 0 \Rightarrow \text{Re} \left[A e^{i\lambda \pi} + B e^{-i\lambda \pi} + C e^{i(\lambda+2)\pi} + D e^{-i(\lambda+2)\pi} \right] = 0 \]

\[\sigma_{r\theta}(r, \theta = \pm \pi) = 0 \Rightarrow \text{Re} \left[\lambda A e^{-i\lambda \pi} - \lambda B e^{i\lambda \pi} + (\lambda + 2)C e^{-i(\lambda+2)\pi} - (\lambda + 2)D e^{i(\lambda+2)\pi} \right] = 0 \]
A series of eligible solutions is obtained:

\[2(\lambda + 1) = n \]

\[g(\theta) = B \cos\left(\left(\frac{n}{2} - 1\right)\theta\right) + D \cos\left(\left(\frac{n}{2} + 1\right)\theta\right) \]

\[g(\theta) = A \sin\left(\left(\frac{n}{2} - 1\right)\theta\right) + C \sin\left(\left(\frac{n}{2} + 1\right)\theta\right) \]

\[F(r, \theta) = r^{n+1} g(\theta) \]

La solution en contrainte s’exprime alors à partir des dérivées d’ordre 2 de F, toutes les valeurs de n sont possibles, tous les modes apparaissent.
Williams versus Westergaard

- The boundary conditions are free surface conditions along the crack faces (apply on 3 components of the stress tensor), no boundary condition at infinity → absence of T, T_z, and Γ

- Super Singular terms → missing BCs

- The first singular term of the Williams expansion is identical to the first term of the Taylor expansion of the exact solution of Westergaard

- The stress intensity factors of the higher order terms are not forced to be the same as the one of the first term,
 - advantage, leaves some flexibility to ensure the compatibility of the solution with a distant, non-uniform field
 - drawbacks, it replaces the absence of boundary conditions at infinity by condition of free surface on the crack, and it lacks 3 BCs, it is obliged to add constraints T, T_z, and G arbitrairement
A. Modes
B. Airy stress functions
C. Westergaard’s solution
D. Irwin’s asymptotic development
E. Stress intensity factor
F. Williams analysis
G. Fracture Toughness
H. Irwin’s plastic zones

LEFM
KI, KII, KIII
T, Tz, Γ
The J integral is shown to be independent of the choice of the selected integration contour

\[G = J = \int_{\Gamma} \left(\varphi \, dy - \sigma n \cdot \frac{\partial u}{\partial x} \right) \]

The integration contour \(\Gamma \) can be chosen inside the domain of validity of the Westergaard’s stress functions to get \(G \) in linear elastic conditions

Energy release rate

\[G = \left(1 - \frac{\nu^2}{E} \right) \left(K_I^2 + K_{II}^2 \right) + \left(1 + \nu \right) \frac{E}{K_{III}} \]

Fracture toughness

\[G_c = \left(1 - \frac{\nu^2}{E} \right) K_{IC}^2 \]
A. Modes
B. Airy stress functions
C. Westergaard’s solution
D. Irwin’s asymptotic development
E. Stress intensity factor
F. Williams analysis
G. Fracture Toughness
H. Irwin’s plastic zones

LEFM
KI, KII, KIII
T, Tz, Γ
Mode I, LEFM, $T=0$

Diagram showing stress distribution with S_{yy} and y^* axes.
LEFM stress field (Mode I)

\[\sigma_{xx}^I(r, \theta) = K_I \frac{1}{\sqrt{2\pi r}} \cos\left(\frac{\theta}{2}\right) \left(1 - \sin\left(\frac{\theta}{2}\right) \sin\left(\frac{3\theta}{2}\right)\right) + T \]

\[\sigma_{yy}^I(r, \theta) = K_I \frac{1}{\sqrt{2\pi r}} \cos\left(\frac{\theta}{2}\right) \left(1 + \sin\left(\frac{\theta}{2}\right) \sin\left(\frac{3\theta}{2}\right)\right) \]

\[\sigma_{xy}^I(r, \theta) = K_I \frac{1}{\sqrt{2\pi r}} \cos\left(\frac{\theta}{2}\right) \sin\left(\frac{\theta}{2}\right) \cos\left(\frac{3\theta}{2}\right) \]

\[\sigma_{zz}^I(r, \theta) = \nu \left(\sigma_{xx}^I + \sigma_{yy}^I\right) \]

Von Mises equivalent deviatoric stress

\[\sigma'(r, \theta) = \sigma(r, \theta) - Tr\left[\frac{\sigma(r, \theta)}{3}\right]\mathbf{I} \]

\[\sigma_{eq}^I(r, \theta) = \sqrt{\frac{3}{2} Tr[\sigma' \cdot \sigma']} \]
Irwin’s plastic zones size, step 1: r_Y

Along the crack plane, $\theta=0$

$$\sigma_{xx}(r, \theta = 0) = \sigma_{yy}(r, \theta = 0) = \frac{K_I}{\sqrt{2\pi r}}, \quad \sigma_{zz}(r, \theta = 0) = 2\nu \frac{K_I}{\sqrt{2\pi r}}, \quad \sigma_{xy}(r, \theta = 0) = 0$$

$$p_H(r, \theta = 0) = \frac{K_I}{\sqrt{2\pi r}} \frac{2}{3} (1+\nu)$$

$$\sigma_{eq}(r, \theta = 0) = \frac{K_I(1-2\nu)}{\sqrt{2\pi r}}$$

Yield criterion:

$$\sigma_{eq}(r_Y, \theta = 0) = \sigma_Y$$

$$r_Y = \frac{(1-2\nu)^2 K_I^2}{2\pi \sigma_Y^2}$$
Irwin’s plastic zones size, step 2: balance

Hypothesis: when plastic deformation occurs, the stress tensor remains proportionnal to the LEFM one

\[\sigma_{xx}^I = \sigma_{yy}^I \]

\[\sigma_{zz}^I = 2\nu \sigma_{yy}^I \]

\[\sigma_{eq}^I = (1 - 2\nu) \sigma_{yy}^I \]
Limitations

Crack tip blunting modifies the proportionnality ratio between the components of the stress and strain tensors.

FE results, Mesh size 10 micrometers, Re=350 MPa, Rm=700 MPa, along the crack plane.
Irwin’s plastic zones size, step 2: balance

\[
\sigma_{yy}(r, \theta=0)
\]

\[
\alpha \sigma_Y
\]

\[
r_{pm} = 2r_Y = \frac{(1-2\nu)^2}{\pi} \frac{K_I^2}{\sigma_Y^2}
\]

\[
\int_{r=0}^{r=\infty} \frac{K_I^{\text{max}}}{\sqrt{2\pi r}} \, dr = \int_{r=0}^{r=r_{pm}} \frac{\sigma_Y}{(1-2\nu)} \, dr + \int_{r=r_{pm}}^{r=\infty} \frac{K_I^{\text{max}}}{\sqrt{2\pi(r-r_Y)}} \, dr
\]
Irwin’s plastic zone versus FE computations

Ideally elastic-plastic material $\sigma_Y=600$ MPa, $E=200$ GPa, $\nu=0.3$
plane strain, along the plane $\theta=0$
Irwin’s plastic zone versus FE computations

Ideally elastic-plastic material $\sigma_Y = 600 \text{ MPa}$, $E = 200 \text{ GPa}$, $\nu = 0.3$

plane strain, along the plane $\theta = 0$
Irwin’s plastic zone versus FE computations

Ideally elastic-plastic material $\sigma_Y=600$ MPa, $E=200$ GPa, $\nu=0.3$
plane strain, along the plane $\theta=0$
Mode I, Monotonic and cyclic plastic zones

![Stress-Strain Curve]

\[\varepsilon_P = \varepsilon - \frac{\sigma}{E} \]
Mode I, Monotonic and cyclic plastic zones

Monotonic plastic zone

\[r_{mpz} = \frac{(1 - 2\nu)^2}{\pi} \frac{K_{I\max}^2}{\sigma_Y^2} \]

Cyclic plastic zone

\[r_{cpz} = \frac{(1 - 2\nu)^2}{\pi} \frac{\Delta K_I^2}{4\sigma_Y^2} \]
T-Stress effect

\[
\sigma_{xx} = \frac{S_{yy} \sqrt{\pi a}}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \left(1 - \sin \frac{\theta}{2} \sin \frac{3\theta}{2} \right) + S_{xx} - S_{yy}
\]

\[
\sigma_{yy} = \frac{S_{yy} \sqrt{\pi a}}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \left(1 + \sin \frac{\theta}{2} \sin \frac{3\theta}{2} \right)
\]

\[
\sigma_{zz} = \frac{S_{yy} \sqrt{\pi a}}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \sin \frac{\theta}{2} \cos \frac{3\theta}{2}
\]

\[K_I = S_{yy} \sqrt{\pi a}\]
T-Stress effect

\[
\frac{r_Y(T)}{r_Y(T = 0)} = \frac{2}{2 - \left(\frac{T}{\sigma_Y}\right)^2 + \left(\frac{T}{\sigma_Y}\right)\sqrt{4 - 3\left(\frac{T}{\sigma_Y}\right)^2}}
\]

\[
T = S_{xx} - S_{yy}
\]

\[
K_I = S_{yy} \sqrt{\pi a}
\]
T-Stress effect

Irwin's plastic zone, \(\sigma_Y = 400 \) MPa, \(K_I = 15 \) MPa.m\(^{1/2} \)
Ductile fracture

Measurement of the crack tip opening angle at the onset of fracture

Pipeline 1 and 2
- CTOA-1: Mean 13.2, SD 2.06
- CTOA-2: Mean 9.8, SD 1.88

Stable-CTOA
Example of the effect of a T-Stress for long cracks
Example of the effect of a T-Stress for long cracks

0.48 % Carbon Steel [Hamam,2007]
Fatigue, and crack growth modeling
Measurements

Potential drop
Direct optical measurements
Digital image correlation

Crack length increasing

COD

F

COD

ε
Load cycle N

$R = \frac{F_{\text{min}}}{F_{\text{max}}}$

ΔF

ΔF_{eff}

$\frac{da}{dN} = f(a)$
Paris’ law

\[K_{I}^{\text{max}} = K_{IC} \]

- régime A: threshold regime
- régime B: Paris’ regime
- régime C: unstable fracture

\[\Delta K_{\text{eff}} > \Delta K_{th} \]

Subcritical crack growth if \(D K \) is over the non propagation threshold
Fatigue – Threshold regime

[Neumann, 1969]
Fatigue – Threshold regime

Titanium alloy TA6V [Le Biavant, 2000]. The fatigue crack grows along slip planes.

N18 nickel based superalloy at room temperature, [Pommier, 1992]. The crack grows at the intersection between slip planes.
Fatigue – Threshold regime – fracture surface

“pseudo-cleavage” facets at the initiation site

Titane TA6V (20°C) (cliché M. Sampablo-Lauro)

alliage de chrome-cobalt (cliché M. Puget)
Fatigue – Threshold regime – fracture surface
Paris’ law

\[K_{I}^{\text{max}} = K_{IC} \]

A - threshold regime
B – Paris’ regime
C - unstable fracture

\[\Delta K_{\text{eff}} > \Delta K_{th} \]

Subcritical crack growth if DK is over the non propagation threshold
Paris’ regime: crack growth by the striation process

Laird, 1967, Pelloux, 1965

TA6V

OFHC

316L

INCO 718
Crack growth is governed by crack tip plasticity

\[
\frac{da}{dN} = \alpha \frac{d\rho}{dN}
\]
Consequences

- the quantities of LEFM (KI, KII, KIII) control the behavior of the K-dominance area

- which controls the behavior of the plastic zone

- which controls crack growth by pure fatigue
• Introduction

• History effects in mode I
 • Observations
 • Long distance effects
 • Short distance effects
 • Modelling

• History effects in mixed mode
 • Observations
 • Crack growth rate
 • Crack path
 • Simulation
 • Modelling
Long distance effect (overload)

CCT, 0.48% carbon steel, [Hamam et al. 2005]
Long distance effect (residual stresses)
• Introduction

• History effects in mode I
 • Observations
 • Long distance effects
 • Short distance effects
 • Modelling

• History effects in mixed mode
 • Observations
 • Crack growth rate
 • Crack path
 • Simulation
 • Modelling
Short distance effect (repeated overloads)

Crack length – aOL (mm)

Number of cycles

- idem after 1 OL (factor 2)
- idem after 10 OL (factor 2)
- Constant amplitude fatigue

CT, 316L austenitic stainless steel, [Pommier et al]
Short distance effect (block loadings)
If the plastic zone is well constrained inside the K-dominance area,

- It is subjected to strain controlled conditions by the elastic bulk,
- Mean stress relaxation
- Material cyclic hardening
• Introduction

• History effects in mode I
 • Observations
 • Long distance effects
 • Short distance effects
 • Modelling

• History effects in mixed mode
 • Observations
 • Crack growth rate
 • Crack path
 • Simulation
 • Modelling
• Issues

• A very small plastic zone produces very large effects on the fatigue crack growth rate and direction

• Finite element method: elastic plastic material, very fine mesh required, 3D cracks, huge number of cycles to be modelled, tricky post-treatment

• Fastidious and time consuming
A simplified approach is needed: the elastic-plastic behaviour of the plastic zone is condensed a non-local elastic-plastic model tailored for cracks.
Method

\[
\frac{d\varepsilon}{dt} = f(\sigma, \ldots)
\]

Constitutive model LOCAL

Scale transition

\[
\sigma = \varepsilon
\]

Tensile Push pull test

Experimential input n°1

Experimential input n°2

Fatigue crack growth experiment

Generation of evolutions of \(\rho\) (CTOD) versus \(K_I\)

\[
\frac{d\rho}{dt} = g(dK_I, K_I, \ldots)
\]

\[
\frac{da}{dt} = \alpha \left| \frac{d\rho}{dt} \right|
\]

Crack growth model, including history effects,
$\frac{da}{dN} \propto \Delta CTOD$

$\approx \frac{da}{dt} = \alpha \left| \frac{d\rho}{dt} \right|$
Single overload : long range retardation

$\Sigma_{\text{max}} = 100 \text{ MPa}$

$\Sigma_{\text{peak}} = 150 \text{ MPa or } 180 \text{ MPa}$

Simulations
- No overload (OL)
- 1 OL $\Sigma_{\text{peak}} = 150 \text{ MPa}$
- 1 OL $\Sigma_{\text{peak}} = 180 \text{ MPa}$

Experimental results
- No overload (OL)
- 1 OL $\Sigma_{\text{peak}} = 150 \text{ MPa}$
- 1 OL $\Sigma_{\text{peak}} = 180 \text{ MPa}$
Block loading: short range retardation

- **Constant amplitude**
- **Essai 1+99**
- **Simulation with the Paris law**

Graph:
- **da/dN (mm/cycle)**
- **ΔK (MPa.m^{1/2})**
- 99 cycles + 1 surch.
Stress ratio (mean stress) effect ($R>0$)
Stress ratio (mean stress) effect (R<0)
Random loading simulations

- Amplitude constante
- Cas N°1
- Cas N°2
- Cas N°3

a (mm)

number of blocks
• Introduction

• History effects in mode I
 • Observations
 • Long distance effects
 • Short distance effects
 • Modelling

• History effects in mixed mode
 • Observations
 • Crack growth rate
 • Crack path
 • Simulation
 • Modelling
Growth criteria in mixed mode conditions?

\[
\frac{da}{dN} = C \Delta K_{eq}^m
\]

\[
\Delta K_{eq} = (\Delta K_I^n + \beta \Delta K_{II}^n + \gamma \Delta K_{III}^n)^{1/n}
\]

Same values of \(K_{max}, K_{min}, \Delta K \) for each mode

Fatigue crack growth experiments

Crack growth rate

Crack path
Load paths in mixed mode I+II

A

B

C

D
Load paths in mixed mode I+II+III
\[
\begin{pmatrix}
K^\infty_I \\
K^\infty_{II} \\
K^\infty_{III}
\end{pmatrix}
= \begin{pmatrix}
f_I(2a) & f_I(2a) & 0 \\
f_{II}(2a) & -f_{II}(2a) & 0 \\
0 & 0 & f_{III}(2a)
\end{pmatrix}
\begin{pmatrix}
F_X \\
F_Y \\
F_Z
\end{pmatrix}
\]
Experimental protocol

6 actuators hydraulic testing machine - ASTREE
Fatigue crack growth in mixed mode I+II+III
Crack path – mode I+II+III

<table>
<thead>
<tr>
<th>Load path</th>
<th>“Prop.”</th>
<th>“Cube”</th>
<th>“Star”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bifurcation angle α</td>
<td>-10°</td>
<td>none</td>
<td>40°</td>
</tr>
<tr>
<td>Twist angle β</td>
<td>60°</td>
<td>15°</td>
<td>10°</td>
</tr>
</tbody>
</table>
Mode III contribution

![Graph showing crack length vs. number of cycles]

- **Crack length 2a (mm)**
 - 39
 - 37
 - 35
 - 33

- **Number of cycles**
 - 0
 - 40000
 - 80000
 - 120000

- **Points**
 - Green: Prop. 12
 - Green-light: Prop. 123

- **Annotations**
 - Twisting
 - Bifurcation
Mode III contribution
Mode III contribution

![Graph showing crack length vs. number of cycles for cross and star configurations, with bifurcation and coplanar features indicated.](image-url)
FE model and boundary conditions

Periodic BC along the two faces normal to the crack front

Prescribed displacements based on LEFM stress intensity factors

\[K_1^\infty u_{bc_nom}^I, K_II^\infty u_{bc_nom}^{II}, K_{III}^\infty u_{bc_nom}^{III} \]

Elastic plastic material constitutive behaviour (kinematic and isotropic hardening identified experiments)
Crack: locally self similar geometry \rightarrow locally self similar solution

$$f(\alpha r) = k(\alpha)f(r)$$

Small scale yielding $f(r) \xrightarrow{r \to \infty} 0$

$$f_i(r) = f_i(0)e^{-\frac{r}{p}}$$

Velocity field: $f(r = 0)$ finite
Cumulated equivalent plastic strain
radial distribution

$POD2 \rightarrow \underline{u}_i^c(P) \approx f(r) \ g_i^c(\theta)$

$$f_i(r) = f_i(0)e^{-\frac{r}{p}}$$
POD based post treatment

Solution of an elastic FE analyses with $K_i^\infty = 1\text{MPa.m}^{1/2}$ for each mode

$$\nu_i^e(P, t) = \hat{K}_i(t)u_i^e(P)$$

$$\hat{K}_i(t) = \frac{\sum_{P \in D} \nu_{i}^{EF}(P, t) \cdot u_i^e(P)}{\sum_{P \in D} u_i^e(P) \cdot u_i^e(P)}$$

$$\nu_{i}^{\text{résidu}}(P, t) = \nu_{i}^{EF}(P, t) - \nu_{i}^e(P, t)$$
POD based post treatment

\[\nu_{\text{résidu}_i}(P, t) = \nu^{\text{EF}_i}(P, t) - \nu^e_i(P, t) \]

\[POD1 \rightarrow \nu_{\text{résidu}_i}(P, t) \approx \dot{\rho}_i(t) \cdot u_i^c(P) \]

\[POD2 \rightarrow u_i^c(P) \approx f(r) \cdot g_i^c(\theta) \]

\[g_i^c(\theta = \pi) = -g_i^c(\theta = -\pi) = \frac{1}{2} \]

\[\lim_{r \to 0} f(r) = 1 \]
POD based post treatment

\[
\underline{v}(P, t) = \sum_{i=1}^{3} \underbrace{\hat{K}_i(t). \underline{u}_i^e(P)}_{\nu_i^e(P,t)} + \underbrace{\dot{\rho}_i(t). \underline{u}_i^c(P)}_{\nu_i^c(P,t)}
\]

\(\hat{K}_i(t)\) Intensity factors, **non-local variables**

\(\dot{\rho}_i(t)\)

\(\underline{u}_i^e(P)\) Field basis / weighing functions tailored for cracks in elastic plastic materials

\(\underline{u}_i^c(P)\)
FE Simulations and results
\[\dot{a}n^* = \alpha (t \wedge \dot{\rho}) \Rightarrow \frac{\dot{a}}{\alpha} = \dot{\rho} = \sqrt{\dot{\rho}_I^2 + \dot{\rho}_{II}^2} \]
Crack propagation law

\[\dot{a}n^* = \alpha \left(t \wedge \dot{\rho} \right) \]

In mode I, this law derives from the CTOD equation.

In mode I+II+III, it derives from the Li’s model.
FE Simulations and results
\[
\rho = \int |\dot{\rho}| dt
\]

\[
\dot{a} n^* = \alpha (t \wedge \dot{\rho}) \Rightarrow \frac{\dot{a}}{\alpha} = \dot{\rho} = \sqrt{\dot{\rho}_I^2 + \dot{\rho}_{II}^2}
\]
Intensity factor evolutions

A, B, C, D: Diagrams showing the intensity factor evolutions for different modes (I, II, III) and positions (ρ).
A Mode III load step increases the amplitude of Mode I and of Mode II plastic flow
\[\rho = \int |\dot{\rho}| \, dt \]

\[\begin{align*}
\dot{\alpha} n^* &= \alpha \left(t \wedge \dot{\rho} \right) \\
\frac{\dot{\alpha}}{\alpha} &= \dot{\rho} = \sqrt{\dot{\rho}_I^2 + \dot{\rho}_II^2}
\end{align*} \]
Approach

Material constitutive law, local and tensorial
\[\dot{\varepsilon} = f(\dot{\sigma}, \text{etc.}) \]

Crack tip region constitutive law, non-local and vectorial
\[\dot{\rho} = g(\dot{K}^\infty, \text{etc.}) \]

FE model \(\tilde{\nu}(P, t) \)

\[\dot{\rho} = (\dot{\rho}_I, \dot{\rho}_{II}) \]
\[\dot{K}^\infty = \left(\dot{K}_I^\infty, \dot{K}_{II}^\infty \right) \]

- Elastic domain (internal variables)
- Normal plastic flow rule
- Evolution equations
Elastic domain: generalized Von Mises Criterion

\[f_Y = \left(\frac{K_I^\infty - K_I^X}{Y} \right)^2 + \left(\frac{K_{II}^\infty - K_{II}^X}{Y} \right)^2 - 1 \]

\[f_Y = \left| \frac{G_I}{G_I^Y} \right| + \left| \frac{G_{II}}{G_{II}^Y} \right| - 1 \]

\[|G_i| = \text{sign}(K_i^\infty - K_i^X)(K_i^\infty - K_i^X)^2 \]
Model

Yield criterion

\[
f = \frac{(K_I^\infty - K_I^X)^2}{(K_Y^I)^2} + \frac{(K_{II}^\infty - K_{II}^X)^2}{(K_Y^{II})^2} + \frac{(K_{III}^\infty - K_{III}^X)^2}{(K_Y^{III})^2} - 1
\]

\[
f(G_I, G_{II}, G_{III}) = \frac{|G_I|}{G_Y^I} + \frac{|G_{II}|}{G_Y^{II}} + \frac{|G_{III}|}{G_Y^{III}} - 1
\]

Flow rule

\[
\dot{\rho}_i = \lambda \frac{\text{signe}(G_i)}{G_Y^i}
\]

Evolution equation

\[
\dot{K}_X = C \left[\dot{\rho} - \frac{\Gamma K_{Xeq}^{M-1}}{1 + \Gamma K_{Xeq}^{M-1}} \langle d \mid \dot{\rho} \rangle d \right] \quad \text{where} \quad d = \frac{K_X}{K_{eq}^X}
\]
Conclusions

• Fatigue crack growth experiments in Mixed mode I+II+III non proportionnal loading conditions

• Result : A load path effect is observed on fatigue crack growth and on the crack path

• Adding a mode III step to mixed mode I+II fatigue cycles increases the fatigue crack growth rate

• Elastic-plastic FE analyses show that accounting for plasticity allows predicting the load path effect and the effect of mode III Plasticity

• A simplified model has been developed to replace non-linear FE analyses