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PROLEGOMENA

Foreword. — Spectral theory is born in the early twentieth century from D. Hilbert in
his original and implicit <« Hilbert space theory > developed in the context of integral
equations, see [14, p. 160]. At that time, mathematics lived many fertile developments,
which left a lasting mark on our way of teaching mathematics today. A brief look at
the mathematical works of this < world of yesterday > never fails to surprise us: From
the ideas and theorems of that time, there emanates a subtle scent of modernity. We
may even feel close to these mathematicians through the motivations that we still share
with them, see (3, Preface, p. v]. Among these motivations, we should emphasize the
will to build bridges between different areas of science. In particular, in [3], R. Courant
felt the need to stimulate the dialog between Mathematics and Physics. Even though we
will illustrate as often as possible the abstract theorems by means of explicit examples
or detailed exercices inspired by Quantum Mechanics, our purpose is somehow more
modest. We can talk about spectral theory in many ways, often scattered in various books
(see below). This little book is an attempt to bring closer and conciliate, in the prism of
spectral theory, various subjects as, e.g.,

— partial differential equations,

— variational methods,

— compact and Fredholm operators via < Grushin > reductions,

— spectral theorem (with the help of basic measure theory),

— or Mourre theory (thanks to elementary non-self-adjoint coercivity estimates).

This book should be considered a manual whose ambition is to help the Reader (having a
reasonable background in linear functional analysis) emancipating him/herself and travel-
ing through other mathematical worlds where spectral theory (and its applications) plays
arole. It is born from notes used for teaching at the universities of Nantes and Rennes in
2019. They were themselves freely inspired by many books [22} 15,13, 2, 27, 26, 18, 25,
34,38] and also owe very much to various lecture notes by mathematicians of < the world
of today >: Z. Ammari, C. Gérard, F. Nier, S. Vil Ngoc, and D. Yafaev.

Spectral Theory and Quantum Physics. — A few years after the birth of spectral the-
ory, one discovered that it could explain the emission spectra of the atoms. This is a good
illustration of scientific serendipity. Indeed, Hilbert spaces, and even the word spectrum,
were independently introduced for quite different motivations (see, for instance, the doc-
toral dissertation of E. Schmidt [29]). Nowadays, two main postulates (which are part of
the Dirac - Von Neumann axioms) of quantum mechanics are the following:
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i. The states of a quantum system are described by non-zero vectors u # 0 of a separa-
ble complex Hilbert space .

ii. The observables are represented by self-adjoint linear operators 7' : H — H.

A state u € H provides a probability distribution for the outcome of each possible mea-
surement. An observable'T' : H — H represents a physical quantity that can be measured
(like position and momentum). The two ingredients H and 7" play a fundamental role in
what follows. Let us start by exhibiting classical examples of H and 7', from the simplest
to the most complex. Fix A € C, N € N, a complex matrix A = (a;;)1<i j<n Of size
N x N, and a bounded complex sequence (\,,)nen-

H T:H—H el
1) Homothety C u— Au |A|
Linear map in :
2) finite dimension C ur— Au ( Z |agj] )
1<i,j<N
Linear (diagonal) map 9/
) in infinite dimension #N;C) u > (Antin)n sub [Anl
4) Shift operator A(N;C) U (Upi1)n 1

The definition of 7w in cases of 1), 2), 3) and 4) is, for all v € H, not a problem.
Moreover, the action of 7" gives rise to a bounded operator with a (finite) norm ||7°||
controlled as indicated in the right hand side. Let us now provide the reader with a slightly
more problematic example, which is the following:

H T:H-—H Il
5) Laplace operator L2(R; C) u— O*u ? ?

The situation 5) raises a number of issues that are reflected by the question marks. In case
5), we would like to answer the following questions:

— What is the domain of definition Dom (T) of T'? For instance, the function 1y ;; is in
L2(R; C) while the distribution 92, (19 }) is not. The choice of the target set H plays,
in this discussion, an important role.

— What do we mean when we say that 7" is continuous? When Dom (7") = H, in a linear
setting, this means that 7" is bounded. But otherwise?

— What is the spectrum sp(T') of the operator T'? Basically, the spectrum of 7T is a subset
of C which is a generalisation of the spectrum of matrices. Thus,

- in case 1), the spectrum is {\}.

- in case 2) the spectrum is the set of the eigenvalues of A . In particular, when the
matrix A is self-adjoint meaning that A is Hermitian or that A* := ‘A = A, we
know that all eigenvalues are real (and that there is an associated orthonormal basis
of eigenvectors). This implies that the spectrum is made of a finite number (< V)
of real numbers.

- in case 3), the vector u; = (0;,), is an eigenvector with eigenvalue \;. Thus, we can
guess that the spectrum contains, at least, the set {\,;n € N}. We will see that it
also contains the adherent values of the sequence (\,, ) en-
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- What happens concerning the shift operator of case 4) ? All vector of the form
uy = (L, A A% - A" )
satisfies Tuy = Auy. When [\ < 1, we find that uy, € ¢*(N;C) and u, is an
eigenvector. It turns out that sp(7") is the closure of such A, that is the unit disk
{A € C;|\| < 1}. By the way, note that the vectors u, with |A\| > 1 are not
eigenvectors because they do not belong to the space /*(N;C). We will describe
the nature of the spectrum (for instance, one will define the discrete and essential
spectra) and its topological properties. Remember that the spectrum of an operator
may be empty (Paragraph[5.4), with a nonempty interior, or even equal to the whole

complex plane C. There will be a few surprises!

— What about the functional calculus? What does it means to compute 72, T3, - - - , 7,

¢ or more generally f(T) when f is a measurable function? For instance, in the case
5), the domain of 7" is

(0.0.0.1) Dom (T) = H*(R,C) := {u € L*(R,C); &*a(¢) € L*(R,C)} C L*(R;C)
while the domain of e” is L%(R, C). How to explain this difference?

We can briefly illustrate the above discussion by commenting the following statement
called Stone’s theorem (see Theorem for a more precise formulation).

Theorem 0.1. — Let T' : H — H be a self-adjoint operator. Then, the solution to the
evolution equation

(0.0.0.2) owu = iTu, u(0,) =ug € H

is given by t — u(t) = Uyug where (Ut)teR is a unitary group defined by U, = T .

When T' = 92, the equation (0.0.0.2)) is the Schridinger equation of quantum mechan-
ics. The notion of self-adjoint operator will be explained later in this book. We see here
that the functional calculus can help to solve partial differential equations.

Proof. — Let us consider this theorem in two particular cases:

— In case 1), the condition < self-adjoint > implies that A € R since
O, u) = (u, ), YueC = M-ANu?=0, YueC = IER.

Then, the solution to (0.0.0.2) is given by ¢t — u(t) = e*uy. The operator U, is a
rotation and preserves the norms of vectors (it is a unitary operator).

— In case 5), denoting by & = % u the Fourier transform of u, it may be checked that
Tw € Hif and only if u € Dom (T") with Dom (7") as in (0.0.0.1). In this setting, 7" is
self-adjoint if and only if 7" = 7™ (see Definition [2.42). This implies that 7" must be
symmetric (see Definition [2.55) in the sense that, for all (u,v) € Dom (T')%, we have

(Tu,vy = (u, T"v) = /Ragu(x)ﬁ(x) dz = / u(2)020(x) dw = (u, Tv).

R
The Fourier multiplier £? is not bounded. That is why the operator 92 : L*(R) —»
L2(R) is not well defined. We find that (t, £) = e €4, (€). By contrast, the Fourier
multiplier e~ is bounded, and it is even of modulus 1. That is why the action
U, : L2(R) — L2(R) which is defined by Uyu = .Z ! (e~"%€"4) is a unitary operator
defined on the whole L2-space.

0
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CHAPTER 1

WARM UP

This chapter is here to help the reader revising some notions that he/she encountered in
the past. Sections[I.I]and[.2]discuss one of the most simple spectral problems involving
a differential equation. The spirit is clearly inherited from [3, Chapter VI, p. 400]. Section
[1.3]is here to help the Reader to check that everything is clear in his/her mind about basic
density results (which will be used very often in this book).

1.1. A question

Fix some interval [ C R. We endow the space L?(I) with the usual scalar product

(u, v) 121y = / uvde.
I
We define (see Appendix[A.4)
HY(I) = {¢ € L*(1) : &' € L*(I)},
and we endow it with the following Hermitian form
(w, V)i = (u, v)izen + (W, V") 2 -
Lemma 1.1. — (H'(I), (-, )u1(p)) is a Hilbert space.

We define
H 1

Ho(1) = ¢5°(1) .
Lemma 1.2. — (H{(I), (-, )n1(n)) is a Hilbert space.
Select a € R and b € R such that a < b. We work on the interval J := (a, ). Define

WP de
(1.1.1.1) A = inf L— .
' vek) [ [V de

Question: What is the explicit value of \, ?
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1.2. An answer
Lemma 1.3 (Sobolev embedding). — The following assertions hold.
(i) We have H'(R) C ¢°(R) and for all ) € H'(R),

1
VreR, ) < — 1(R) -
) < =l

(ii) We have Hy(J) C €°(J) and, for all ) € Hi(J), ¥ (a) = 1 (b) = 0 and
veed, @)<Y e
(iii) For all v € HY(J), we have, for all z,y € J,

¥ () <V =ylll¢'llew)

Proof. — Let us deal with @) We use the (unitary) Fourier transform, i.e., defined by

/\

vie \/ 2m /
and extended to L?(R). We get.

6l = [P, (6 =+

e " y(z)dr, VY € Z(R),

In particular, we deduce, by Cauchy-Schwarz, that 1; € LY(R). By using the inverse
Fourier transform, we get

Ve eR, oz m/@b £)e™ de .

By dominated convergence, we see that ¢/ is continuous. Moreover, it goes to 0 by the
Riemann-Lebesgue lemma. In addition,

vo e [0,1],  |¥(@)] < @072 [lluw < @0)7FHE) e 1) ler)

Let us now consider (ii). Select some 1) € H}(J). Let us extend 1 by zero outside .J
and denote by ¢ this extension. We have v € L*(R). Since 65°(J) is dense in H}(.J), we

can consider agequence () With 1, 6_‘50°°(J ) converging to ¢ in H'-norm. Note that
(¢n)n is a Cauchy sequence since

(1.1.2.2) [0 = Ymlliw = 10 — Ymlliy, V(n,p) € N?.

Since H is a complete metric space, the sequence (1), converges in H'(R) to some
v € H'(R). Since (¢,), converges in L*(R) to ¢, we get v = ¥ € H'(R). By (i), we
deduce that ¢ is continuous on .J. Coming back to (T.1.2.2) and using again (i), we get
that (¢,,),, uniformly converges to ¢. In particular, ¥>(a) = ¢(b) = 0. Then, we can write

Y
i) = o) = [ w0, V)€ I
From the Cauchy-Schwarz inequality, we get

[Vn(@) = u()l = ly = 221} Iz
Passing to the limit (n — +00), since ¥,,(a) = 0, we obtain both (ii) and (iii). O

1. This can be proved by coming back to the definition of H(R) and via the Parseval formula.
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From ({ii), we can infer that

[ W < IR I,
which already implies that:
(1.1.2.3) 0<|J?=(0b-a)?<\.

Lemma 1.4. — Consider E and F two normed vector spaces, and T € L(E, F'). Then,
if (uy,) weakly converges to u in E, the sequence (T, ) weakly converges in F.

Proof. — The adjoint of T, denoted by 77, is defined by

Ve F TW)=(oT.
The application 7" is linear and continuous. Consider the sequence (u,) and ¢ € F’.
Since T"(¢) € E', we get that T"(¢)(u,,) = ¢(Tu,,) converges to T"(¢)(u) = ((Tu). O
Lemma 1.5. — The infinimum (L11.1)) is a minimum v € H}(J) with 1 # 0.

Proof. — Let (¢,,) be a minimizing sequence such that ||/, || 2(;y = 1. In particular (1)
is bounded in L?(J). Thus, (¢,,) is equicontinuous on the (compact) interval [a,b] and
pointwise bounded. We can apply the Ascoli theorem and (after extraction) we may
assume that (¢,,) uniformly converges to ¢ on [a,b] and therefore in L*(J). We get
|¢[lL2cy = 1. Since (t,) is bounded in H{(.J), we can assume that it is weakly con-
vergent (to ¢) in H}(J), and thus in L2(J) (by Lemma[1.4) and then in 2'(J). We must
have ¢ = 1. Since (¢},) weakly converges in L%(J) to ¢’ (again by Lemma [1.4), we
deduce that

: : !/ /

Lim inf {|y7 [z = 19 -

As a consequence, we have

M2 1Y
where ¢ € Hj(J) and |[¢)[| 2.y = 1. It follows that ||¢’||EQ(J) =\ O
Lemma 1.6. — Let v € H}(J) be a minimum. Then the function ) is smooth, in C*°(.J),
and it satisfies (in a classical sense) the following differential equation

(1.1.2.4) " = A
Proof. — Let p € 65°(J). Given € € R, we define

£ = / W+ o) Pde — Ay / 1 + gl de.

Let ¢) be a minimum. By construction, we must have f(0) = 0 and f(e) > O forall e € R.
It follows that f'(0) = 0, that is

/( /E/"‘E/@,) dz = )\1/(1/1@—1-@@) dx .
J J

Test this identity for all ¢ € €$°(.J,R) to obtain that 1) + v is a solution to (1.1.2.4). Do
the same with iy to get that 1) — 1) is a solution to lb By addition, %) is a solution
to in the sense of distributions. But, from (1.1.2.4)), we deduce that ) € H?(J)
and then, by an iterative argument, that ¢» € H"(.J) C ¢ !(J) for all n. O
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Lemma 1.7. — The )\, for which there are non trivial solutions to (1.1.2.4)) being 0 at
a and at b are exactly the numbers (b — a)~?n*n* where n € N*. The corresponding
solutions are proportional to sin(nm(z — a)(b — a)™").

Proof. — Since v is smooth, by Cauchy-Lipschitz theorem, the nonzero solutions to
(I.1.2.4) being 0 at a are given by ¢)(x) = sin(\/Xl (z—a)). The extra condition ¢ (b) = 0
is satisfied if and only if v/A;(b — a) = nr for some n € N*, O

In accordance with the rough estimate (1.1.2.3), we have found the answer to our ques-
tion:

1.3. Some density results

Let us consider a sequence of smooth non-negative functions (p,),en+ such that
f]Rd pn(x)dz = 1 with suppp, = B (0, %) Consider a smooth function with compact
support 0 < x < 1 equal to 1 in a neighborhood of 0, and define x,,(-) = x(n™').

Lemma 1.8. — Letp € [1,+00). Let f € LP(R?). Then, p,* f and x,,(pn* f) converges
to f in LP(RY). In particular, €5°(R?) is dense in (LP(R), || - ||Lo(ra))-

Proof. — Lete > 0and f € 63 (R?) such that || f — fol|L»ra) < &.
We have

o x fol) — fol) = / puW) (ol — ) — fola)) dy

R4
and, by the Holder inequality (with measure p,, dy),

s fo= Filfoe < [ [ onlfoe =) = ool dy

By using the uniform continuity of f, and the support of p,,, we see that p,, x f, converges
to fo in LP(R?). It remains to notice that

lon* (f = fo)llray < [If = folliomey

to see that p,, x f converges to f in LP(RY).
Then, we consider

0= )0 Pl < [ 0= [ put)lfo = )Py,

and we get

10— Moy < [ 0=ate + )Pl dyds

< / F(@)]P da,
|z|>n—1

and the conclusion follows since f € LP(R?). O

Lemma 1.9. — Let k € N. €5°(R?) is dense in (H*(R?), || - ||pr ga))-
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Proof. — Let us only deal with the case k = 1. Let f € HY(R?). We let f,, = xn(pn* f).
First, notice that (f,,) converges to f in L>(R?). Then, we have (first, in the sense of
distributions, and then in the usual sense),

(1.1.3.5) f=xXpa* 4+ Xnpn* [

This can be checked by considering (f’, ) with ¢ € €°(R?), and using the Fubini
theorem. The first term in (T.1.3.5) converges to 0 in L?(R?) and the second one goes to
'in L2(RY).

]

Consider
B'(R) = {v € H(R) : z¢ € L*(R)} C L*(R).
We let, for all p, ¢ € B'(R),
Q(, ) = (0, V) w) + (T@, 2V) 2w -
Lemma 1.10. — (B'(R), Q) is a Hilbert space.
The following lemma will be convenient.

Lemma 1.11. — %;°(R) is dense in (B'(R), || - ||g1(r))-

Proof. — Let us recall Lemma Let f € BY(R). As in Lemma we introduce the
sequence f, = Xn(pn x f). We have seen that f,, goes to f in H'(R). Let us prove that
x f, goes to xf in L(R). Since zf € L*(R), xn(pn*(xf)) goes to xf € L%(R). We write

ZL‘fn(ZL’) - (L‘f({L‘) = TXnPn * f(I) - ZL’f(:L‘) = n_1an~n * f(ZL‘) + XnPn * (fL‘f) - ZL‘f(:L‘) y
with p,,(y) = n?yp(ny). Then, we get
[Xnfn * fllze) < 1Pnlli@ll flliee = 16)p0) i@l fllew) -
The conclusion follows. O]
Exercise 1.12. — Consider
Ve ={y € L*R): (£d, +z)v € L*(R)} C L*(R).
We let, for all ¢, € V.,
Q+(p, ) = (0, V)@ + (L0 + ), (02 + 2)1) 12w) -
i. Show that (V4, Q+) is a Hilbert space.

ii. Let f € V.. Show that the sequence f,, = x,(pn * f) converges in V..

In this book, we will meet Sobolev spaces on open subsets of R%. Let us discuss the
case of H'(R, ). In particular, we need to be careful with the density of smooth functions.
Behing the proof of the following proposition lies a general argument related to extension
operators (which will appear later, see Section 4.2.2.2).

Proposition 1.13. — We have H'(R,) C %€°(R,). Moreover, €°(R,) is dense in
HL(R,, ).
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Proof. — Let ¢ € H'(R,). We define ¢ the function defined by () = 1 ()1, (z) +
Y(—x)1g_(z). Let us prove that ¢y € H'(R) and |]¢||H1(R = 2||¢H2H1(R+). Obviously, we
have ¢ € L*(R). Let ¢ € €;°(R) and consider

—+o00 0
Wehom= [ ve O+ / (-t
“+oo

= ()P (8) + (1)) dt

0
with ®(t) = ¢(t) — p(—t), for all t € R. Consider a smooth even function y being 0
on (—3,1) and 1 away from (—1,1). We let x,,(t) = x(nt). We have (x,®)|j0100) €
%s°(R.). Since ¢ € H'(R,), there exists un function f € L*(R,) such that, for all
¢ € ¢5°(R4),
W, ¢/>L2(R+) - <f7 ¢>L2 (Ry) -
By changing ) into x,,v, we have
+oo

@7 Xn(p/>L2(R) = o ¢(t>Xn<t>(I)/(t> de
+o0 +oo

=, U(t) (xn®)'(t) dt — i ()X (1) () dt

—(fixn®) 2y — i Y(t)x;, (1) P(t) dt

By using the behavior of ® at 0 and a support consideration, we get
+oo

lim ()X (0)R(t)dt =0,

n—+oo [
and we deduce
(W, ooy = —(f, P)ew,)
and thus
(), @) ew ” < 20 flE@ ol
This proves that ¢» € H'(R) and the relation between the H!'-norms follow. Thus ¢ €
€°(R). The conclusion about the density follows from Lemma O



CHAPTER 2

UNBOUNDED OPERATORS

The aim of this chapter is to describe what a (closed) linear operator is. It also aims
at drawing the attention of the Reader to the domain of such an operator. Such domains
will be explicitely described (such as the domain of the Dirichlet Laplacian). We will see
that closed operators are natural generalizations of continuous operators. Then, we will
define what the adjoint of an operator is, and explore the special case when the adjoint of
an operator coincides with itself (self-adjoint operators). We will give classical criteria
to determine if an operator is self-adjoint and illustrate these criteria by means of explicit
examples. The Reader will be provided with a canonical way (the Lax-Milgram theorems)
of defining an operator from a continuous and coercive sesquilinear form. Let us again
underline here that the action of the operator is as important as its domain. Changing the
domain can strongly change the spectrum.

2.1. Definitions
In this chapter, £ and F' are Banach spaces.
Definition 2.1 (Unbounded operator). — An unbounded operator T : E — F is a
pair (Dom (7"), T') where:
— Dom (T) is a linear subspace of F ;
— T'is a linear map from Dom (T) to F.
In contrast with bounded operators, unbounded operators on a given space do not form

an algebra, nor even a linear space (because each one is defined on its own domain).
Moreover, the term “unbounded operator” may be misleading, because

— unbounded does not mean not bounded. As a matter of fact, a bounded operator is an
unbounded operator whose domain is the whole space,

— unbounded should be understood as “not necessarily bounded”,

— operator should be understood as linear operator.
Definition 2.2 (Domain). — The set Dom (7") is called the domain of T'.

The domain of an operator is a linear subspace, not necessarily the whole space. It is
not necessarily closed. It will often (but not always) assumed to be dense.
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Definition 2.3 (Range). — The linear subspace
ranT := {Tz: z € Dom (T)}
is called the range of T'.

Exercise 2.4. — Take E = F = L*(R) and (Dom (T),T) = (¢5°(R), —9?). What is
the range of T'?
Solution: This is the linear subset of 6;°(R) made of functions f satisfying

(R)
/Rf(y)dy—(), // fly dy dyc—()

Definition 2.5. — We say that T is densely defined when Dom (7') is dense in FE.
Definition 2.6 (Graph). — The graph I'(T') of (Dom (T"),T) is
I(T) = {(z,Tz),z € Dom (T)} C E x F.

Definition 2.7 (Graph norm). — Let (Dom (7"),T’) be some unbounded operator. For
all z € Dom (T), we let

(2.2.1.1) \z||r = ||z||g + | Tz .
The pair (Dom (T'), || - ||7) is a normed vector space. The norm | - || is called the graph
norm.

Definition 2.8 (Sesquilinear form associated with the graph norm)
Let (Dom (T"), T') be some unbounded operator between two Hilbert spaces F and
F. For all (z,y) € Dom (T)?, we let

(2.2.1.2) (z,y)r = (x,y)p + (Tx,Ty)p.

The Hermitian inner product (-, -)7 is called the sesquilinear form associated with the
graph norm.

Definition 2.9 (Extension). — Let (Dom (7),7") and (Dom (), .S) be two operators.
We say that S is an extension of T when ['(T') C T'(S). In this case, we simply write
TCS.

Proposition 2.10. — We have T' C S if and only if Dom (T') C Dom (S) and Sipom (1) =
T.

Proof. — By definition, the operator .S is an extension of 7" when for all z € Dom (T'),
we can assert that (z, Tz) € I'(9), that is (x,Tz) = (Z,5%) for some & € Dom (5).
Necessarily, we must have z = & € Dom (S) and Tx = S& = Sxz. The converse is
obvious. [

Definition 2.11 (Closed operator). — The unbounded operator (Dom (7),7T") is said
closed when I'(T') is a closed subset of F' x F' (equipped with the product norm).

Proposition 2.12. — The following assertions are equivalent.
(i) (Dom (T'),T) is closed.

(ii) For all (u,) € Dom (T)N such that u, — u and Tu,, — v, we have v € Dom (T')
and v = Tu.

(iii) (Dom (T), || - ||7) is @ Banach space.
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Proof. —
= (1) The two conditions w«,, — u and v,, = T'u,, — v mean that

(tn, vy) € T(T), (U, vy) = (u,v)in E x F.
Since I'(T) is closed, we must have (u,v) € I'(T) that is u € Dom (7") and v = T'u.
= Consider a sequence (u,) € Dom (7)Y which is a Cauchy sequence for
the graph norm. This implies that (u,) is a Cauchy sequence in the Banach space F,
and that (T'u,,) is a Cauchy sequence in the Banach space B, which therefore converge
respectively to some v € E and some v € F. In view of (ii), we have v € Dom (T) and
u, — u for the graph norm.
= (i) Consider a sequence (u,,, Tu,,) € ['(T)N converging to some (u,v) € E X F
for the product norm. Then (u,,) is a Cauchy sequence for the graph norm, and therefore
it tends to some & € Dom (7'). Since Banach spaces are separated, we must have v = 4
and v = T'u, which means that (u,v) € T'(T).

O

Exercise 2.13. — Take E = F = L%(R?). Prove through two separate methods that the
operator (Dom (T), T) = (H?(R?), —A) is closed.

Solution: The key point is that

(22.1.3) lullr = llullee + [Aulliz ~ [[{€) @2 ~ ullne.

— First method. Let (u,,v,) € T'(T)" be such that (u,, v,) — (u,v)in L2(R?) x L2(R9).
We must have v, = —Au,, and therefore v, — —Au in 2'(RY). Since the limit
(2.2.1.3]

is unique, this means that v = —Au € L*(R?). From (2.2.1.3), we deduce that
u € H%(R?), and therefore we have (u,v) € T'(T).

— Second (more direct) method. Just observe that (2.2.1.3)) implies that (Dom ('), || ||7)

and (H2(R%),|| - ||u2) are two isomorphic normed spaces. The second one being a
Banach space, so is the first one. Criterion is satisfied. o

Proposition 2.14. — Let (Dom (T'),T) be a closed operator. There exists ¢ > 0 such
that

(2.2.1.4) Vu € Dom (T'), ||Tul| = c||ull,

if and only if T' is injective with closed range.

Proof. — Assume that the inequality holds. The injectivity is obvious. Let us consider
(v,) in the range of T" such that (v,) converges to v € F. For all n € N, there exists
u,, € Dom (T) such that v, = Tu,. We deduce from that (u,,) is a Cauchy
sequence so that it converges to some u € E. Since T'is closed, we find that u € Dom (7')
andv =Tu € ranT.

Conversely, assume that 7" is injective with closed range. Then (ran T, || - || ) is a Banach
space. Then T induces a continuous bijection from (Dom (T'), || - ||7) to (ran T, || - ||#)-
The inverse is continuous by the Banach isomorphism theorem, or by the open mapping
theorem (see Section |A.2)). O
Exercise 2.15. — Prove that there exists a constant ¢ > 0 such that

(2.2.1.5) Vo € HX(RY),  [|(—A + Dol = cll@lliza -

Show that this holds for ¢ = 1. What is the optimal ¢?
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Solution: Take E = F = L2(R?). First, as we did in Exercice[2.13| we can prove that the
operator (H?(R%), —A + 1) is closed. Indeed

lulle = llullz + 1| = Au+ uflz = @l + 11+ [E)alle ~ [ allz ~ [lullne.
To obtain (2.2.1.5)), in view of Proposition[2.14] it suffices to show that —A +1 is injective
with closed range.

— Assume that @ € H?(RY) is such that (—A + 1)@ = 0. Then

I(=A+ Dz = [[(1+ &)= =0,
implying that @ = 0, and therefore @ = 0. Thus, —A + 1 is injective.

— Fix v € L?(R%). Define w as the inverse Fourier transform of @ := (1 + |£]?)7!0
By this way, we have v = (—A + 1)w, as well as w € H?*(R?). In other words,
ran (—A + 1) = L2(R?), which is closed for the L?-norm. Then, remark that

[(=A+ Depllizes = 10+ 628N > 1@llzes = lllzo),
The optimal constant is ¢ = 1 as can be seen by testing the above inequality with a se-

quence of functions ¢,, such that (3, concentrates near ¢ = 0, like (3, (£) = n¥/2x(nf)
where y € €°(R?) is a non-zero function.

The following proposition follows from the results in Section

Proposition 2.16. — [Closed graph theorem] Let (Dom (T'),T') be an operator. Assume
that Dom (T') = E. Then, the operator (Dom (T'), T') is closed if and only if T is bounded.

In other words, on condition that Dom (7') = E, the closed graph theorem says that
T is continuous if and only if I'(7) is a closed subset of £ x F. Thus, the concept
of a closed operator can be viewed as a generalization of the notion of a bounded (or
continuous) operator.

Exercise 2.17. — Prove Proposition by using the open mapping theorem.
Solution:
— Assume that I'(T") is a closed. Then, I'(T") equipped with the product norm of £ x F’
is a Banach space, and the application

uv:1(T) — FE

(x,Tx) — =
is a linear bounded bijection. By the open mapping theorem, U ~! is bounded, and there-
fore
ACeR,, |zlle+Tzllr < Cllzle.

This means that 7" is bounded with a norm less than C' — 1.

<= Conversely, assume that T is bounded. Select any sequence (u,) € E such that
up, — wand Tu,, — v. Since Dom (T) = E, we have u € Dom (T"). On the other
hand, since 7" is linear and bounded, it is continuous. We must have T'u,, — v = Tu. We
recover here the criterion (ii) of Proposition[2.12] o

Example 2.18. — LetQ C R and K € L%(Q x Q). Forall ¢ € L?(2), we let

Txy(x /K:Cy dy .

Tk : L*(Q2) — L*(Q2) is well-defined and bounded. Moreover, || Tk | < || K||2(axq)-



2.1. DEFINITIONS 23

Definition 2.19 (Closable operator). — (Dom (7'),T)) is said closable when it admits a
closed extension.

Proposition 2.20. — The following assertions are equivalent.
(i) (Dom (T'),T) is closable.

(ii) I(T) is the graph of an operator.
(iii) For all (u,) € Dom (T)N such that u,, — 0 and Tu,, — v, we have v = 0.

Proof. —
— (). Let (Dom (.5), S) be a closed extension of (Dom (7°), 7). Then I'(T") C
['(S)and I'(T) C I'(S) =T'(S). Define

Dom (R) = {z € E: 3y € F with (z,y) e T(T)}.

Given z € Dom (R), the corresponding y = Sz is uniquely defined. Note also that
Dom (R) is a vector space and that Dom (R) C Dom (S). For all z € Dom (R), we let

Rz = Sz. By this way, we find I'(R) = I'(7)).

— (i). Assume that I'(T") is the graph of an operator R. Then R is a closed
extension of 7. L

— (iil). Assume that ['(T") is the graph I'(R) of an operator R. Let (u,) €
Dom (7)Y be such that v, — 0 and Tu,, — v. Then (0,v) € I'(T) = I'(R), and
therefore (0,v) € I'(R). It follows that v = RO = 0.

— (). Consider (z,y) € I'(T) and (z,y) € I'(T"). We may find sequences (z,,)
and (Z,) such that (z,,Tz,) and (Z,,TZ,) converge to (z,y) and (z,7), respectively.
The sequence u,, = x, — T, converges to 0 and 7T'u,, converges to y — y. Thus, y = 7.
This shows that I'(T") is a graph. O

All unbounded operators are not closable. We give below a counter-example.

Exercise 2.21. — Take E = L?(R%) and I = C. Consider the operator 7" defined on the
domain Dom (T') = 65°(R¢) by T'p» = ¢(0). Then T is not closable.

Solution: We use the criterion of Proposition 2.20] Given some function ¢ €
€°(R% Ry satisfying ¢(0) = 1, we define u,, = ¢, () := p(nz). By construction,
we have T'u,, = 1 # 0 for all n, whereas ||u, || = n=%2||u, || goes to zero. o

Assume that the operator (Dom (T'),T') is closable. Then, by (ii) of Proposition
we can find (Dom (R), R) such that

(2.2.1.6) I(T) =T(R) = {(u, Ru); u € Dom (R)}.

First, note that the operator R is uniquely determined by the characterisation (2.2.1.6).
Moreover, we have Dom (7) C Dom (R) and I'(T") C T'(R) = I'(R). Thus, the operator
R is a closed extension of 7. Let S be another closed extension of 7". Then

[(T)CT(S) = I(T)=I(R)cT(S)=1I(S)

which means that S is an extension of R. By this way, the operator 12 appears as a closed
extension of 7', which (in the sense of the graph inclusion) is smaller than all others.

Definition 2.22 (Closure). — Assume that (Dom (7°),T") is closable. Then, the operator
(Dom (R), R) defined by (2.2.1.6) is called the closure of (Dom (T),T).

We can propose a more constructive characterization of the closure.
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Proposition 2.23. — Assume that the operator (Dom (T'),T') is closable. Then, the clo-

sure of (Dom (T'), T) is the operator (Dom (T),T) whose domain and action are:

— Dom (T) := {x € E;there exists a sequence (x,,) € Dom (T')" satisfying x, — x
and (T'z,,) converges in F and, we can find y € F such that,
for any such sequence, we have T'x,, — y} ;

— Tx = y for any v € Dom (T).

Exercise 2.24. — Prove that T is well-defined, and that T is indeed an extension of 7.

Solution: By assumption, we can find a closed operator (Dom (5), S) such that I'(T") C
['(S). Let x € Dom (7). The stationary sequence (x,,) = () is such that T'z,, — Tx.
Any other sequence (z,,) € Dom (T)" satisfying x,, — = and (T'z,, = Sxz,,),, converging
(to some z) in F' is such that (z,, Sz,) — (z,z) € ['(S), and therefore z = Sz = T'z.
Since Tz is the only possible limit value of such a sequence (T'z,), we have indeed
x € Dom (T). Moreover, we have Tz = T'x when 2 € Dom (T') C Dom (7).

For more general x € Dom (7'), note that y is uniquely identified by x. It follows that
Dom (T') is a linear subspace of F, and that 7" defines a linear operator which is an
extension of 7. o

Exercise 2.25. — Assume that (Dom (7'), T') is closable, and prove that T is the smallest
closed extension of 7" in the sense of the graph inclusion.

Solution: The fact that I'(T") is closed is a consequence of the Cantor’s diagonal argu-
ment (check the details). Fix € Dom (7). We can find a sequence (z,,) € Dom (T)N
satisfying x,, — x and (T'z,, = Sx,,),, — T in F. Since I'(.S) is closed, we must have
(z,Tz) € T'(S), and therefore T'(T) C T'(S). o

The operator (Dom (R), R) defined by (2.2.1.6) is the same as (Dom (T'),T). From
now on, it is denoted by 7". Retain the following important result.

Proposition 2.26. — Assume that (Dom (T'),T') is closable. Then, we have I'(T) =
(7).

Exercise 2.27. — The closure of (5°(R?%), —A) is (H*(R?), —A).

Solution: Fix any u € H?(R?). Since 4°(R?) is dense in H?(R?), we can find a sequence
(u,) € €2°(R?)N such that u,, — u for the norm of H?(R¢). Then, —Aw,, — —Au for the
norm of L?(R?). This means that the graph of (H?(R?), —A) is contained in the closure
of the graph of (45°(R%), —A). But, as seen in Exercice the operator (H?(R?), —A)
is closed. Thus, it is the minimal closed extension. o

2.2. Adjoint and closedness

2.2.1. About duality and orthogonality. — In this section, £ and F’ are vector spaces.

Definition 2.28. — LetT € L(E,F). Forallp € F' = L(F,C),weletT'(¢) = poT €
E'.

Proposition 2.29. — Let T € L(E,F). Then T'" € L(F',E') and ||T||zp,r) =
T\ e, -
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Proof. — T" is clearly linear. Let us show that it is continuous. We have

T/ ’ T/ X
”T,“LZ(F’,E’) = sup || SOHE = sup sup || 90( )”F
eernioy el pernioy zemvioy 1] |0l

For the converse inequality, we write, with a corollary of the Hahn-Banach theorem,

L(E,F) = SUp ——— = Sup sup T————r—
wernfoy 12l zemvioy perigor ll@lle 2| &

<N Tlee,r) -

<Nl eeer ey -

Definition 2.30. — If A C FE, we let
At ={p€eE :ps=0}CF,
and, for all B C £’, we let
B°={zreE:VpeB,p(r)=0} CE.

By construction, both A+ and B° are closed sets. There is a deep connection between
these notions of orthogonality and the adjoint.

Proposition 2.31. — Let T € L(E, F). We have
kerT" = (ranT)* C F', kerT = (ranT')° C F.
Proof. — Concerning the first equality, just remark that
kerT'={pe F' :Ve e F:p(Tx)=0}
={p € F': ¢janr = 0}
Concerning the second one, we have (thanks to the Hahn-Banach theorem, see Section
A1)
(ranT")° = {zx € E:Vp €ranT’ : p(x) = 0}
={reE: Ve F T (z)=0}
={reFE:YWeF :¢oT(x)=0}
={x e E:T(z) =0} =kerT.
[

Lemma 2.32. — Assume that (E, || - ||) is a Banach space. Let us write E = FE, @& F
with Ey and Es closed. Then, the projections 11y, and 11, are bounded.

Proof. — For all x € F, there exists a unique (x1,z2) € Fy X Ey such that v = 1 + .
We introduce the norm defined for all z € £ by

2l = llza ] + [l=]l -
Since E; and E, are closed, (F, || - ||") is a Banach space. We have
VeeE, |lzf <l

By the Banach theorem (see Theorem [A.6), || - || and || - ||" are equivalent, and thus there
exists C' > 0 such that
VeeE, |zl <Clzll.

Let us recall the notion of codimension.
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Definition 2.33. — Let E be a vector space. Let F; and E5 be two subspaces such that
E = E; & E5. Assume that dim Fs < 4-00. Then, all the supplements of E; are finite
dimensional and have the same dimension. This dimension is called the codimension of
E,. Tt is denoted by codim EJ.

The notion of orthogonality is convenient to estimate the codimension.

Proposition 2.34. — Assume that E is a Banach space. Let us write £ = E| & E5 with
E, closed and F, finite dimensional. Then, we have dim F{- = dim E, = codim F;.

Proof. — Consider N € N\ {0}. Let (e,)1<n<n be a basis of Ey. We can consider
(€ )1<n<n the dual basis, which satisfies
6: € Eé’ V(ZL]) < {17 7”}27 6:(6]) :5ij

We consider (e11g,)1<n<ny. By Lemma this is a free family in £’ being 0 on ;.
Thus dim Ei* > N.If ¢ € Ei- andxz € E, we write © = 11+, with (21, 22) € E) X E,
and thus

N N

Ve € B, pla) = plaa) = D enlm)plen) = . en(lpa)plen).

n=1 n=1

In other words

so that dim Ei- < N.
0

2.2.2. Adjoint of bounded operators in Hilbert spaces. — In this section, we assume
that £ = F' = H is a separable Hilbert space with norm || - ||. The notion of the adjoint of
an operator is first introduced in the bounded case.

Proposition 2.35 (Adjoint of a bounded operator). — Let T € L(H) be a bounded
operator. For all x € H, there exists a unique T™x € H such that

VYyeH, (Tyz)=(y,Tx)y, (x,Ty)=(T"zy).
The application T* : H — H is a bounded operator called the adjoint of T

Proof. — The linear application

L:H — C
y — (Ty,x),  [Ty,x)| < ATNzDllyl
is continuous on H. The Riesz representation theorem guarantees the existence of 7™x €
H such that Ly = (y, T*z). ]

There is, of course, a relation between 7™ and 7"
Definition 2.36. — Let us denote by _# : H — H’ the canonical application defined by
VueH, VoeH, _Z(u)(p) = (p,u).

We recall that J is a bijective isometry by the Riesz representation theorem. In particular,
given v € H’, the element u = _# ~'(v) € H can be recovered through the relation

VoeH, u(p)={p, £ ().



2.2. ADJOINT AND CLOSEDNESS 27

Proposition 2.37. — Let T € L(H). We have T* = 7 'T" 7.
Proof. — Consider (z,y) € H? and

(@, 7T Jy) =T Jy(x) = (Jy)(T2) = (Tr,y) = (+.T"y) .
]

Exercise 2.38. — We let H = (*(Z, C), equipped with the usual Hermitian scalar prod-
uct. For all u € H, we let, forall n € Z, (S_u),, = u,_1 and (Syu), = Upy1-

i. Show that S_ and S, are bijective isometries.
ii. Prove that S} = S+.

Solution:

i. Obvious with S_ = S7'and S, = S~'.

i1. This is just because

(Siu,v) = Zunﬂf}n = Zun@njFl = (u, Szv).

nez ne”L

2.2.3. Adjoint of unbounded operators in Hilbert spaces. — In this section, we as-
sume again that £ = F' = H is a separable Hilbert space with norm ||-||. Let (Dom (T"), T")
be an operator. Consider the application

®, : (Dom (T),|-]) — (C,|-])
y +— (Ty,x).

Definition 2.39 (Domain of 7). — This is the linear subspace
(2.2.2.7) Dom (T*) := {z € H : ®, is continuous}.

In other words, an element = € H is in Dom (7™) if and only if we can find a constant
C, € R, such that

Vy € Dom(T), [(Ty,x)| < Callyl|.

Proposition 2.40. — Let (Dom (T),T) be an operator with dense domain. Then, for all
x € Dom (T™), there exists a unique T*x € H such that

Vy € Dom (T), (Ty,z)= (y,T"z).

Proof. — Given x € Dom (T™), the application ¢, is by definition a continuous linear
form on Dom (7"). When Dom (7') is dense in H, it can be uniquely extended as a contin-
uous linear form on the whole space H. Then, the existence and uniqueness of 7™z is a
consequence of the Riesz representation theorem. 0

Definition 2.41 (Adjoint of an unbounded operator). — Let (Dom (7"),T) be an op-
erator with dense domain. Then (Dom (7), T*) is a linear operator called the adjoint of
(Dom (T),T).

Remember that we can deal with 7 only when Dom (7) is dense. This is why this
condition will be often implicitely assumed, like in the definition below.
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Definition 2.42 (Self-adjoint operator). — We say that (Dom (7"),T) is self-adjoint
when the following conditions are both satisfied:

(2.2.2.82) Dom (T') = Dom (T%),

(2.2.2.8b) Yu € Dom (T), Tu=T"u.

To express that (Dom (7"), T') is self-adjoint, we will sometimes simply note 7" = 7.
But keep in mind that this includes the two conditions (2.2.2.8a)) and (2.2.2.8D).

Exercise 2.43. — Work in the context of Exercise [2.38] and show that S, + S_ is self-
adjoint.

Solution: Recall that Dom (S,) = Dom (S_) = Dom (Sy + S_) = (*(Z,C). Fix
v € (*(Z,C). By the Cauchy-Scwarz inequality, we have

(S +5-), 0] = |3 (s + 1)

nel

< 2lfulleflv]lee

which guarantees that v € Dom (S + S_)*, and therefore
Dom (S} + S_) = Dom (S, + S_)* = *(Z,C).

On the other hand
((S4 + 5)t,0) = S (tnss + tta1)0 = D (s + 1) = {u, (S5 + 5)),
nez nez
which implies (2.2.2.8b)). o

Example 2.44. — Let us consider (X, A, ;1) a measure space, with a o-finite measure .
We let H = L?(X, A, ;1) and consider a C-valued measurable function f. We define

Dom (Ty)={yp eH: fy e H}, V¢ € Dom(T}), Ty = fy.
i. If f € L™°(X, A, 1), we have Dom (7) = H and 7 is bounded.
ii. The domain of the adjoint of 77 is given by Dom (7%) and T} = T3. In particular,
when f is real-valued, T is self-adjoint.
Exercise 2.45. — Take H = L*(R). Consider Dom (T') = H'(R) and T = —id,. What
is (Dom (7*), T*)? And if we choose Dom (T") = 65°(R)?
Solution: Let f € L?(R). We find
O o (HR), [ llz) — (C,]-])

—i [ ¢ () f(x)dz = [ €4(€)f(€)d
g — i [ d@ia) = [ e a
which is continuous if and only if £f(€) is in L%(RR), that is if and only if f € H'(R). It

follows that Dom (7*) = H!(R). Moreover, knowing that f € H*(R), an integration by
parts gives

05(9) = =i [ () f(a)do = [ gla)=iF(a) da

which means that 7* = T'. Now, if we choose Dom (7') = %5°(RR), for the same reasons
as before, we still have Dom (7*) = H!(R). But 7T is not self-adjoint (we do not have
T = T*) because the condition is not satisfied. o
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Proposition 2.46. — If T is an operator with dense domain, we have
0(T") = {(:U,y) €EHxH; (z,y) — (Tz,z) =0,Vz € Dom(T)}.
Proof. — By definition
I(T*) = {(z,y) € Dom (T*) x H; y — T"z = 0}.
Since Dom (7') is dense, this is the same as
I(T*) = {(z,y) € Dom (T*) x H; (z,y — T*z) = 0,Vz € Dom (T}
= {(z,y) € Dom (T*) x H; (z,y) — (I'z,z) = 0,Vz € Dom (T') }
C {(z,y) €eH xH; (2,y) — (Tz,xz) = 0,Vz € Dom (T)}.

Conversely, assume that (x, y) € HxH satisfies the above condition. Then, the application
¢, : Dom (T) — C given by ®,(z) = (Tz,z) = (z,y) is continuous with norm
less than ||y||. This implies that z € Dom (7™), and therefore we have the opposite
inclusion. [l

We can equip H x H with the natural scalar product of H x H denoted by
(z,9) - (2,9) = (z,7) + (y, 7).

Proposition 2.47. — Let us define J : Hx H > (z,y) — (—y,x) € Hx H. If T is an
operator with dense domain, we have

D(T*) = J(O(T)*, T(T) = J(T(T))*.
In particular, T™ is closed.
Proof. — From Proposition we know that
D(T*) = {(z,y); (y,2) — (x,T=2) = 0,Vz € Dom (T }
= {(z,y); (z,y) - J(2,Tz) = 0,Vz € Dom (T)} = J(I(T))".

It follows that I'(7™) is closed as the orthogonal of the set J(I'(T")). Moreover

DT = (J(O(T)*) " = JT(T) = J(I(T).
Since J o J = —1, we have

D(T) = —J(D(T*)*) = JO(T")*") = J(T(T))* .

]

Exercise 2.48. — Let T be an operator with dense domain. Show directly that 7™ is
closed.

Solution: Fix any (z,z) € T'(T*). We can find a sequence (z,,2,) € ['(T*)N with
2, = T*x,, converging to (x, z). Then, for all y € Dom (7"), we have

{y,2) = lim (y, T"w,) = lim (Ty,z,) = (Ty,z).

This means that the application ®, : Dom (7)) — C given by ®,(y) = (Ty, x) = (y, 2)
is continuous with norm less than ||z||. This implies that x € Dom (7*) and T*z = z. In
other words, we still have (x, z) € I'(T™). o

Proposition 2.49. — Consider two operators (Dom (T),T) and (Dom (S),S) with
dense domains. If T' C S, we have S* C T*.

Proof. — 1t is a consequence of Proposition O
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Proposition 2.50. — Let I’ be an operator with dense domain. Then, T' is closable if and
only if Dom (T™*) is dense. In this case, (T*)* =T =T.

Proof. — Assume that Dom (7™) is dense. Then, by Proposition m applied to 7™, we
have

D(T)) = (O = J(IO@)*) " =TT) = T[T

In other words, (7)* = T is closed, with graph I'(T’). It follows that 7" is closable, and
more precisely 1" = T™*.
Now, assume that 7" is closable. Select v € Dom (7™)+. We have
Vz € Dom (T7), 0= (v,2z)=(0,v) (=172, 2)
which means that L
(0,0) € J(O(T*))* = T(T) = I(T)

and therefore v = T0 = 0. By this way, we can recover

(Dom (T*)*)" = {0}* = H = Dom (7%)
as expected. [

Proposition 2.51. — If T is closable with dense domain, then T* =T where T = (T)*.

Proof. — By Proposition we know that Dom (T™*) is dense, and that T** = T. It
follows that 7" = (T**)* = (T*)**. By Proposition we recover that 7 is closed,
and therefore closable. Applying Proposition 2.50| with 7™ in place of T, we get that
(T*)** = T*. Since T* = T*, we can conclude that T~ = T*. O

Proposition 2.52. — Let us consider a densely defined operator T'. We have
ker(T*) = ran (T)*, ker(T*)* =ran(T).
In particular, T is injective if and only if T" has a dense range.

Proof. — Let x € kerT* and y € ran (7'). We can write y = Tz with z € Dom (7).
Then
Vy eran(T), (z,y) = (x,Tz) =(T"x,z) =(0,2) =0

which implies that z € ran (7).

Conversely, let y € H be such that (y, T'x) = 0 forall z € Dom (7") so that y € Dom (7™)
and we have (T*y, z) = 0 for all z € Dom (T'). Since the domain Dom (7") is dense, this
implies that 7™y = 0. U

2.2.4. Creation and annihilation operators. — To illustrate the preceding (rather ab-
stract) propositions, we discuss here two important examples . Take H = L?(R). Let us
introduce the following differential operators, acting on Dom (a) = Dom (¢) = . (R),
1 1
a:=—(0,+x), c:=—(—0,+1x).
\/ﬁ( ) ﬂ( )
The domains of their adjoints are
Dom (a*) := {¢ € L*(R); (=0, + x)¢ € L} (R)},

Dom (¢*) := {¢ € L*(R); (0, + ) € L} (R)}.
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Observe that .(R) C Dom (a*) and that .’(R) C Dom (¢*). It follows that Dom (a*)
and Dom (c*) are dense in L?(R). By Proposition the two operators a and ¢ are
closable with @ = a** and ¢ = ¢**. On the other hand

V¢ € Dom (a*), a*¢ = %(—&r + ) =,

Vi € Dom (¢*), "= %(&5 + ) = ay.

In other words, we have a C ¢* and ¢ C a*, whereas (by direct computations) we can
check that I'(a*) and I'(c*) are closed, so thata C ¢* and ¢ C a*.

Lemma 2.53. — We have
(2.2.2.9) Dom (@) = Dom (¢) = B(R) = {¢ € H'(R) : 29 € L*(R)}.
Proof. — For all u € .(R), we have

(2.2.2.10) 2llau|® = ||u/||* + ||zul|® — ||ul)®
(2.2.2.11) 2|cul|* = ||o/||* + [Jzul|® + ||ul|?.

Now, take v € Dom (@). By definition, we have (u,au) € I'(a). There exists (u,) €
Dom (a)" such that (u,) converges to u and (au, ) converges to au. We deduce that (u/,)
and (zu,) are Cauchy sequences in L>(R). By this way, we get that v/ € L*(R) and

zu € L?(R), and therefore Dom (@) C B!(R). We can proceed in the same way for €.
We deal now with the reversed inclusion. Take u € B'(R). By Lemma there exists
a sequence (u,,) of smooth functions with compact support such that u,, converges to u in

B!(R). In particular, (au,,) and (cu,) converge in L*(R), so that (u,au) € I'(a) = T'(a)
as well as (u, cu) € I'(¢) = I'(¢). This implies u € Dom (a) and v € Dom (¢). O

Lemma 2.54. — The closures a and ¢ of a and c are adjoint of each other and they share
the same domain B! (R).

Proof. — We use the results of Exercise For example, if ¢» € Dom (¢*), we have
¢ € L*(R) and (9, + x) € L%(R). There exists (¢,) € " such that 1, converges to ¢

and (0, + )1, converges to (0, + x)1 € L%(R). Using (2.2.2.11)), we get that (+//) and
(21),,) are Cauchy sequences with L?(R) with limits ¢’ and ). Thus ¢ € B*(R). From
the inclusion @ C ¢* and from (2.2.2.9)), we deduce that

Dom (c¢*) € B!(R) = Dom (@) C Dom (c*) .
We can deal with ¢* in the same way to obtain
Dom (¢*) = Dom (@) = B'(R) = Dom (¢) = Dom (a*).
We deduce that

By Proposition 2.51] we get
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2.3. Self-adjoint operators and essentially self-adjoint operators

In Quantum Mechanics, the states of a system are represented by normalized vectors
w in a Hilbert space H. In other words, a state is an element u € H such that |ju|| = 1.
Then, each dynamical variable (e.g. position, momentum, orbital angular momentum,
spin, energy, etc.) is associated with an operator (Dom (7"), T'), called an observable, that
acts on H.
Assume that © = w,, is an eigenvector of 7" with eigenvalue A\. The eigenvalue equation

TU)\ = )\U)\

means that if a measurement of the observable 7" is made while the system of interest
belongs to the state u), then the observed value of that particular measurement returns the
eigenvalue A with certainty. However, if the system of interest is in a general state u € H,
the Born rule stipulates that the eigenvalue ) is returned with probability |{u,u,)|?. For
physical consistency the mean value of a dynamical variable 7' must be a real number,
that is

(2.2.3.12) Yu € Dom (T), (Tu,u) = (Tu,u) = (u,Tu) €R.
2.3.1. Symmetric and self-adjoint operators. — The starting point is (2.2.3.12).
Definition 2.55. — An operator 1" is said symmetric if is satisfied.
Proposition 2.56. — An operator T is symmetric if and only if
(2.2.3.13) Vu,v € Dom (T'), (Tu,v) = (u,Tv).
Proof. — From (2.2.3.12)), we can deduce that

Y(u,v) € Dom (T)?, (T(u+v),u+v)€R,

or, equivalently,

(2.2.3.14) Y(u,v) € Dom (T)?, (Tu,v)+ (u,Tv) € R.

This implies that

(2.2.3.15) Y(u,v) € Dom (T)?, Im(Tu,v) = Im (u, Tv).

By testing (2.2.3.14) with iv, we obtain

(2.2.3.16) Y(u,v) € Dom (T)%, i(Tu,v) —i{u, Tv) € R.

This means that

(2.2.3.17) Y(u,v) € Dom (T)?, Re{(Tu,v) = Re (u,Tv).

Combine (2.2.3.15) and (2.2.3.17) to get (2.2.3.13). O

Proposition 2.57. — A densely defined operator T' is symmetric if and only if T' C T™.

In other words, a densely defined operator 7" is symmetric if and only if
(2.2.3.18) Dom (7)) C Dom (T*) , Vu € Dom(T), Tu=T"u.
In view of (2.2.2.8)), any self-adjoint operator is symmetric, and a densely defined sym-

metric operator is self-adjoint if and only if Dom (7") = Dom (7).

1. Note, however, that there is a non-self-adjoint Quantum Mechanics, related to dissipative systems.
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Proof. — Let T be a symmetric densely defined operator. Let v € Dom (7). From
(2.2.3.13)), we have
Vv € Dom(T),  [(u, Tv)| = [{Tu,v)| < || Tul|Jv]},

and therefore u € Dom (7). We have also
Y(u,v) € Dom (T)?, (u,Tv) = (T*u,v) = (Tu,v).

Since the domain Dom (7") is assumed to be dense in H, by Riesz representation theorem,
we must have 7*u = T'u, and therefore (u,Tu) € I'(T™), which means that I'(7") C
0(T™).

Conversely, assume that 77 C 7™ or equivalently that I'(7") C I'(T™*). Thus, given u €
Dom (7"), we must have (u, T'u) € I'(T*), and therefore T'u = T*u. Then

Vu € Dom (T), (Tu,u) = (u,Tu) = (u,T*u) = (Tu,uy,
which is exactly (2.2.3.12)). 0

Proposition 2.58. — Let us consider a densely defined operator I which is symmeiric.
Then, T' is closable and T' C T' C T*. Moreover, ' is self-adjoint if and only if T' =T =
T

Proof. — A densely defined operator 7" which is symmetric satisfies
HC Dom(T) C Dom(T*) CH = Dom(T*)=H.

By Proposition [2.50} the operator 7" is closable. By Proposition [2.5T} the operator 7™ is
closed, so that 7' C T C T™. Thus, it is self-adjoint if and only if 7" =T = T™. O]

Exercise 2.59. — Take H = L?(R). Show that (4;°(R, C), —i0,) is symmetric.

Solution: Just perform an integration by parts to see that

vreerm), [ (i) fao= [ [T

o

Exercise 2.60. — Let P € R[X] be a polynomial of degree n. Work with H = L2(R%).
Show that the differential operator (H"(R¢), P(D)) is symmetric. Here D = —id,. Use
the Fourier transform and Example [2.44

Solution: For all u € H"(R?), since P(-) is real valued, we have

(P(D)u,u) = (P(&)a, t) = (a, P(§)a) = (&, P(§)a) = (u, P(D)u) .

e}

Exercise 2.61. — Give an example of some unbounded operator on H = L?(T) which is
densely defined and not symmetric.

Solution: Just take (¢>°(T), 0,), and remark

(0,(e), e™) = /z’eixe” dr =i ¢R.
T
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Proposition 2.62. — Consider a symmetric operator T. Let z = o+ i3 with (o, B) €
R x R*. Then, T' — zI is injective on Dom (T') with more precisely

(2.2.3.19) Yu € Dom (T, |[(T — 2D)ul| = |6]||u] -

If moreover ' is closed, the operator I' — z1I has a closed range.

Proof. — Let u € Dom (7). We have
(T = zD)ull* = (T — a)u — iBul|?
= (T = a)ull* + B%||ull* + 2Re (T — a)u, (—iB)u)

(2.2.3.20)
On the other hand

(T = a)u, (=iB)u) = —iB[(Tu,u) — ofju|?] € iR
It follows that

(T = =Dul* = (T — a)ul* + B[lul® = B2||ull*.
It remains to apply Proposition [2.14 0

Proposition 2.63. — Let T' be a densely defined, closed and symmetric operator. Then,
T is self-adjoint if and only if T is symmetric.

Proof. — If T is self-adjoint, we have ' = T* = (T*)* and ['(T*) = I'((T*)*) C
I'((7T™)*), which means that 7™ is symmetric.

Now, assume that 7" is densely defined with 7' = T C T*. By Proposition [2.50, we
already know that (7%)* = T If moreover 7™ is symmetric, we have T* C (7*)*. Thus,

T=TcTc(T)Y=T=T,

and therefore 7' = T™. 0
Proposition 2.64. — Let T be a densely defined symmetric operator. The three following
assertions are equivalent.

(1) T is self-adjoint.

(i) T is closed and ker(T™* £ i) = {0}.
(iii) ran (7" +14) = H.
Proof. — _
= (). If T is self-adjoint, we have 7" = 7" = T™ and T is closed. Let z €
ker(T™ £ ¢I). Then

R > (x,T2) = (z,T*z) = (Tx, ) = (x, Fir) = Fi||z|* € R.

This is possible only if x = 0.

= ({ii). By Proposition [2.52, we have ker(T* 4 i) = ran (T F i)~ = {0}. Thus,
T F i has a dense range. Since 7' is closed, by Proposition [2.62} the range Ran(T" F i) is
closed. In other words, we have Ran(7" F i) = Ran(7T F i) = H.

— (). Assume that ran (7' £ i) = H. First, let us prove that Dom (7™) C Dom (7).
To this end, take u € Dom (7™) and consider (7™ — i)u. There exists v € Dom (7") such
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that (7% — i)u = (T' — i)v. Since T is symmetric, we have Tv = T*v and (T"* — i)u =
(T* —i)v. It follows that

u—v € ker(T* — i) = ran (T +i)* = H- = {0},
and therefore v = v € Dom (T'), meaning that Dom (7*) C Dom (7). Since we have
(2.2.3.18)), it follows that Dom (7*) = Dom (T'), so that T" = T™*. O

Exercise 2.65. — Take H = L?(R¢,C). Select some potential V € L>(R? R). Then,
consider the corresponding operator 7' = —A +V with domain H?(R?). Is it self-adjoint?
Conclusion?

Solution: Since H%(R?) is dense in L?(R?) for the L2-norm, the operator T is densely
defined. Since A = div(V) and because V' (-) is real valued, two integration by parts
indicate that T is symmetric. By definition, an element u € L?(R?) is in Dom (T') if and
only if the application

o, : H2RY) — C
v o— /(—Av—l—Vv)ada:
R

is continuous for the L?-norm. Since V(-) is bounded, we have

/ Voudz
R

This is equivalent (after Fourier transform) to the continuity of

< (IVIllzllullez) vl -

®, : H*RY) — C
v [l
R
which is satisfied if and only if v € H?(IR?). This means that Dom (7*) = H?(RY) =
Dom (7).

Conclusion: knowing that 7" is self-adjoint, we can use the criterions (i) and (iii). The
condition says that, for any g € L?(R%), the equation (—Au + V 4 i)u = g has a
solution in H?(IR?), while the condition (ii) guarantees the uniqueness of such solution. o
Exercise 2.66. — Take H = L*(R.).

i. Is the operator (H'(R ), —i0,) symmetric?

ii. Is the operator (H} (R, ), —i0,) symmetric?
iii. Show that the domain of the adjoint of (H} (R, ), —id,) is H (R ).
iv. By using Proposition [2.64} prove that (H}(R ), —i0,) is not self-adjoint.

Exercise 2.67. — Take H = L*>(R, ). We let
Dom (T) = {¢ € H*(Ry) : «/(0) = —u(0)}

and T = —02 Is this operator self-adjoint? We recall that H%(R,) is continuously
embedded in ' (R, ) (see Proposition |1.13).
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2.3.2. Essentially self-adjoint operators. —

Definition 2.68. — A (densely defined) symmetric operator is essentially self-adjoint if
its closure is self-adjoint.

Proposition 2.69. — Let T’ be a (densely defined) symmetric operator. Then, T' is essen-
tially self-adjoint if and only if T = T*.

Proof. — First, by Proposition 3.4, the operator 7' is closable.

= If 7" is essentially self-adjoint, we have T  =T. Then, by Proposition , we have
T = T*, and therefore T = T*.

< Assume that T = T*. By Proposition 2.50, we have T** = T, so that T = T** =
T. O

Exercise 2.70. — Take H = L2(IR%), and consider (4°(R¢), —A). Show that this oper-
ator is essentially self-adjoint. What is the adjoint?

Solution: As seen before, the closure is (H*(R?), —A), which is self-adjoint. This is 7.
@)

Proposition 2.71. — If T is essentially self-adjoint, the operator T" has a unique self-
adjoint extension, which is T

Proof. — Let us consider a self-adjoint extension .S of 7. We have 7' C S. By Proposi-
tion [2.49|, we get

TcS=S=5"cT*=T.

Necessarily, we must have 7' = S. ]
Proposition 2.72. — Let T be a (densely defined) symmetric operator. The three follow-
ing assertions are equivalent.

(1) T is essentially self-adjoint.

(i) ker(T™ +14) = {0}.
(iii) ran (T +4) = H.
Proof. — Assume (i). Then, T is self-adjoint. By Propositions and [2.64] we have

ker(T"™ 1) = ker(T* £ i) = {0}.

Assume (1) . Then, by Proposition , ran (T 4 4) = H and it follows that the operator
T is self-adjoint. Obviously, (ii) and are equivalent by Proposition m O

Exercise 2.73. — Take H = L*(I) with I = (0,1). Consider (¢3°(I), —9?). Prove in
two different ways, using respectively and (iii), that this operator is not essentially
self-adjoint. What is the closure of this operator ? Explain why this closure is not self-
adjoint.

Solution: The proof is by contradiction and, each time, it relies on the function f € L*(1)
which is given by 0 # f(z) = e with \? = +i.
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— Through the criterion (ii). First, observe that H*(7) C Dom (7). Indeed, an integra-

tion by parts gives
/ w0 v dx
I

as well as T*v = —0?v. But f,, € H?*(I) is such that —9?f\ + ify = 0, that is
fx € ker(T™ £ i), which is a contradiction.

— Through the criterion (iii). Notice that
Vu € €°(1), (e, —0%u +iu) = (N2 F4) (e u) =0,

Vu e GP(),  |(~0%u,v)| = < ollweqn lullizqry,

which implies that 0 # % € ran (T + i)l, and therefore does not hold.

The closure is (H{(I) N H?(I), —0%) which is symmetric. However, the domain of its
adjoint is H?(I) which is strictly bigger than H} (1) N H?(I). o

2.3.3. A criterion for essential self-adjointness for Schrodinger operators. —

Lemma 2.74. — Let f € L2 (R?) suchthat Af € L2 (R?). Then, there exists a sequence

loc loc

(fn) € € (RYN such that (f,) tends to f and (Af,) tends to Af in L2 (R?).

loc

Proof. — Tt is sufficient to adapt the proof of Lemma|[I.9] O

Lemma 2.75. — Let p and x two smooth functions with compact supports, with x real-
valued. We have

[ Ve d < 2xapliel + 41T

Proof. — We write

(Ap, XP0) = (Vo, V(XP0)) = IXVel® + 2(xVe, (Vx) ¢) .

By using the Cauchy-Schwarz inequality, we have

1
2/(xVe, (Vx) p)| < §H><Vs0!|2 +2[[(Vx)el*.
We deduce the desired estimate. O]

Lemma 2.76. — Let f € L2 (R?) such that Af € L2 (RY). Then f € HL, (R9).

loc loc

Proof. — We consider the sequence (f,,) given in Lemma and we use Lemmal[2.75)
with ¢ = f,, — f,. We easily deduce that (Vf,) is convergent in L? (R?) and that the

loc

limit is V f in the sense of distributions. ]

Lemma 2.77. — Let f € L2 _(R?) such that Af € L2 _(R?). Then f € HZ (R?).

loc loc loc

Proof. — Let x be a smooth function with compact support. We have just to show that
xf € H*(RY). We have A(xf) = XAf +2Vx - Vf + fAx € L2(R?) by Lemma[2.76|
Thus, by considering the Fourier transform of y f, we easily find that (£)2yf € L2(R?)
and we deduce that x f € H?(R?). O
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Proposition 2.78. — Let us consider V € €>(R%,R) and the operator T with domain
6°(RY) acting as —A + V. We assume that T is semi-bounded from below, i.e., there
exists C' € R such that

Vo € GRRY),  (Tu,u) > Cluf?.
Then, T' is essentially self-adjoint.

Proof. — Up to a translation of V/, we can assume that C' = 1. Let us prove that the
range of T 4 i is dense. Let us consider f € L*(R?) such that, for all u € €5°(R?),
(f,(T£i)uy =0.
We get, in the sense of distributions, that
(-A+VFi)f=0.
With Lemma 2.77] we get that f € H2, (R?). By induction, we get that f € H32 (R?).

loc loc
From this and the Sobolev embedding H*(RY) — #°(R?) when s > £, we deduce that
f € E=RY).
Now, take u € €°°(R?) and consider y € %§°(R? R) supported in B(0,2) and equal
to 1 on B(0,1). Forall n > 1, we let, for all z € RY,

Xn(7) = x(n"'z).
We write
(f,(T£1)(xpu) =0,
and we have

AT 200G = [ (VIVOED) +(V F i f7) do.

We get
V V(3T de = / WV IV e+ [ VF - (Vi) xaide.
R4 R4 R4
Thus,
VV(2T) de = / Y () V () da— / PV X0V () da+ / V(YT
R4 Ra Rd R4
and

/ VIV (ET) de = / V() V () it — / F1VxP) de
Rd Rd Rd

T / VF - (Vo)D) da — / Fea Yy, - Vade.
Rd Rd

We can choose u = f, take the real part to get

[ IV0ahE 4 ViafPas = [ 1795 ds.
R4 Rd
The r.h.s. goes to zero when n goes to +o0c. By assumption, this implies that
. . 2
lim inf [ xn f[|* = 0.
The conclusion follows from the Fatou lemma. [

Example 2.79. — The operator with domain 6°(R) acting as —9? + 22 is essentially
self-adjoint. Show that, in fact, this operator is bounded from below by 1.
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Exercise 2.80. — Take H = L?(R?). We take Dom (T') = 65°(R?). For ¢ € Dom (7)),
we let Ty = (=02, + (—i0,, — x1)?)1). Is this operator essentially self-adjoint?

2.4. Polar decomposition

Proposition 2.81. — [Square root of a non-negative operator] Let T' € L(H) be a non-
negative operator. There exists a unique non-negative operator S € L(H) such that
S2 = T. The operator S commutes with T

Proof. — Let us prove the existence. Multiplying 7" by a small factor, we can always
assume that ||7']] < 1. Let us write 7" = Id — R, with R = Id — 7. Let us notice that
|R|| < 1. Indeed, for all u € H, we have

0 < [full® = ull|Tull < (Ru,u) = [lul|* = (Tu,u) < [Juf*.
By using the Cauchy-Schwarz, we get, for all (u,v) € H?,
[(Ru, )| < [(Ru, w)[2[(Ro, v)[> < [[ull[]o]]

Thus, |R|| < 1. Let D := {z;|2| < 1} be the open unit disc. Now, D > z — s(2) =
(1 — z)2 has a power series expansion at 0 which is

(2n)!

=1 nn7 S = .
s(z2) —l—Zc 2 0<c @n = 1) ()2

n>1

Moreover, this power series is absolutely convergent on D. We let S = s(R) and notice
that S > 0, and, by Cauchy product, S? = s*(R) = T.

Let us now show the uniqueness. Let S’ be non-negative operator such that S’ = T.
Then, S’ commutes with 7" and thus with S. We have

(S =85S+ S)(S—-5)=0.
Since (S—95")S(S—S") = 0and (S—5")S'(S—S") > 0, both equal 0, and (S —5")3 = 0.

Then, (S — S’)* = 0 so that (S — S")? = 0 and then S = 5.
O

Definition 2.82. — Let T € L£(H). We define |T'| = (T*T)z.

Proposition 2.83. — AllT € L(H) can be written as a linear combination of four unitary
operators.

Proof. — First, we notice that

T r+1 T-T
~ T Tt
and observe that we have to show that all bounded self-adjoint operator can be written as
a linear combination of two unitary operators. Thus, consider 7" € L(H) a self-adjoint

operator. We may assume that || 7’| < 1. Then, we have

T= % <T+i(Id - TZ)%) + % (T —i(1d — TZ)%> .
O

Definition 2.84. — We say that U € L(H) is a partial isometry when, for all ¢ €
ker(U)*, [|U]| = [|¢]].
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Proposition 2.85 (Polar decomposition). — There exists a unique partial isometry U
such that
T=U|T|, kerU =kerT(=ker|T|).

Proof. — Let us prove the uniqueness. Consider U; and U, two such isometries. We
have

UL|T| = Us|T|.
Thus, U; = U, on Im |T'| and then on Im |7T'|. On Im |T|l = ker U;, we have Uy = Uy =
0. Therefore, U; = Us.

Let us now establish the existence of the decomposition. We have, for all x € H,
|Tx|| = |||T|x||. In particular, we have

\V/(Z'l,ilfz) € H27 ‘Tlil’}l = ‘T'l’g — Tﬁlfl = TCCQ .

Thus, there exists an application U : ran |T'| — ranT such that, for all x € H, U|T|z =
T'z. This application U is a linear isometry. In particular, it can be extended as a linear

T S— —
isometry U : ran|T'| — ranT. Onran |I'| = ker |T|, we extend U by 0. In particular,
we have ker |T'| C ker U. The reverse inclusion is also true. Indeed, consider y € H

_— —_—
such that Uy = 0. Writing y = y; + y» with y; € ran|T'| and y» € ran|T| , we have

Uy = Uy, and 0 = ||Uy|| = ||y1]|. Thus, y € ran|T|L = ker |T’|. This shows that
ker |T'| = ker U and that U is a partial isometry. O

2.5. Lax-Milgram theorems
Let V be a Hilbert space.

Definition 2.86 (Coercive form). — A continuous sesquilinear form () on V' x V is said
to be coercive when

(2.2.5.21) Ja>0, YueV, |Qu,u)l=alul.

Theorem 2.87. — Let () be a continuous coercive sesquilinear form on'V x V. Then, the
operator o/ =V — V defined by

(2.2.5.22) Vu,v €V, Qu,v) = (Fu,v)y

is a continuous isomorphism of V onto V with bounded inverse. The same applies to the
adjoint operator o/ * of o .

Proof. — Fix u € V. Since () is continuous, we have
Yo eV, [Qu,v)| < (Cllully)llvlly
By the Riesz representation theorem, we can find some <7« € V such that
YoeV, Qu,v) = (Fu,v)y

The operator .27 is a linear continuous map, with norm bounded by the above constant C'.
By construction and by Cauchy-Schwarz, we have

VueV, alully < 1Qu,u)| = [{ou, upy| < |Zullvully

This indicates that (ran .o/ ) = {0}, or equivalently that the range of <7 is dense. This
also implies that
allully < | ully
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which means that .7 is injective and has a closed range. Thus, ran «# = ). The operator

4/ is a continuous isomorphism of ) onto V) with inverse bounded by o .

The continuous sesquilinear form @ defined on V x V through

Y(u,v) €V, Q(u,v) = Q(v, u)
is coercive. The corresponding operator o satisfies
(2.2.5.23) Yu,v €V, Q(u,v) = <JZ/U,U>V = (v, u)y = (F u,v)y

and therefore o/ = &/* is a continuous 1somorphism of V onto V with bounded inverse.
O]

Example 2.88. — Take V = H}(I) with I = (0,1) and

1
Y(u,v) € V3, Q(u,v) :/ W' de .
0

This sesquilinear form () is continuous on V x V. We have the Poincaré inequality
Vu e Hy(D), ullzay < llv'lleq -
It follows that
Vu e Ho(D),  llullfry = lullteq + 11lE20y < 200 E ) = 2Q(u, u)
We find (2.2.5.21) with o = 1/2. According to Theorem [2.87} we can define an operator
o/ 'V — V satisfying

1 1 1
(2.2.5.24) Yu,v €V, / u'v' d = (o u, v)uy ) :/ (&%u)’?dx—i—/ (Fu)vde.
0 0 0
@)

In the preceding example, we cannot replace H} (1) by L?(I) because the form @ would
not be well-defined. Still, we can assert that

1 1
(2.2.5.25) V(u,v) € H3(I) x Hy(I), / u'v' dz = —/ Pu’ dz = (Lu,v)i2(r
0 0

with . := —92. Compare (2.2.5.24) with (2.2.5.25). This means that the action of Q

can also be interpreted through the L2-inner product. But this requires to introduce an
auxiliary operator . which is defined only on a subspace of H} (1), namely H2(T7).

Theorem 2.89. — In addition to the hypotheses of Theorem assume that H is a
Hilbert space such that V is continuously embedded and dense in H. Introduce

Dom(%Z) = {u € V : the map v — Q(u,v) is continuous on V for the norm of H}
Then the operator £ defined by

Vu € Dom(.&), Vv e, Qu,v) = (Lu,v)y

satisfies the following properties:

(i) Z is bijective from Dom(.Z’) onto H.

(1) Z is closed.
(iii) Dom(.Z) is dense in'V for || - |

v, and it is dense in H for || - ||n.

2. See Chapter or prove this inequality first for u € €§°(I) and extend it by density.



42 CHAPTER 2. UNBOUNDED OPERATORS

Proof. — The sesquilinear product and the norm on H will be simply denoted by

<U,U>H = (u,v> ) ||u||H = ||U|| :
By density and the Riesz theorem, .Z is well defined on Dom(.%).
Let us deal with (i). For all u € Dom (%), by Cauchy-Schwarz and due to the continuous
embedding of V in H, we have
(2.2.5.26) |Zullull = (Lu,w)| = allull}, = acllu?,
where ¢ > 0 is such that

VueV, dlull <llully.

We deduce that .Z is injective. Let us prove the surjectivity. Fix some w € H. We look
for an element u € Dom (%) such that Zu = w. This is equivalent to

VeeH, (ZLu,p) = (w,¢).
We notice that the application ¢ — (w, ¢) is a continuous linear map on (V, || - ||»). Thus,
we can find some v € V such that
VQO S V7 <U), 90> = <U790>V
We let u = &/ ~'v € V so that

VoeV, (wg)=0Q(uyp).
We deduce that © € Dom (.Z’) and
Vo eV, (w,p) = (Lu,p).
By density, we get Zu = w. Thus, . is surjective, and hence bijective.

Consider (i). From (2.2.5.26), we get that Z ! is continuous, and that || .Z || < (ac) ™.
It follows that . is closed as expected.

Now, we prove (iii). Let u an element of } which is orthogonal to the domain Dom (%)
for the sesquilinear form (-, -),,. In other words

Vv € Dom (£), (u,v)y =0.
The operator .7 € L£(V) is bijective. Thus,
Vv € Dom (&), (u,&v)y =0,
so that
Vv € Dom (Z), Q(v,u)=0,
and therefore
Vv € Dom (&), (ZLv,u)=0.
By surjectivity of .Z, we get v = 0. This means that the domain Dom(.Z) is dense in V
for || - ||y, and therefore in V for || - ||, and then in H for || - ||4. O

Let ) be the adjoint sesquilinear form which is defined by

Vu,o €V, Qu,v) = Q(v,u),

As above, we can introduce
Dom(.,?) = {u €V :themapv — Q(u,v) is continuous on V for the norm of H}

and we can define the operator 7z by

YueDom(Z), YweV, Qu,v)=(Luv).
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Theorem 2.90. — We have L — £~

Proof. — We first prove that .£* C Z.Letu € Dom (Z*). Then
v € Dom (Z), (Lyp,u) = (o, L u).
We notice that V 3 ¢ +— (@, Z*u) is continuous for || - ||,,. Thus, there exists v € V such
that
VoeV, (o, L) = (p,v)y.
In particular, we have
Vo € Dom (£), (ZLp,u) = (p,L7u) = (p,v)v.
There exists w € V such that v = .&/*w and thus
Vip € Dom (Z), (ZLp,u) = (p, ZL"u) = (p,v)y = Q(p,w) = (Lp,w).
By surjectivity of .2, we get u = w € V. Then

Vi € Dom ("%) ) @(uv CP) = Q(‘pv u) = <907$*u> .

Since Dom(.Z’) is dense in V, this gives rise to

Vo eV, Q) < L ulllel,

—

and therefore u € Dom (.%), with

Vo € Dom(Z), (Lu.p) = {p.Lu) = {p, L u).
By density of Dom (%), this is possible only if Zu = #*u. This means that £* C Z.

—~

Let us now prove the converse inclusion. Let u € Dom (.Z’). We have
Vo € Dom (Z), (ZLp,u) =Q(p,u) =Qu, ) = (Lu,p) = (p, Lu).
Since Dom(.%) is dense in V, this gives rise to
Vo eV, Zeu)l| < ||ILullllel.
It follows that u € Dom (.£*) and
VoeV, (p L% = (p, Lu).
Since V is dense in H, this furnishes Z*u = Zu. O]

2.6. Examples

2.6.1. Dirichlet Laplacian. — Let Q C R? be an open set. Here, we consider V =
HS(€2) and we define the sesquilinear form

QDir(u,v):/Vu-W%—uﬂdx.
Q

The form QP is Hermitian, continuous, and coercive on V, with o = 1. We find that
o/ = 1dy. The self-adjoint operator .#°'* — Id given by Theorem is called Dirichlet
Laplacian on . The domain of .#P¥ is

Dom (.ZP") = {1 € H3(Q) : —Aw € L*(Q)}.
If the boundary of € is smooth (see Section for more details), we have
Dom (.£P") = H () NH*(Q).
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Remark 2.91. — This characterization of the domain is not true if the boundary is not
smooth. To see this, the Reader can consider a sector €2 of opening « € (7, 27). In that
case the function ¢ = ra sin(a~'0n) satisfies Ay = 0 but ) is not H? near 0. Then, by
using a convenient cutoff function (to get a function in H}(2)), we get a counter-example.

2.6.2. Neumann Laplacian. — Let Q C R? be an open set. Here, we consider V =
H'(€2) and we define the sesquilinear form

QNeu(u,U):/Vu-W—i—u@dx.
Q

The form () is Hermitian, continuous, and coercive on ). In Theorem [2.87, we have
o/ = 1dy. The self-adjoint operator .ZN" — Id given by Theorem is called the
Neumann Laplacian on €. If the boundary of €2 is smooth, the domain of .#~¢" is

Dom (ZN) = {yp € HY(Q) : —Ayp € L*(Q2), Vi-n =0 on N}
and we have (and we admit that)

Dom (.£N") = {1 € HY(Q) NH*(Q) : V4 - n =0 on N} .
Remark 2.92. — This characterization of the domain is not true if the boundary is not
smooth.
2.6.3. Harmonic oscillator. — Let us consider the operator
Ho = (65°(R), =0, + 7).

This operator is essentially self-adjoint as we have seen in Example Let us denote
by H its closure. The operator H is called the harmonic oscillator. We have

Dom (H) = Dom (Hg) = { € L*(R) : (=92 + 2*) € L*(R)}.

We recall Lemma [I.10} Theorem can be applied and .&# = Id. Consider Theorem
with H = L*(R). The assumptions are satisfied since V is continuously embedded
and dense in L?(R). The operator .Z associated with () is self-adjoint, its domain is

Dom (£) = { € B}(R) : (=02 + 2%)y € L*(R)}.
The operator . satisfies in particular
(=07 +2%)u,v) = Q(u,v) = (Lu,v),
forall u,v € €5°(R). This shows that .Z is a self-adjoint extension of H. Thus, £ = H.
2.6.4. Exercise on the magnetic Dirichlet Laplacian. — Consider a bounded open set
Q) C R? and a function ¢ € €>°(Q,R). We let, for all = € Q,
B(z) = Ag(x),
and we assume that B(x) > By > 0. We let

A= (Al, AQ) - <_8:E2¢7 aa:1¢) .
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2.6.4.1. Coercivity of the magnetic Laplacian. —

1. Prove that

Vi € 62(9), /Q (—iV — A)opPda = /Q (—i0y — AP+ |(—is — As)iPda

> [ B,
Q
We will note that
[—i0y — Ay, —i0y — Ayl = iB.
ii. Prove that the inequality given in il can be extended to ) € H}(Q).
iii. For all ¢, 1, € H}(Q2), we let:

c%wwma/hN—Aw«4V—M¢w.

Q

Show that (A is a continuous and coercive sesquilinear form on H}(Q2). Hinz: Show
that, for all e > 0 and all p € H}(Q),

@A@zw>><1—sy/rV¢P¢z—s{/|APWﬁdx.
Q Q

Let £ be the operator associated with this form via the Lax-Milgram theorem.
iv. Explain why %, is self-adjoint.
v. (a) Prove that
Dom(Za) = {¢h € H}(Q) : —Ay € L*(Q)}.
(b) Show that for all ¢ € Dom(.%4 ),
LA = =AY+ 2iA -V + |Al*).

2.6.4.2. Magnetic Cauchy-Riemann operators. — Consider the following differential
operators

1 1
az: 5(8561 _iaxz)a &Z: 5(61‘1 +i8$2)7
and -
dp = —2i0, — Ay +idy,  da = —2i0; — A} —iAy.
More precisely, for all v € 2'(Q2),
daty = =2i0.0 — Ay +idstp,  dpth = =200z — At — iAg).
We consider (H}(£2),da).
i. (a) Compute 0z(—A; +iAs).

(b) For all ¢ € 65°(£2), give a simplified expression of cfi;(d A) by using only
%A and B.

ii. Prove that
Vo € 62(9), MMWZQM%w+ABWWW

iii. (a) Is the operator (H}(£2),da) closed?
(b) Prove that (H}(€2), da) is injective with closed range.
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iv. What is the adjoint d’y of da?

v. Show that ker(d%) = [e=?0(Q)] N L2(2). We will admit that if yp € 2'(Q) satisfies
0z = 0, then ¢ € O(2). Here, O(S2) denotes the set of the holomorphic functions
on (.

vi. Is (H3(2), da) surjective?

2.7. Regularity theorem for the Dirichlet Laplacian
Theorem 2.93. — Let Q) be a bounded open set of class €*. Let u € H}(Q) and f €
L2(Q) such that —Aw = f. Then, u € H*(Q).

2.7.1. Difference quotients. —

Proposition 2.94. — Let p € (1,+00| and v € LP(Q). Then u € W'?(Q) if and only if
there exists C' > 0 such that, for all w CC Q[P]and h € (0, dist(w, CQ2)), we have

u—u
(2.2.7.27) IDyttllr) < C,  Dyu= 2 A ) = ul ).
In this case, we can take C' = ||Vul|rq). If p = 1 and u € W1(Q2), we still have

Proof. — Consider p € [1, +00). For all u € €°(R?), the Taylor formula gives
Thu(z) —u(z) = /1 Vu(z +th) - hdt.
With the Holder inequality, 0
mpu(z) — u(@)? < [P / e+ h)Pdt.
0

For w CC (2, we get

1
=l <P [ Vut)Payar.
0 w+th

We can find w’ CC € such that w +th C w' forall t € [0,1] and all h € (0, dist(w, CQ)).
Then,

1
(2.2.7.29) 70t — ullpo) < |B] ( / [Vu(y)[? dy)

For u € WP(), we can find a sequence (u,) C %5°(RY) such that u,, — wu in

n—-+00

WP (w) since €5°(RY) is dense in W'P(R?). Thus, (2.2.7.29) is true for u € W'P(Q)

(and also with p = +o00). Then, (2.2.7.27) and (2.2.7.28) follow.
Conversely, for p € (1,+oc], we consider ¢ € %5°(Q2). There exists w CC 2 such

that supp ¢ C w. We take h € (0, dist(w, CQ)) and we write

/uD_hap dx / Dyupdx
Q Q

3. This means that @ is compact and & C €.

< Dl o llell v @) < Cllell ) -
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By using the dominated convergence theorem, we deduce that, for all j € {1,...,d},

/ udjp dz
)

This shows that the distribution 9;u belongs to L?(9) since L?(Q) = (L¥'(£2))’ (only when
p>1). [

< CH‘PHL#(Q)-

2.7.2. Partition of the unity. —

Lemma 2.95. — Let Q) be a non-empty open set of R and K C § be a compact set.
There exists x € 65°(R?) such that

0<x<1,and x=1 .inaneighborhoodof K .

Proof. — There exists a non-negative function p € %°(R?) such that supp (p) C
B(0,1] and [, p(x)dz = 1. Lete > 0 and

K. ={x ¢ R*: dist(z, K) < €}.
Clearly, K. is compact, and K C K.. When () # R?, we also let
§ = dist(K,CQ) > 0.
Forall e € (0,6) , we have K. C .

Consider the smooth function defined by

Xk(w)——L/piﬂK%(y)psz—-y)dy, pe(x) = e p(e ).
R
We have, for € small enough,

supp (xe) C supp (1x.) + B(0,e] € Ko C Q.

Then, consider = € K.. Then, supp (p-(x — -)) C K. and thus x.(z) = 1. O
Lemma 2.96. — Let K C R? be a compact set. Assume that
P
KclJu;,
j=1

where each Uj is an open set which cannot be removed. Then, there exist a family of
non-empty open sets (V;)1<;<p, such that

VjE{l,...,p}, ‘/jCCUj,

and
p
KclJVv.
j=1
Proof. — Consider the non-empty compact set

p
Ki=K\|JU;cKnuy.

=2
We let, for any € € (0, dist(K, CUY)),
Vi ={r € R?: dist(z, K;) <e} C U, .
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The set V] is compact and K; C V;. We have

p
KcwulJu;.

=2
The result follows by induction. [
Lemma 2.97 (Partition of the unity). — Consider K and a family of open sets (U, )1<;<p

as in Lemma There exists a family of smooth functions (0;)1<j<, with compact
supports such that

Vje{l,....p}, supp(0;) CU;
and, in a neighborhood of K,

Proof. — We use Lemma [2.96] and then Lemma [2.95 to get the existence of y; €
%°(U;) such that x; = 1 on a neighborhood of V;. Then, we let

Or=x1, Oo=x2(1—=x1),---, Op=x1=xp-1)...(1=x1)-
O

2.7.3. Local charts. — Let C = {z € R? : |[2/| < 1, x4 < 1}. Since 99 is of class
¢ and compact, there exist a family of open sets (U;);<;<, such that

o) C O Uj,
j=1

and ¢-diffeomorphisms ¢; : Q — U; with ¢; € €2(Q) and k; := ¢; ' € ¢*(U;) and
©i(Co) = 0Q N U,. There exists also an open set Uy CC €2 such that

QCU()ULPJU]'.

J=1

We can apply Lemma to get a family of smooth functions with compact supports
(ej)ogjgp such that
p
O+ 0;=1.
7=1

2.7.4. Proof. — Let us write
p
u = HQU + Z 9ju .
j=1
Note that fyu € H*(R?). Moreover,
~A(fou) = —Abgu — 2VO,Vu + b f € L2(R?).

By using the Fourier transform, we get fyu € H2(RY).
Let us now prove that 6,u € H?(Q) forall j € {1,...,p}. We let v = 6;u. We have

—A(Oju) = —Ab;u — 2V0,Vu + 0,f = g € L2(Q).
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For all p € H}(£2), we have

V. oVepdr = / gpdx.

QﬂUj QQU]‘

We let, for all y € Q4+, w(y) = v(p;(y)). Note that, for all z € QN U},
v(z) = w(p; (2)).
By using the change of variable x = ¢;(y), we get
V. = (dr;)'V,.
Letting G; = (dg;)Tdyp;, we get
(2.2.7.30) / (G7'Vyw, Vy@‘Gj’% dy = / Q@’Gj‘% dy,
Q+ Q+

where f(y) = f(p;(y)). This holds in fact for all 3 € HA(Q,). Let us prove that
w € H?*(Q). Let us introduce the difference quotient
TRU — U

|
Let us assume that h is parallel to the boundary y; = 0 and that |A| is small enough to
have D_;, Dpw € Hy(Q). Then, we can take ¢ = D_;, Dw. By Proposition 2.94]

Dhu =

22731 / §91G;|* dy < G513l ||V Dyl
Q+
Moreover,
/Q (G7'V w0, V,)|Gy]> dy = /Q (Dn(G'Vyw), V, Dyw)|Gy|2 dy .
+ +

Commuting Dy, with Gj’l, we find that

/ (G703, V@Gl dy > / (G5, Dyw), V, Dyu)| Gy 2 dy
Q+ Q4
— Cllwllwn |V Dywlz

Since G is a positive definite matrix, we get, for some o > 0,
/Q+<G]»1Vywa Vy@)|Gil? dy = o[V Dywl|* = Clfw]lw |V Dyw]li
Then, using the Young inequality,
| €55 BIC E dy > IS Dl = Cllf

Note that, we can prove with (2.2.7.30) (with ¢ = w), and the Poincaré inequality, that
|lwllp: < Cg||. With (2.2.7.31), and again the Young inequality, we deduce that

IVyDpwl|| < Clig]-
Proposition implies that, for all £ € {0,...,y4-1},
IVyopw] < Cllg]-

It remains to control the normal derivative. Consider [2.2.7.30| with ¢ € %;°(Q4).
The term in the left-hand-side involving only the normal derivative is in the form
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ga(y) Dy, wd,,p with agqg > o > 0. Thus, let us replace ¢ by a; ¢. Then, since all the
other second order derivatives are controlled, we get

[ duwudnpan < clallal.
Q+

This shows that J; w belongs to L*(Q.).
Therefore, w € H?(Q. ) and then u € H*(Q).

2.8. Notes

i. The theorems in Section 2.5 were proved by Lax and Milgram in [20, Theorems 2.1
&2.2]. Our presentation follows the book [13, Chapter 3], but Theorem[2.90|is added.

ii. Section [2.7| is essentially taken from the book [2, Section IX.6]. The (difference
quotient) method (due to Nirenberg [24, p. 147]) has an interest of its own to establish
elliptic estimates and characterize the domain of many operators. Indeed, the abstract
Lax-Milgram characterization is not always very useful in practice. This addendum
was suggested by L. Le Treust.



CHAPTER 3

SPECTRUM

This chapter describes the various elementary properties of the spectrum. We will first
discuss the important case of bounded operators, and especially the remarkable resolvent
bound for normal operators. Then, we will progressively consider more general closed
operators and discuss the famous Riesz projections. Finally, we will say a few words
about the Fredholm operators (and their indices). The main reason to do that is to define
the discrete and the essential spectrum of a closed operator. Somehow, we will see that
the Fredholm operators of index 0 are very close to be square matrices, at least from the
spectral point of view.

3.1. Definitions and basic properties

3.1.1. Holomorphic functions valued in a Banach space. — Let £ be a Banach space.

Definition 3.1. — Let {2 be a non-empty open set in C. We say that f : Q@ — E is
holomorphic when, for all z; € €2, the limit

o 1) = £ ()

Z—20 z — ZO

exists. It is denoted by f’(zo).
Lemma 3.2. — Let A C E such that ((A) is bounded for all { € E'. Then A is bounded.

Proof. — This is a consequence of the uniform boundedness principle. [

Proposition 3.3. — Let f : Q) — E. f is holomorphic if and only if it is weakly holomor-
phic, i.e., { o f is holomorphic on Q) for all { € F'.

Proof. — Let us assume that £ o f is holomorphic on € for all / € E’. Let us first prove
that f is continuous. Take zo € €2 and define for » > 0 such that D(z,,7) C €,

PRELEC

Z— 20

2 € D(zo,r)\{zo}} CFE.

We observe that £(A) is bounded for all ¢ € E’. We deduce that A is bounded. This
proves the continuity of f at z5. Take z; € €2 and I a circle with center 2, and radius r
such that D(zo,7) C €. Since f is continuous, we can define, for z € D(zo,r),

IR A (SRS U=V i ((S IR
(3.3.1.1) F(2) _%/ngdg_%XX/F@dg)z .

n=»
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By the Cauchy formula, we get, for all { € E" and z € D(z,r),
1 14
lof(z) = —/ ° 19 4¢.

20 r (—Z

Using the Riemannian sums, we find

t(f(z) = F(2)) = 0.
By the Hahn-Banach theorem, we deduce that F'(z) = f(z). From (3.3.1.1), it is easy

to show that F' (and therefore f) has a power series expansion on D(zg, r), and thus it is
holomorphic. 0

By using the classical Liouville theorem, we get the following.
Corollary 3.4. — Let f : C — E be holomorphic. If f is bounded, then it is constant.

Proof. — Assume that we can find zy € C and z; € C such that f(z9) # f(z1). Then, by
the Hahn-Banach theorem, there exists some ¢ € E’ such that £ o f(zy) # £ o f(z;). But
the function C > z — ¢ o f(z) is holomorphic and bounded. By the classical Liouville
theorem, it must be constant. This is a contradiction. O]

3.1.2. Basic definitions and properties. — Let 7' € £(F) be a bounded operator on a
Banach space E. It may also be a closed (unbounded) operator (Dom (T), T) on H.

Definition 3.5. — The resolvent set p(T) of T is the set of all z € C such that 7' — z :
Dom (T") — H is bijective.
Note that, by the closed graph theorem, if z € p(T),
Ry(z) = (T —2)7" « (K[| - [[) = (Dom (7)), - [|z)
is bounded.

Definition 3.6. — The spectrum of T is the set sp(T') = C\ p(T).

Definition 3.7. — An eigenvalue of T" is a number A € C such that ker(7" — \) # {0}.
The set formed by the eigenvalues is called point spectrum. It is denoted by sp,,(7').

We have sp,(T") C sp(T).
Proposition 3.8. — In finite dimension, the spectrum coincides with the point spectrum.

Proof. — In finite dimension, the operator 7' — z is injective if and only if 7' — 2 is
surjective, whereas the continuity is always guaranteed. [

Exercise 3.9. — Here H = C". Fix ¢ > 0, and define the matrix M, (¢) = (m;;)1<i<n
SYAS
with m,, 1 =&, m;;+1 = 1foralli € {1,...,n — 1}, and 0 otherwise.

i. What is the spectrum of M, (¢)?

1. What is the behavior of the spectrum when n goes to +00?

Solution:

i. The eigenvalues A of M, (¢) are distinct. They can be obtained by looking at the
roots of the characteristic equation X" — ¢ = 0. We find A} = "\/e e2Im/m with j €
{0,-+-,n—1}.

ii. A position z € C is the limit of eigenvalues \} of M, () when n goes to +oo if and
only if |z| = 1. The spectrum tends to the unit circle. o
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Exercise 3.10. — What are the spectra of @ and ¢ defined in Section [2.2.4]?

Proposition 3.11. — Assume that T is a bounded operator on H. Then, we have z € p(T)
if and only if T — z is bijective. Then, for z € p(T), the inverse operator (T — z) ' is

bounded, and we have Ry (z) = (T — z)~'. Moreover
sp(T) C {z; [ < |7}
Proof. — The first assertion is a consequence of the open mapping theorem. Let z € C

be such that || 7’| < |z|. Then the operator 7" — z is invertible with an inverse given by the
(absolutely convergent) series

£
(T —2)"'=— 2% T
' O
Proposition 3.12. — p(T)) is an open set and p(T') > z — Ryp(z) is holomorphic.
Lemma 3.13 (Weyl sequences). — Let us consider an unbounded closed operator

(T, Dom(T)). Assume that there exists a sequence (u,,) € Dom (T') such that ||u,||n = 1
and
lim (T — \)u, =0

n—-4o00

in H. Then \ € sp(T).
A sequence (u,,) as in Lemma is called a Weyl sequence.

Proof. — Assume that A € p(T). Since (T — \)~! is bounded, we find
lim (T —A) YT = Nup = lim u, =0

n——+oo n—-+oo

which is a contradiction. O]

Example 3.14. — We let H = L*(I), with I = (0,1). Take f € €°([0,1],C). We
consider the operator T : L?(I) > ¢ ~ fi € L*(I). Note that T is bounded and
1T < 11 oo
i. If A ¢ ran (f), then, the multiplication operator by (f — A)~! is bounded and it is the
inverse of T'— \. In particular, this shows that sp(7") C ran (f).

ii. Select some zy € (0,1) and let A = f(xo). Let x € %5°(] — 1,1]) satisfying
[x|/L2(r) = 1. Given n € N, we consider the sequence

un (@) = Vnx(n(z — o))

For n large enough, the support of u,, is included in [0, 1]. Moreover, we have
[unlln =1, (T = Nunlln < sup  [f(z) = f(zo)],
le—x0|<1/n
which implies that
lim (T'— MNu, =0.

n——+o00

By Lemma [3.13] this shows that A € sp(T"). We get f(I) C sp(T). Since the
spectrum is closed and f continuous, we get f([0, 1]) C sp(T).

iii. If X is an eigenvalue of 7T, there exists ) € L?(I) such that ||[¢||q = 1 and (f — )y =
0. Thus the measure of { f = A} is positive. Conversely, if A = {f = A} has a non
zero measure, 1 4 is not zero and satisfies T1 4 = A1 4.
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Actually, we can generalize this last example.

Exercise 3.15. — Use the notations of Example We define the essential range of f
as
ranes(f) ={A € C:Ve >0, u({|f — Al >¢}) > 0}.
i. Prove that, if A\ ¢ ran.(f), then A € p(7%).

ii. Let A € ranes(f) and ¢ > 0. By using A. = {|f — A| > ¢}, find a function
1. € Dom (T¥) such that ||(Tr — X\)ve|ln < e|Y:]|n-

iii. Conclude that ran «s(f) = sp(T%).

Exercise 3.16. — Consider on ¢! (N) the shift operator T defined by (Tu),, = Uy 1.
i. Show that sp(7") C D(0, 1].
ii. Show that sp,(7") = D(0, 1[. Conclusion ?

Solution:
i. This is because ||T']| = 1.

ii. Let A € C with |A| < 1. Then uy, := (\"),, € ¢}(N) is an eigenvector of T associated
with the eigenvalue A. This means that D(0, 1[{C sp,(7'). Since sp(T') is closed, we
must have

D(0,1[C sp,(T) C sp(T) C D(0,1].
Now, let A € C with |\| = 1. Then A is an eigenvalue of 7" if and only if we can
find some nonzero vector = u € ¢*(N) such that u,,; = Au,, for all n € N. But this
implies that u = uguy with uy # 0, whereas such u is not in /! (N). It follows that
A & sp,(T'). Since sp(T) is closed, we have sp(T") = D(0, 1]. As a consequence, we
can find spectral values which are certainly not eigenvalues.

o

Exercise 3.17. — Here H = (*(Z). We recall that L*(S!, C) is isometric to ¢*(Z) via the
Fourier series and the Parseval formula.

i. Forall u € H, we let, for all n € Z, (S_u), = u,_1. By using the result of Exercise
(or Exercise [3.14) and the Fourier series, find the spectrum of S_. What is the
point spectrum of S_?

ii. Forall u € H, we let, forall n € Z, (T'w),, = u,,_1 + u,_1. Find the spectrum of 7.
Proposition 3.18 (Resolvent formula). — For all 2y, zo € p(T'), we have
Ry(z1)Rr(22) = Rr(z2)Rr(z1)
and
(3.3.1.2) (21 — 22) Rr(21) Rr(22) = Rr(z1) — Rp(22) .
Proof. — When z; = z,, there is nothing to show. Assume that z; # 25, and observe that

(21 — 22)ldipom(r) = (T" — 22)jpom () — (T — 21) pom (1)
= [(T —21)Rr(z1)(T — 22) — (T — 2z1) Ry (22) (T — zz)} \Dom ()
= (T - 21) [RT(Zl) - RT(Zz)] (T - 22)|Dom(T) .
Compose this expression on the left with R (z;) and on the right with Ry (22) to obtain
the second line of Proposition [3.18| Then, exchanging the role of z; and z,, we get

(22 — Zl)RT(Zg)RT(Zl) = RT(ZQ) — RT(Zl) = —(21 — ZQ)RT(Zl)RT(ZQ) .
Just divide by z, — z; # 0 to get the first line of Proposition [3.18] N
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3.1.3. About the bounded case. —

Definition 3.19 (Spectral radius). — Let 7' € L(E). We let

r(T) = sup |}A|.
Xesp(T)

Lemma 3.20. — Let T € L(E). The sequence (||T™||# )nen- is convergent to
r(T) = nléle* T .

Proof. — We can assume that 7" # 0 for all n € N*. We let u,, = In ||T"||. We have
Vn,p e N, tpqp < up +u,.
Let p € N*. We write n = gp + r with r € [0, p).We have

Up < qUp + Uy

Thus,
U Uy U
D n
We have, for all p € N*,
limsup% < e lim sup HT”H% < HTPH%.
n—-+oo n n—-+oo

It follows that ) ) L
limsup ||| < inf |77 < Lim inf ||,
neN* n—-+o0o

n——+0o
which gives rise to the result. ]
Proposition 3.21. — [Gelfand’s Formula, 1941] Let T € L(E). Thenr(T) = #(T) <

17
Proof. — We have T' — 2z = z(z7'T — Id). For all z € C with ||T||/|z] < 1, we can

define the resolvent Rr(z) as a convergent power serie according to
“+o0o

(3.3.1.3) Rp(z2)=(T—2)'=2'(z"'T=1d) ' ==Y Tz,
n=0

This implies that sp(7") C B(0, ||T'||], and therefore 7(T") < ||T°||. Retain also that

(3.3.1.4) Vel > 1Tl 1R ()l < (2] = I T]) "

Now, let A € sp(7"). Observe that

ker(T'— A\) C ker(T" — \"), ran(T" — \") Cran(T — \).

Thus, if 7" — A" is bijective, the same is true for 7" — A. This means that \" € sp(7™)
and thereby |A|" < ||7™]|, and then

VneN, r(T)<|T"|» = r(T)<HT).

Moreover, Ry is holomorphic on {z € C : |z| > r(T)} C p(T). It follows that the
function
s 0 if z=0
: Rr(1/z) = 232 Tmzm if |2| < (T)?

is holomorphic. In view of the Cauchy-Hadamard theorem, its radius of convergence is
7(T)~L. Therefore, we must have r(T)~' < 7#(T)~ ! or #(T) < r(T). O
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Proposition 3.22. — If T € L(E), then sp(T) # 0.

Proof. — We use Proposition [3.12] and (3:3.1.4) to see that, if p(T') = C, the function
z — Rp(z) is holomorphic and bounded on C. Then, we apply Corollary to see that
Ry is constant. We again use (3.3.1.3) to notice that Ry goes to 0 at infinity. So Ry = 0
and this is a contradiction. [

3.1.4. Spectrum of the adjoint. —

Proposition 3.23. — Consider a closed and densely defined operator (Dom (T),T).
The operator T' : Dom (T)) — H is bijective if and only if the adjoint operator T* :
Dom (T*) — H is bijective. In this case, the inverse operator T~ = H — Dom (T) is
bounded. Moreover, we have (T*)™' = (T—1)*.

Proof. — Assume that T is bijective. We can apply Proposition to see that the
operator 7! = H — Dom (T) is bounded. For the sake of completeness, we repeat the
proof below. With the graph norm || - || defined as in (2.2.1.1)), the application

T : (Dom (T), || - [|7) — (H, [ - ]))

is a continuous bijective linear map between Banach spaces. The inverse mapping theo-
rem guarantees that 7! is continuous, and therefore

1T W)l = 1T I+ INTT )l = 1T W) + llyll < Cllyll -
This implies that 7—! = H — H is bounded. Its adjoint (7~!)* : H — H is also bounded
vyeH, (T yll < Clyll.
Since ran (7') = H, by Proposition [2.52] we get that 7™ is injective since
ker(T*) = ran (T)* = H+ = {0}

By Propositions and [2.50, we know that 7™ is densely defined, closed, and that it
must satisfy the relation 7* = T" = T'. From Proposition again, it follows that

H= {0} = ker(T)* = ker(T**)* = ran (T*)
Thus, to show that 7 is surjective, it suffices to prove that ran (7™*) is closed. If z €
Dom (T*) and v € H, we have
(T~ T*x,v) = (T2, T ) = (2, TT ') = (x,v),

so that

(T71)*T™ = Idpom (7+) -
Note also that, for all w € H and v € Dom (T'),

(T, Tv) = (u,v),
so that (7~1)*u € Dom (7*) and T*(T~*)* = Idy. Thus, T* is bijective.

If 7™ is bijective, the same reasoning as above shows that 7 is bijective. We use Propo-
sition to get ™" =T =T Thus, T' is bijective. ]

Corollary 3.24. — Let (Dom (T'),T') be a closed and densely defined operator. Then, we
have sp(T*) = sp(T), where the bar denotes the complex conjugation.

Proof. — We have z € p(T™) if and only if T* — z is bijective that is, in view of Propo-
sition if and only if 7' — 7 is bijective, that is if and only if z € p(T"). O

Exercise 3.25. — 1In this exercise, we use the notation of Section[2.6.4.2]
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i. What are the eigenvalues of (H} (), da) and of its adjoint?

ii. Determine the spectrum of (H}(f2), da) and of its adjoint.

3.2. Spectral radius and resolvent bound in the self-adjoint case

Definition 3.26 (Normal operator). — Let 7' € L£(H). T is normal when T7* = T*T.

Remark that all Hermitian (7" = T'), Skew-Hermitian (7" = —T') and unitary (7" =
T~1) operators are normal. More generally, any operator 7" whose adjoint 7™ is a polyno-
mial function of 7" is normal.

Proposition 3.27. — Let T' € L(H) be a normal operator. Then,

r(T) = [T
Proof. — Let us start to deal with the Hermitian case, that is when 7" = T™. For all
S € L(H), we have
Su, v
ISl = sup LS.l

w0 0 [|ull[[o]l
Replace S by S = T% = T*T to find

(Tw,To)| [Tl

ITI* > 177 = sup = [T]*.
~ wrowzo ullllv] ™ o full®
Thus, we must have ||T?|| = ||T||>. Since T? = (T*)?, we can repeat this argument

with T to obtain || T*|| = ||T||* and so on up to [|T*"|| = ||T||*". By Lemma and
Proposition [3.21] we have

H(T) = T [ T)5 = Tim 72" = |7

n—-+o0o

Let us now assume that 7" is normal. Observe that 77" is self-adjoint so that

r(T°T) = |T"T|| = sup  (T"Tu,v) = |T|*.

l[ull=1,lv]|=1
Indeed, by using the Cauchy-Schwarz inequality, and a direct comparison of the suprema,

sup  (Tu,Tv) = sup ||Tul?*.
[[ull=1,[lv]l=1 [[ul|=1

On the other hand, since 7" is normal, we have

H(I°T) = T (T = i (@ @) = (Gim |(@)7F) = o)

n—-+o0o n—-+o0o n—-+o0o

and therefore ||T'|| = r(T). O
Corollary 3.28. — Let T' € L(H) be a normal operator. If sp(T') = {0}, then T' = 0.

Proposition 3.29. — Let T € L(H) be a normal operator. For all z ¢ sp(T), we have

1

1T =27 = Gt @)
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Proof. — Let z ¢ sp(T') and A # z. From the identity

(T— 2" = (A= 2) = (A= 2) AT = ) (A= T),
it is easy to deduce that
(3.3.2.5) sp(T—2)")={(A=2)"", xesp(D)}.
From Proposition [3.27] we know that

(T —2)7 Y =r(T—2)") = e A — 2| = dist(z,sp(T)) "

]

Exercise 3.30. — Consider H = C¢ (with d > 2) equipped with the canonical scalar
product.

i. Let T € L(H). We assume that d > 3 and that, for all strict subspace F' of H such
that T'(F') C F, Tjp is normal.

a. Assume that 7" has at least two distinct eigenvalues. By using the decomposition
in characteristic subspaces, show that 7" is diagonalizable. Prove then that the
characteristic subspaces are orthogonal.

b. Assume that 7" has only one eigenvalue A and let N = 7" — AId. Prove that N = 0.
c. Conclude that 7" is normal.
ii. Let 7" € L£(H) be a non-normal operator.

a. Show that there exists /' C H of dimension two and invariant by 7" such that
S := Tjr is non-normal.

b. Prove that there exists a (z,) sequence (in the resolvent set of S) converging to an
element \ in the spectrum of S and such that

1

1(S — 2,) 7Y > dist(zn,5p(9))

c. Deduce that there exists z in the resolvent set of 1" such that

(T = 2)7Y| > dist(z,sp(T)) "

Proposition 3.31. — Let (T,Dom (T)) be a self-adjoint operator. For all z ¢ sp(T'), we

have
1

(T —2)7Y = dist(z,sp(T))

Proof. — Let z ¢ sp(T). We have (T — 2)"! € L(H) as well as (T — 2)™1)" =
(T — %z)~!. Moreover, the two operators (7' — z)~! and (T — 2)~! commute. Thus
(T — z)~! is normal and

(T =27 =7 (T —2)7") = dist(z,5p(T)) "
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3.3. Riesz projections

3.3.1. Properties. —

Proposition 3.32. — Let us consider an unbounded closed operator (T, Dom(T)) and
A € C an isolated element of sp(T'). Let I'y C p(T') be a contour that enlaces only \ as
element of the spectrum of T'. Define

1
(3.3.3.6) Pyi=— [ (z=T)"dz.
2 Jp,
The bounded operator Py : H — Dom(T") C H commutes with T' and does not depend on
the choice of I'\. The operator Py is a projection and

(3.3.3.7) Py —Id = = (C—=NHT-N(C-T)"dC.

2um Jp,
Proof. — Since 'y C p(T'), we know that (T'— z)~! is a bounded operator when z € T'.
Moreover, the function z + (T'— z)~! being holomorphic on p(T), itis continuous on I'.
Thus, the integral defining P, can be understood as the limit of a corresponding Riemann
sum. From these Riemannian sums, and using the fact that 7" is closed, we see that P, is
valued in Dom (7).

Since (T' — 2)~! commutes with 7', the same applies to the limit P,. Due to the holo-
morphy of the resolvent Rr(-) on the open connected component of p(7") \ { \} containing
Iy, the operator P, does not depend on the contour enlacing A. There exist 7 > 0 such
that

1 1
vr G]O7f]7 Py = — (Z—T)_ldz: — (w—T)_ldw
2im Jeou 2im Jooun

Then, by the resolvent formula, we have
1
Py = —/ / Ry(2)Ry(w) dwdz
A 2im)? oo Jweconn

1 _
= —2/ / Br(z) = Rr(w) dzdw.
(2im)2 Joecnm Jwecnn z—w

Use the theorem of Fubini to interpret this formula according to

1 1
P/\2 =+ —2/ RT(Z) (/ dw) dz
(2im)2 Joeconm weC(AF) 2 — W

1 1
_ ﬁ/ Ry (w) </ — dz) dw.
(2im)2 Juwecon) zeC(A\r) # — W

Since the function z — (2 — w)~! is holomorphic in the ball B(A,r), the second line
disappears. The first line gives rise to

um
P2=,—/ Ry(z)dz = Py.
M2 e

Remark also that

C=NHT=NC-T)"==C=N"+(-T)".
After integration along I'y, this leads to (3.3.3.7). [
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Definition 3.33. — [Finite algebraic multiplicity] We say that an isolated element \ of
sp(7') has a finite algebraic multiplicity when the rank of P, is finite.

Lemma 3.34. — Let (T, Dom(T)) be a densely defined unbounded closed operator and
A be an isolated element of sp(T"). Then we have 1 € sp(Py) and 1 € sp(Py). In any
case, we have P\ # 0 and Py # 0.

Proof. — Before starting the proof, recall that A € sp(T') iff A\ € sp(T™*). We have just to
consider the two following cases:

i. T — X is injective with a closed range. Since A\ € sp(T'), the operator T" — ) is not
sujective, and we cannot have

ran (I'—X) =ran (T — \) =H.

It follows that _
ker(T* — \) = ran (T — \)* # {0} .

We can select 0 # u € ker(7T* — A). On the other hand, passing to the adjoint at the
level of (3.3.3.7) gives rise to
1 o _ _
Pi—ld=——— [ =N -T) (T =N dC
2m Jr;
from which we can deduce that P;u = u, and therefore 1 € sp(F5).
ii. or, applying Proposition [2.14] we have
Ace Ry VueDom(T), [[(T = Aull = cfull

or equivalently, there exists a Weyl’s sequence (u,,) associated with A, that is

|lun|| =1, lim (T"—Nu, =0.

—+00

In view of Formula (3.3.3.7)), we have
lun]| =1, lim (Py—Id)u, =0.
n—-+oo

By Lemma (3.13)), we know that 1 € sp(Py).

Briefly, we have either 1 € sp(P,) or 1 € sp(FPy). But P, is a closed and densely
defined operator. Thus, by Corollary 3.24] we find that 1 € sp(Py) and 1 € sp(P5). [

3.3.2. About the finite algebraic multiplicity. —

Proposition 3.35. — Assume that the Hilbert space H is of finite dimension. Fix T €
L(H). Let A € sp(T'). Then, X is an eigenvalue. If Iy is a contour enlacing only ), then
P\ is the projection on the algebraic eigenspace associated with .

Proof. — 1Itis well known that H can be written as a sum of the eigenspaces H; associated
with the distinct eigenvalues of 7. The eigenspaces H; are stable under 7. We can
assume that H; is associated with A. There exists a basis of H such that the matrix of 7" is
block diagonal (71, ..., T}) where the T} is the (upper triangular) matrix of 7};. In this
adapted basis, the matrix of Py is block diagonal (Py1,..., Pyx). By holomorphy, we
have P, ; = 0 when j # 1. To simplify, assume that dim H, = 2 (the other cases being
similar) so that

Al 1 _
Tli:(o )\), P)\JZ:T (Z—Tl) 1dZ,
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where ') is (for example) the circle of center A and radius 1. Let n € N. Recall that

1 2m ; 1 lf n=1
n . i(1—n)0 . )
— [ (z=N)""dz=— e dﬁ—{o I

2um Jp, 21 Jo—o
It follows that

1 (z=AN)"1 —(z—=X)72 (10 _
Pua=gn m( 0 -~ ) E=1o 1 )7l

The application P, is indeed the projection on Hj. [

Corollary 3.36. — If \ € sp(T) is isolated with a finite algebraic multiplicity, then it is
necessarily an eigenvalue.

Proof. — 1If H is of finite dimension, just apply Proposition From now on, we may
assume that dim H = 4-o00. Note P = P, the projection defined by (3.3.3.6). Any element
u € H can be uniquely written v = Pu+ (I — P)u. Thus, H = ker P @ ran P. Moreover,
the projection P = P, commutes with 7. It follows that
T = TranP @ ,-T\kerP .
The spectrum of 7" is the union of the corresponding spectra and A is still isolated in these
spectra. By definition, we have
1
2im Jr

(¢ = Tikerr) ™ d¢ = Plrp = 0.

In view of Lemma [3.34] this condition is not compatible with the existence of an isolated
element inside sp(T| ker ). Necessarily, A belongs to the spectrum of the “matrix” Tiranp-
It is therefore an eigenvalue of 7., p, a fortiori of T O

3.3.3. Fredholm operators: definition and first properties. —

Definition 3.37. — Let E and F' two Banach spaces. An application 7' € L(E, F) is
said to be Fredholm when dim ker 7" < +o00 and codimran 7" < 4o0. By definition, we
call index of 7' the following number

ind T = dim ker(7") — codimran (7).
The set of the Fredholm operators from E to F'is denoted by Fred(E, F').
Example 3.38. — A bijective operator T' € L(E, F) is Fredholm of index 0.

Example 3.39. — Consider H = ¢%(N) and, for u € H, define Tu by (T'u),, = u,, for
all n € N. T'is a Fredholm operator of index 1.

Proposition 3.40. — Let T € Fred(E, F). ThenranT is closed.

Proof. — Let us write £/ = ker T © E,N with F closed. Then, T : E — F is injective.
Let us also write F' = ranT" & F, with F of finite dimension. Consider a basis (f;)1<j<n
of F' and introduce the application

n
S:ExCr> (x,v)|—>T:L‘+Zvjfj S
j=1
The operator S is continuous and bijective between two Banach spaces. Thus, its inverse
is continuous and there exists C' > 0 such that, for all f € F,

HS_lfHEX(C" < CHfHFa
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and, for all (z,v) € E x C»,
[zl|lz + [[v]len < CS(x,v)|F-

For v = 0, this becomes
|zl < C||Tz||F.

Select a sequence (y,,), € F N with values in the range of 7’ (that is such that y,, = T'z,, for
some z,, € E) converging to some y € F. It gives rise to a Cauchy sequence (z,,), € EV,
which tends to some x € E which is such that T'x = y. The set ran T is closed. [

In the case of an unbounded operator 7" : Dom (7') C E — F, we say that T" is Fredholm
when 7' is closed and when 7" € L((Dom (T), || - ||r), F’) is Fredholm.

Proposition 3.41. — In the case when E and F have finite dimension, we have T' €
Fred(E, F) and ind T = dim F — dim F..

Proof. — This is an immediate consequence of the dimension formula
dim E = dim(ker T') + dim(ran T') = dim(ker T') 4+ dim F' — codim (ran T').
O]

Proposition 3.42. — Let T € L(E, F). Then, T is Fredholm if and only if dimker T <
+00 and dim ker T" < 400, and ran (T) is closed. In this case, we have

ind T = dim ker(7) — dim ker(7") .

Proof. — When the range of 7' is closed, by Propositions and [2.34] we know that
(3.3.3.8) ker(T”) = ran (T)*, dim ran (T)* = codim ran (7).

= Let T" € Fred(FE, F'). By Proposition 3.40} the range of 7" is closed. Using (3.3.3.8)),
we get

dimker 7" = dimran (T)* = codimran (T) < -+oo0.
<= We can still exploit (3.3.3.8). 0

The following consequence can actually be proved directly.

Proposition 3.43. — Let (T,Dom(T’)) be a closed operator on H. T is a Fredholm
operator when dim ker(T") < +o0, dimker(7T™) < +o0, and ran (T) is closed. The index
of T is

ind 7" = dim ker(7") — dim ker(7™) .
A remarkable property is the following.

Proposition 3.44. — Let T € Fred(E, F) with index 0. Then, T is injective if and only
if T is surjective.
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3.3.4. Spectrum and Fredholm operators. —

Definition 3.45. — We define

i. essential spectrum: \ € sp (7)) if T' — X\ viewed as an operator from Dom (7") into
H is not Fredholm with index 0.

ii. discrete spectrum: A € spy(7') if A is isolated in the spectrum of 7', with finite
algebraic multiplicity and such that ran (7" — \) is closed.

Proposition 3.46. — We have sp..(T') C sp(T).
Proof. — The statement is equivalent to p(T') C Csp (7). Let A € p(T'). Then
is injective and surjective, and therefore it is a Fredholm operator of index 0. U

Proposition 3.47. — Let T be a self-adjoint operator which is Fredholm. Then, the index
of T' is zero.

Proof. — This is a direct consequence of Proposition [2.52] because
dimker T' = dimker 7* = dimran (T')* = codimran (7).
O

Thus, when 7' = T*, we have \ € sp.(7) if and only if T — A viewed as an operator
from Dom (7") into H is not Fredholm.

Proposition 3.48. — We have spy,(T) C sp,(T).
Proof. — This a consequence of Corollary [3.36] O

Exercise 3.49. — Find an example of an operator 7' € L£(H) such that sp;(7") is strictly
included in sp,,(T").
Solution: We can give two typical examples.
1. Come back to Exercise for which sp,(T') = () (since there is no isolated spectral
element), whereas sp,,(T') = D(0, 1].
ii. Take H = ¢*(N) and (T'w),, = (\,u,,), for a sequence (), ), satisfying
Ao =0, lim A, =0.

n—-+o0o

we can see that
0 € {A\;n e N} Csp,(T) Csp(T).
On the contrary, 0 & spg,(T) since the sequence ()\,,),, € sp(T)N tends to zero.

Looking at (J;,,);,

3.4. Notes

1. The Riesz projections are described in a concise way in [15, Chapter 6]. However,
the Reader should read carefully the proof of [15, Prop. 6.4].






CHAPTER 4

COMPACT OPERATORS

This chapter recalls various elementary facts about compact operators. We prove the
fundamental fact that K — z1d is a Fredholm operator when z # 0 and when K € L(E) is
compact. This fact has important spectral consequences for compact operators (especially
once we will have proved that the index of K — zId is actually 0). We also give some
criteria to establish that an operator is compact. In practice, these criteria are related to
precompact subsets of L2- spaces, such as balls for the H!-topology.

4.1. Definition and fundamental properties

Definition 4.1. — Let E and F' be two Banach spaces. A linear map 7 is said to be
compact when T'(Bg(0, 1)) is relatively compact (or, equivalently, precompact) in F.

Proposition 4.2. — The following assertions are equivalent.
i. T € K(E, F) is compact.
ii. Forall B C E with B bounded, T'(B) is relatively compact in F.

iii. For all bounded sequence (u,) € EV, (Tu,) has a convergent subsequence.
Proposition 4.3. — K(E, F) is a closed subspace of L(E, ).
Proposition 4.4. — K(E, F) is a bilateral ideal of L(E, F).
Proposition 4.5. — If T € L(E, F) has finite rank, it is compact.
The following proposition is a consequence of Proposition 4.10

Proposition 4.6. — When F is a Hilbert space, IC(E, F) is the closure of the set of finite-
rank operators.

Proposition 4.7. — If T € K(E, F) is compact, it transforms weakly convergent se-
quences into convergent sequences. The converse is true when E is reflexive.

Proof. — Let us only give the proof when F is a Hilbert space. Consider a weakly
convergent sequence (u,). By the Riesz representation theorem, this exactly means that
there exists u € F such that, forall v € F,

(4.4.1.1) lim (up,v) = (u,v).

n—-+00
By using the Banach-Steinhaus theorem (with the continuous linear forms 7, = (-, u,)),
we deduce that (u,,) is bounded. Since T is compact, (T'u,) has a convergent subse-
quence. Now, let w be an adherent value of (T'u,,). Replacing v by T*v in (¢.4.1.1)), we
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get that w = T'u. Therefore, there is exactly one adherent value, T'u, of the sequence
(T'uy,). Thus, we have lim,,_, o, T'u,, = T'u. O

Proposition 4.8. — [Schauder] Let T € L(E, F). Then T is a compact operator if and
only if T" € L(F', E') is a compact operator. When E = F' = H, the operator T' € L(H)
is a compact operator if and only if T is compact.

Proof. —
= Given a sequence ({,), € (F")Y with ||(,]| < 1, it suffices to show that T*(,, has a
Cauchy subsequence (1(,,,);. In other words, for all ¢ > 0, we can find N' € N* such
that
N<j<k = |T, =T, | = sup ||t (Tx) 4L, (Tz)]| <e.
ll=lI<1

Let B be the unit ball of E. Introduce the compact set K := T'(B). Then, the above
estimate is a consequence of

sup [0y, (y) — o, (Y)|| < €.
yeK

But the sequence (¢,,),, viewed as a family of bounded continuous functions on K, satis-
fies

sup [[€a ()]l < llyll, sup [[€n(y1) = La(y2)l] < llyr — el -

It is therefore uniformly bounded pointwise and equicontinuous on K. By the Ascoli
theorem the sequence (¢,,),, has an uniformly convergent subsequence, as desired.
<= Given a sequence (1,), € EY with ||z,|| < 1, it suffices to show that T'x,, has a
Cauchy subsequence (T, );. In other words, for all ¢ > 0, we can find N € N* such
that
N<j<h = |Tay —Tryll= sup [(T0)(zn,) — (")) <.
1€l <1

Let B’ be the unit ball of F”. Introduce the compact set K’ := T'(B’) C E’. Then, the
above estimate is a consequence of

sup [|€(zn,) = £'(zn, )| <€
veK’

As before, we can look at (x,,),, as a family of uniformly bounded pointwise and equicon-

tinuous functions on K’. By the Ascoli theorem the sequence (z,), has a converging
subsequence, as desired.

The last part of Proposition [4.8]is an immediate consequence of Proposition O
Proposition 4.9. — Let K € K(E) be a compact operator. Then 1dg + K is Fredholm.

Proof. — The restriction of K to the subspace ker(Idg + K') coincides with —Id, and it
must be compact. By the Riesz theorem, this is possible only if dim ker(Idg+ K) < +oc.
By Proposition[4.8] we have 7" € K(E’) and thus dim ker(Idg 4+ K”) < +o0. In view of
Proposition there remains to show that ran (Idg 4+ K) is closed. To this end, let us
consider a sequence (u,,) such that (u,, + Ku,) converges to f. We let

d,, = dist(u,, ker(Idg + K)) .
There exists v, € ker(Idg + K) such that d,, = ||u, — v,||. We have
Uy + Kuy, = up — v, + K(u, —vy,) .
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Assume that (d,,) is not bounded. Up to a subsequence extraction, we can assume that
(d,) tends to +oco. Introduce w,, := d,*(u, — v,), so that
lim d,'(u, + Ku,) = lim (w, + Kw,) = hrn d'f=0.

n—-+00 n—-+0o +0o0

By compactness of K, we can assume that (Kw,) converges to some g, and therefore
(wy,) converges to —g. Since K is continuous, we must have K (—g) = gor g € ker(Idg+
K). But, we know that

dist(wy,, ker(Idg + K)) =1,
and this is a contradiction.

Necessarily, the sequence (d,,) is bounded. Modulo the extraction of a subsequence, we
can assume that K (u, — v,) converges to some h, and therefore u,, — v,, converges to
f — h, so that

f=f—h+K(f—h)cran(ldg + K),
and the closedness of the range follows. We can conclude with Proposition [3.42] O

In the case when ' = F' = H, there is a characterization of a compact operator 1" €
L(H) as the limit of a sequence (T},),, with T,, € L(H) of finite rank.

Proposition 4.10. — Consider a Hilbert basis (V)nen of H. Let T € L(H). For all
n € N, define

n

pn = sup ITel,  To=d T,
wespan (Vi) e o, oyl k=0
llb]l=1
Then,
L pn = HT - THH’

it. T"is compact iff lim,,_, o, p, = 0.
Proof. — For the first point, we write
T — Ty TTL, ¢
Tt — sy MDD TR
veH\ {0} 14l vemnfoy Yl

Consider the second point. Since (p,,) is non-increasing, it converges to some p > 0. If
p = 0, by Proposition .6} the operator 7" is compact. Assume that p > 0. Thus, for all
n € N, there exists ¢, € span (y)jco.ny With ||| = 1and || T'hy[| > p/2 > 0. Then,

we notice that (¢,, ), weakly converges to 0. Indeed, for all ¢ € H, we have

[(bns 1)) (Z [, 00)] ) (Z [, )| ) (Z r<w,wk>r2) o 0

k=n+1 k=n+1 k=n+1

The operator 7" cannot be compact. Otherwise, the sequence (7¢,,) would converge to 0,
which is not the case. O

Exercise 4.11. — Take H = (?(N), and consider the operator 7' : H — H given by

0 if n =20,
Tu=w, U= (Up)n, v = (Vn)n, Un = Un-l if mnelN*

n
Prove that 7" is compact.
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Solution: The family (d,,;); with n € N is an orthonormal basis of £?(N). With 7}, defined
accordingly, we have by Cauchy-Schwarz inequality

o0

1 1/2
pn =T =Tall < (Zm> N

k=n

e}

Lemma 4.12. — Let T' € L(H) be a non-negative operator. Then, T is compact iff T is
compact.

Proof. — By Proposition 2.81} we can find S > 0 such that S = T. If S is compact, by
Proposition the operator 7" is compact. For all ) € H, we have

ISVI1* = (Tv, ¥),
and thus

ISyI* < vl Tl

It follows that
pu(S)? < pu(T).
By Proposition .10} if 7" is compact, S must be compact. ]

Proposition 4.13. — Consider T' € L(H). Then, T' is compact iff |T| is compact.

Proof. — If |T'| is compact, by using the polar decomposition, T is also compact.
Assume now that 7" is compact. In particular, the non-negative operator 71" is compact
and so is its square-root by Lemma[@4.12] O

4.2. Compactness in L” spaces

4.2.1. About the Ascoli theorem in L? spaces. — In order to prove that an operator
is compact, the following criterion of relative compactness in L?(£2) will be useful (see

Appendix, Theorem [A.11]).

Theorem 4.14 (Kolmogorov-Riesz). — Let Q C RY be an open set and ¥ a bounded
subset of LP(Q2), with p € [1,400). We assume that

(4.4.2.2) Ve>0,3wccQ, VfeZF, |flrow <&,

and that

(4.423) Ve>0,Yw CCQ,35>0, 0<dist(w,0Q), V|n <o, Vfe.F,
[f(-+h) = fO)llrw <e.

Then, F is relatively compact (or, equivalently, precompact) in LP({2).

Remark 4.15. — To get the control of the translations in practice, we can use Proposition

Proof. — Lete > 0.
1. The equi-integrability condition provides us with w CC (2 such that
vieZ, |fllraw <e.
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2. Let Q be a bounded open set such that @ C Q C . We consider .Z the set of
the restrictions to €2, and extended by 0 outside Q. Clearly, .# is a bounded subset
of LP(R?) and also of L'(R%). The usual convolution argument, combinded with
(@#4.23), gives, for all n such that B(0, 1) + w C Q, and all g € .Z,

(4.4.2.4) o0 * g = gllrw) <€
3. Letus cons,1der G =poxFp; C %" (w, C). Note that there exists C}, > 0 such that,
forall g € %,

[on* glloo < [lonllocllgllrmey < C-

Moreover, for all 1, x5 € W, we have

|on * g(21) — o x g(x2)| < |2y — 22| Vn o9l ey < Dalay — 2]

Therefore, by the Ascoli theorem, ¢ is precompact in ¢°(w, R). It can be covered
1
by finitely many balls of radius ¢/|w|?:

k k
_1
& C UBLoo<gj, ]w[ pE) C UBLP(gjag)

j=1
4. By the triangle inequality and (4.4.2.4), we get

k
F 1o =T C | Bulgj 2).
j=1

We extend the g; by zero outside w and we deduce that

k
F C U BLP(Q)(gj, 38) .

j=1

]

Exercise 4.16. — Consider the operator . = —A with domain H?(R%) and take \ €
R_.

i. Show that A € p(.Z).

ii. Consider then a function V' € € (R?, C) such that VV is bounded and lim,_, oo V() =
0. Prove that V(£ — \)~1 : L2(R?Y) — L2%(R?) is compact.

Exercise 4.17. — Consider

B(R) = {¢ € H(R) : z1) € L3 (R)} C LA(R).

Prove that the injection of B'(IR) in L?(IR) is a compact operator.

4.2.2. Kato-Rellich theorems. —
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4.2.2.1. First Kato-Rellich theorem. —

Lemma 4.18. — Let §) be an open set in RY. For all u € H}(QY), consider its extension
by zero outside Q, denoted by u. Then u € Hi(R?) and ||u||p1 ray = ||u||n1 (o).

Proof. — Clearly, u € L*(R?) and ||u|(2ra) = [|ul|L2(). We know that, by definition,
€5°(Q) is dense in H}(2). Consider a sequence (u,),en C 65°(§2) converging to u in
H'-norm. For all n € N, we have u,, € €;°(R%). For all n, p € N, we have

[tn = tpllnie) = [[tn — Up|lr(ra) -

Thus, (u,) is a Cauchy sequence in H'(R?). We deduce that (u,,) converges in H!(R?) to
some v € H!(R?). We have v = u and the equality of the norms. [l

Theorem 4.19 (Kato-Rellich). — Let Q2 be an open bounded set in R?. The injection of
HY(Q) in L2(Q) is compact.

Proof. — Let us prove that, if (u,),cny wWeakly converges to u in H}(2), it strongly con-
verges to u in L%(Q2). The sequence (u,, ) ey is bounded in H}(Q2). Let e > 0.

For all n € N, we let f, = u, and we define f = u. By the Parseval formula, it is
sufficient to show that f,, converges to f in L2(IR%).

We notice that, for all ¢ € RY,

fu(&) :/Qun(x)e_wg dz ,

so that
1
| fa(O)] < Q2 |un 2@ < C.
We recall that (u,,),en weakly converges to w in H}(€) and, in particular, for all ¢ €

L2(2),
/u,@dx%/uadx.
Q Q

We choose () = €€ and thus, for all £ € RY, f,,(£) — f(€).
Moreover, we have

L o Y MR IAGIT S

In particular, there exists R > 0 such that, for all n € N,

(/ P dE <<
|€|>R

Up to changing R, we also have

/ FORdE <.
||>R

Let us now write

o= S = [

|z|<R

a(6) — O de + / £2(6) — F(E)Pde.

|z|>R

We deal with the first integral by using the dominated convergence theorem (the sequence
(fn) is uniformly bounded). O
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4.2.2.2. Second Kato-Rellich theorem. — Assuming that the boundary of (2 is of class
%', we can also establish a theorem for H!((2).

Theorem 4.20. — Let Q) be a bounded open subset of R? with €' boundary. The injection
of HY(Q) in L2(Q) is compact.

Before starting the proof of Theorem .20 one needs to prove a few technical lemmas
related to the description of OS2 in local charts. Each lemma has actually an interest of its
own.

Lemma 4.21 (Extension operator, case of RY). — Forallu € H'(R.), we let

Pu(z',xg) = u(a',xq), whenxqg >0, Pu(x',xq) = u(a', —xy), when x4 < 0.
Then, Pu € HY(R?) and

”PUHE?(Rd) = 2”“”%2(11&1)7 ||VPuHﬁ2(Rd) - QHVUHﬁQ(Ri)‘

Proof. — The first equality easily follows by symmetry. Let us deal with the second one.

Let us show that

9;(Pu) = P(O;u), 1<j<d—1,and 0;(Pu)= P(04u),

where

Pu(z,zq) = v(a', x4), whenzq >0, Pu(a',x4) = —v(z’, —24), whenzy4 < 0.
It will be convenient to use an even cutoff function 0 < y < 1 such that

X(xq) =0, for|zy <1, x(xq)=1for|zyg >2.

For all n € N, we let x,,(z4) = x(nzq). Let p € 65°(R?).

We write, forall j € {1,...,d},

(0;(Pu), ) g (wayx 7ty = — (P, 0j0) v (mayx (r) = — /d Pudjpdr.
R
Note that

—/ Pux,0;pdx = —/ Xn(050(2, 24) + Ojp(2', —14)) dv .
R4 R4

+

Then, forall j € {1,...,d — 1},

—/lhm@whzj/xw@@@%ﬂ+ﬂ%—mh®
Rd R4

+

=/‘m@mwfwa+ﬂﬂ—%»¢u
7

Then, by dominated convergence, we have
<3j(PU),%0>_@I(Rd)x9(Rd) = /d aju(SO(xl,xd) + <P(9U/, —x4)) dx
R+

= (P(9;u), ) 7ty x 2(RY) -
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For j = d, we have

—/ Puxn,0;pdx = —/ Xn10; (90(33/,3%1) - 90(35/, —x4)) dx
Rd R4

+
/d
R+

:/ oju (xn?) dx+/ ux, de
R? R4

ud; (xnt) dz + / ux, W dx

d
]R+

where (2', z4) = p(2',x4) — p(2', —24). By dominated convergence and the fact that
V(2 zq)| < Clzq|, we get

(0;(Pu), 0) 9 (rdyx 2(Rd) = /d Ojurp dz = (P(9ju), 0) gr(riyx o (e -
R+

]

Lemma 4.22 (Extension operator, general case). — Let () be a bounded open subset of
R? with €* boundary. There exists a bounded operator P : H'(Q)) — HY(RY) such that
Pujq = u and Pu has compact support.

Proof. — LetC = {z € R?: |2/| < 1,|xy4| < 1}. Since 99 is of class ¢! and compact,
there exist a family of open sets (U;)1<;<, such that

o0 C O Uj,
j=1

and ¢"'-diffeomorphisms ¢; : Q — U; with ¢; € €1(Q) and ¢;' € ¢*(U;) and
©;(Co) = 02 N U;. There exists also an open set Uy CC (2 such that

p
QcuulJu;.
j=1
We can apply Lemma to get a family of smooth functions with compact supports

(ej)ggjgp such that
p
Oo+> 0;=1.
=1
Let us consider u € H*(£2) and write
p
u:u0+2uj, uj = 0u.
=1

By extending ug by zero, we see that uy € H'(R?) and
[[uol I (rey < Cllulln e -
Forall j € {1,...,p}, welet, forall y € Q,
v;(y) = u;(@;(y)) .-
Then, we use the extension operator P of Lemma and consider Pv; through the chat
Pj ) )
w; = (Puj)o ;" = Plujop;)op; .
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Note that w; = u; on U; N 2 and

[wjlln ;) < Cllullnwwne) -
We consider the compactly supported function

Pu = ug ~I—i9jwj,
j=1

and notice that Pu € H'(R¢) and

Ve e, Pu(r)=u(z).
Moreover, P : H'(Q2) — H!(R?) is bounded. O

We can now prove Theorem 4.20]

Proof. — The proof is the same as that of Theorem Instead of extending the func-
tions by zero we use the extension operator P. [

4.3. Operators with compact resolvent

A way to describe the spectrum of unbounded and closed operators, is to consider their
resolvents (which are bounded) and to prove, in good situations, that they are compact.

Proposition 4.23. — Let (T, Dom (T')) be a closed operator and zy € p(T). If (T —zy) "
is compact, then, for all z € p(T), the operator (T — 2)~! is compact.

Proof. — The resolvent formula (Proposition |3.18)) says that
(4435) RT(Z) = RT(Z()) + (Z — Zo)RT(2>RT<Zo) .
The right hand side is compact because the set of compact operators is an ideal of £(H).

O]
Let us provide a useful (topological) criterion for the compactness of a resolvent.

Proposition 4.24. — A closed operator (T, Dom (T')) has compact resolvent if and only
if the injection v : (Dom (T'), || - |l7) <= (H, || - ||n) is compact.

Proof. — Assume that the injection is compact. Select z € p(T'). Thanks to the closed
graph theorem, the application (7" — z)~! : (H,|| - [[v) = (Dom (T), || - ||z) is bounded.
Then, the operator (T'— 2)~' : (H, || - [[a) = (H, || - ||n) can be viewed as the composition
of the following bounded operators

(H, - flw) =27 (Dom (), [ - [lr) <% (H, || - In).-

Again, this is compact because the set of compact operators is an ideal of L(H).
Conversely, assume that the resolvent is compact. Take 2z, € p(7’) and consider
1(B(0,1]) = {u € Dom (T) : ||lul| + |Tu| < 1}
C {u € Dom (T') : [|ul + [[(T' = zo)ull <1+ [z}
Let u € Dom (7') be such that
lull + [[(T" = zo)ull <1+ [zl
Then, we have

lull <T+lz0l,  [oll < T+]2f, o= (T-z20)u,
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meaning that
u= (T —z) v e (T—z) " (B0,1+]|z])).
In other words
{u € Dom (T) : [lull + (T = zo)ull < 1+ [z0l} € (T = 20) 7 (B(0. 1+ [20))
It suffices to note that the right hand side is compact. [

Exercise 4.25. — Let Q C R? be a smooth bounded open set. Prove that the Dirichlet
Laplacian on €2 has compact resolvent. Hint: use Rellich’s theorem.

Corollary 4.26. — Consider two Hilbert spaces V and H such that V C H with continu-
ous injection and with V dense in H. Assume that () is a continuous, coercive and Hermi-
tian sesquilinear form on 'V and let T be the self-adjoint operator associated with (). Let

us denote by ||-||q the norm induced by Q), i.e., ||u||g = \/Q(u, w). If (Dom (T), ||-||g) —
(H, || - [|n) is compact then T has compact resolvent.

Proof. — By the Cauchy-Schwarz inequality, we have

lullg = KTu, w)'"* < | Tull?|ul* <

jul
NG T
and therefore the application (Dom (T'), || - ||7) — (Dom (T'), || - ||¢) is bounded. O
Remark 4.27. — The converse is true. See Exercise

Exercise 4.28. — Prove that the harmonic oscillator which is defined in Section 2.6.3]
has compact resolvent.

4.4. Notes
i. The proofs of the reminded results in Section 4.1|can be found in [28, Chapter 4].

i1. Proposition 4.6|1s not true when F' is only assumed to be a Banach space (a counter-
example has been given by Per Enflo).

iii. A first version of the Riesz-Kolmogorov theorem is proved by Kolmogorov in [19],
soon followed by Tamarkin [33]], and M. Riesz.



CHAPTER 5

FREDHOLM THEORY

In this chapter, we discuss basic facts about Fredholm theory. We show that a Fredholm
operator is bijective if and only if some matrix is bijective (and this can only happen for
Fredholm operators with index 0). We see that this property implies that the index of
a Fredholm operator is locally constant. This fact in mind, we deduce that iK' — zId is
a Fredholm operator with index 0 for K € L(E) compact and z # 0. This allows to
reduce the spectral analysis of compact operators to finite dimension and basic properties
of holomorphic functions. Then, we can get a description of the resolvent of a compact
operator near each (isolated) point of its (discrete) spectrum.

5.1. Grushin formalism

In this section, we consider two Banach spaces X; and X,.

Let T € L(X;,X,) be a Fredholm operator. The finite dimensional subspace ker(7")
can be complemented by a closed subspace X, so that X, = ker(T) & X, with
ny = dimker(T). We can also find some finite dimensional subspace X, with
n_ = codimran (7) = dim X, and such that X, = ran(T) & X,. We introduce
(kj)1<j<n, abasis of ker(T') and (k})1<j<n_ a basis of X,. Let (K})1<j<n. be such that

k;k S X{, k*<k1) - 5ij7 kf*

J 71Xy

=0.
Define

R_:C" —=X,, R.a=)Y o R_ is bijective,

Ry Xy —C™, Ry(u) = (k;(u))1<j<n+, ker R, = X

The correspondance between the dimensions is as described below, where the symbol J
means the existence of a diffeomorphism

X;xC-= X, @ ker(T) ® C™

! ! ! I
Xy xC = ran(T) @ C™ @ X,

Consider the operator
M:X; xC" = Xy xC'
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which is such, that for all (e,c) € X; x C"~, we have

e T R_ e Te+ R_c
s w9 =(1 ) ()= ("),

The interest of the preceding construction is to complement X, X5 as well as 7" in order
to recover a bijective invertible operator M whose properties provide information on 7'.

Lemma 5.1. — The operator M is bijective with a bounded inverse.

Proof. — Let (e,c) € X; x C" be such that Te + R_c¢ = 0 and R,e = 0. Since
Te € ran (T) and R_c € X,, we must have Te = 0 and R_c = 0. It follows that T is
injective, because

c=0, e € ker R, NkerT' = {0}.
Now, let us consider (f,d) € Xy x C"+. We seek some (e, c) € X; x C" which is such

that
Me_TR_e_Te—I—R_c_f
¢/ \Ry O c) Rie - \d)
We have a unique decomposition of f according to f = g + fo with g € ranT and

fo € X5. Thus, we must impose R_c = fy. In view of the definition of R_, this means

to take for ¢ the coordinates of f; in the basis (k;)lgj@f. On the other hand, we can

write ¢ = k + eo with k € ker T and ¢y € X;. The constraint R.e = R,k = d implies
that the coordinates of £ in the basis (k;)1<j<n, are d. Then, we are reduced to solve

Tey = f — R_c = g, but T induces a bijection from X; — ran 7. Therefore, the part e
is uniquely determined as e; = T~ 'g. The operator M is bijective.
By the open mapping theorem, the inverse M ™! is bounded. 0

Lemma 5.2. — Let T € L( Xy, Xy) and consider the operator matrix
T R_
(5.5.1.2) M = (R+ 0 ) ;
with R_ : C"~ — Xy and R, : X1 — C" bounded. Assume that M is bijective. We
denote by & its (bounded) inverse:
(5.5.1.3) c_ E E, E € L(Xs, X7), E, € £(C", X)),
T - \E_ Ey )’ E_ € L(X;,C"), Eqy € L(C+,C™).

Then, T is a Fredholm operator and we have ind T = ind (Ey) = ny — n_. Moreover,
the operator T' is bijective if and only if E is bijective.

In other words, any operator 7" € L£( X7, X5) giving rise through a decomposition like
to a bijective operator must be Fredholm. Moreover, there is an easy way to test
if T' is bijective. It suffices to check that n, = n_ and to compute the determinant of the
matrix Fy.

Proof. — We write that £ is the inverse on the right:

(5.5.1.4) TE+ R_E_ =1d,
(5.5.1.5) R.E, =Id,
(5.5.1.6) TE. + R_Ey =0,

(5.5.1.7) R.E =0,
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and on the left:

(5.5.1.8) ET+FE/R, =Id,
(5.5.1.9) E_R_=1Id,
(5.5.1.10) E T+ EyR, =0,
(5.5.1.11) EFR_=0.

From (5.5.1.3) and (5.5.1.9), we get that R, and F_ are surjective and that R_ and F
are injective. In particular, R, has a right inverse Rjr,l,, and R_ has a left inverse R:ll.
Assume that 7" is bijective. From (5.5.1.6), we see that E, must be injective; from
(5.5.1.10), we deduce that £y must be surjective. Thus, Ej is bijective. Retain that

(5.5.1.12) Ey'=-R.T'R_, Ey,=-RTR,;.
Conversely, suppose that Fj is bijective. Then, using (5.5.1.8)) and (5.5.1.10), compute
(5.5.1.13) (E—~E,E;'E_)T =ET - E,E;"(E_T)

== Id - E+R+ + E+E()—1(E0R+) = |d
The operator E — E, E; ' E_ is aleft inverse of T'. A similar argument based on (5.5.1.4)
and shows that it is also a right inverse of 7.

From (5.5.1.6)), we can check that the injective application £, sends ker Ej into ker(T).
Now, let v € ker(T). From (5.5.1.8)), we find that £, (R, v) = v and from (5.5.1.10), we
have Ey(R,v) = 0. This means that v is in the range of the restriction of F, to ker Ej.
Briefly, the application F : ker Ey — ker(T') is a bijection, and we have

(5.5.1.14) dim ker 7" = dim ker Fy = n, — dim ran £y < +o0.
Let us consider subspaces H and X, such that
C"- =ranEy® H, Xo=ranT & Xs.
We recall that £ : Xy, — C"- is surjective. On the other hand, from (5.5.1.10), we know
that £_ : ran (T') — ran E,. Consider the map
Ef: Xy, — H
r — IyE (z)

Since E_ is surjective, 80 is E*. The application E* is also injective. Indeed, if Iz E_v =
0 with v € X5, we have F_v € ran Ejy so that we can write £_v = Eyw. From (5.5.1.4)

and (5.5.1.6), we get
TEv+ R_E v=uv, R_Fyw=-TFE,w,

which may be combined to deduce that
T(Ev— E,w)=wveran(T),

which, knowing that v € X, is possible only if v = 0. In short, E* is bijective, and we
have

(5.5.1.15) codim ranT" = dim XQ =dim H = n_ — dimran Fy < +o0.

From (5.5.1.14)) and (5.5.1.15)), we deduce that 7" is Fredholm, with indT" = ind Ey =
Ny —n_. [
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5.2. On the index of Fredholm operators

Proposition 5.3. — Let T € L(E, F) be Fredholm. Then, we have T' € L(F', E') as
well as indT" = —ind T.

Proof. — Define M as in (5.5.1.1). From Lemma [5.1| we know that M is bijective. It
follows that M’ is bijective, and we have

T 'R _ _ E'" 'E_
MI = (tR 0+) ) (M/) ! = (M 1), = 5, = (tEJr tEO) :
From Lemmal5.2] we deduce that 7" is Fredholm and ind 7" = ind‘Ey = n_ —n,. O

Proposition 5.4. — Fred(E, F) is an open subset of L(E, F'), and the index is a continu-
ous function on Fred(E, F), locally constant on the connected components of Fred(E, ).

Proof. — LetT : E — F' be a Fredholm operator and let P : E — F' be a a continuous
operator with small norm. The operator M given by (5.5.1.1) is bijective, and it remains
so for small perturbations of the form

PAP I peg R, |PI<.
R_ 0
By Lemma[5.2] the operator 7'+ P is Fredholm. O

Proposition 5.5. — Let T € L(E,F). Then T is Fredholm if and only if we can find
SeL(FFE), Ky € K(E), and Ky € K(F) such that

(5.5.2.16) ST =1dg + K, TS =1dr + K.
Conversely, if we have (5.5.2.16)) for some S € L(F, E), then T is Fredholm.

Proof. — If T is Fredholm, we can use Lemmas[5.1jand[5.2] Take S = E, K} = —E, R,
and Ky = —R_FE_. In view of (5.5.1.4) and (5.5.1.8), we have (5.5.2.16). Moreover,

since K7 and K are of finite rank, they are compact.

Conversely, assume (5.5.2.16). We have ker 7" C ker(ST'). From Proposition we
know that
dim ker 7" < dim ker(S7T') = dim ker(Idg + K;) < +00.

We have also ran (7'S) C ran T and, from Proposition we deduce that
codimran 7" < codimran (7'S) = codimran (Idp + K») < +00.
Thus, the operator 7" is Fredholm. 0

Corollary 5.6. — Let T € L( X1, X5) and U € L(X,, X3) be Fredholm operators. Then
UT is a Fredholm operator and

ind (UT) =indU 4 ind T
Proof. — From Proposition [5.5] we have
ST =1dx, + K1, TS=1dx, +K,, K;e€K(X;y), K,;eK(Xy),
SU=Idx, + Ki, US=1Idy, + K,, K; € K(X2), K, K(Xs).
Compute
(SS’)UT = S(Idx, + f(l)T =Idyx, + K1 + SK\T, K, + SK,T is compact,
UT(SS) =U(Idyx, + K3)S =1dy, + Ko + UK,S, K, + UK,S is compact.
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From the converse of Proposition[5.5] we conclude that U7 is Fredholm.
Now, for ¢ € [0, 3], consider the operator from X, x X; to X3 x Xo,

I — Uu o0 costldyx, —sintldx,\ (Idx, O
P77\ 0 Idy,/ \sintldy, costldy, o T)-
This is a product of three Fredholm operators. The map [0, 7] > t +— L, is continuous,
and it is built with Fredholm operators. We find

U oo 0 —UT
Loz(o T)’ LS:(IdXQ 0 )

Since the index is locally constant, we must have
ind Lo =indU +indT = ind Lz = ind (UT) .
The conclusion follows. O

Exercise 5.7. — With the notations of Exercise |4.16| prove that A ¢ sp.(-Z + V).

Corollary 5.8. — Let T € L(X1, X3) a Fredholm operator and K € K(X1, X3). Then
T + K is Fredholm and ind (T + K) = ind T.
Proof. — From Proposition [5.5] we have
S(T+ K)=ST+SK =1dg + K; + SK, K, + SK is compact,
(T+K)S=TS+ KS=1Idp+ Ky + KS, Ky + K S is compact.

It follows that 7"+ K is Fredholm. The map [0, 1] 5 s — T + sK is continuous and built
with Fredholm operators. Since the index locally constant, we must have ind (7' + K) =
ind 7. O

5.3. On the spectrum of compact operators

In the next theorem, we recall fundamental facts about compact operators. In particular,
we will notice that the non-zero spectrum of a compact operator is discrete.

Theorem 5.9 (Fredholm alternative). — Let T' € L(E) be a compact operator. Then:
(i) If E is of infinite dimension, then 0 € sp(T).
(ii) Forall z €¢ U = C\ {0}, T — z is a Fredholm operator of index 0.
(iil) ker(T" —Id) = {0} if and only if ran(T — Id) = E.
(iv) The elements of sp(T") \ {0} are isolated with finite algebraic multiplicity and the
only possible accumulation point of the spectrum is (.

(v) The non-zero spectrum of T is discrete.

Proof. —

Assume that 0 ¢ sp(7"). Then, since the set of compact operators forms a ideal of
bounded operators, we find that Id = T~! o T is compact, and therefore Bg(0,1] is
relatively compact. In view of the Riesz theorem, this is not possible if dimE = +o0.
For z # 0, we have T' — z = —z(Id — T'/z) with T'/z compact. From Proposition
4.9 we know that 7' — z is a Fredholm operator. From Proposition [5.4] the function

s+ ind (sT' — z) is continuous on [0, 1], and therefore constant. It follows that ind (7" —
z) =ind (—z) = 0.
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This is evident since 7" — Id is of index 0.
Recall that U = C \ {0}. By construction, the set

o

Vi={z€eU:3r>0:D(z,r) Csp(T)} =Unsp(T)

is open. Let us prove that it is closed in U. Consider a sequence (2,,),, € V! that converges
to some 2z, € U. The Fredholm operator 7' — z., can be completed as in the beginning
of Section [5.1] see (5.5.1.1), to get a bijective invertible operator

M(z0) — (;‘(;3 ng) |
For = € U, consider
M(z) = (PZ(‘Z;) R—(Ozoo>) CM(2) — (2 — 2N, N = (151 8) |

For |2 — zoo| < 7 with 7 := [|N]|71|| M (240) ||, we find that M(-) is holomorphic with

oo

M(2)7h =D (5 = 2o (M) IN) M(2)
=0
On the other hand, following (5.5.1.3)), we have the decomposition

) E(z) Ei(z
Mz =E(2) = (E_((z)) Eo((z)>> 7

where all ingredients E(-), E, (), F_(-) and Ey(-) are holomophic. From Lemma
we know that 7" — z is not bijective if and only if det £y(z) = 0. Recall that

(5.5.3.17) Eo(2) = =R _(200) M(T — 2) Ry (200) "

which clearly indicates that Ey(-) is holomorphic in a neighborhood of z. Its zeros are
isolated unless det £y = 0. By the definition of z.,, we must have det £, = 0 in a
neighborhood of the limiting point z.,. This implies that z,, € V. The set V' is closed in
U.

Since V is open and closed in U, we have V = U or V = (). But
V Csp(T) C B0, |T]] ¢ U.

Thus, we have V' = (). Now let us consider z; € sp(7) \ {0}. Then, in a neighborhood
of 21, T — z is not bijective if and only if det Ey(z) = 0. Since V' = (), det Ej is not zero
near z; and thus (by holomorphy), its zeros are isolated. Finally, we recall (5.5.1.13) and
thus we have, near each point of the spectrum in U,
(T - 2)™ = B(2) — Ba(2) By (2)E_(2),
and we deduce that the resolvent is meromorphic in U. Since F(-) is holomorphic, we
have
1 .
Pr=— [ E,(2)E;'(2)E_(2)dz = c By (2:0) Eg E_(200), ceC.
2m Jp,
When E. (25)(\) # 0 and E_(2)(\) # 0, the matrix E is the one appearing in factor
of the pole of E;*(+) at zu. Otherwise, it may the one appearing in factor of (z — )~
with j € N. At all events, the matrix Eé is a finite rank operator, and therefore the same
applies to Pj.
From (iv) by definition. O
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Corollary 5.10. — Let (Dom (T'),T) be a closed operator. Assume that the resolvent set
is not empty and that the resolvent is compact. Then, the spectrum of T' is discrete.

Proof. — We can find 2y € p(T). For z # z,, we have
T—z=(20—2)[(20—2)"" = (T = 20) '|(T — 20).
Define Z = h(z) with h(2) := (29 — 2)~'. Then
T —z=—-Z"[Rr(z) — Z|(T — 2).
Since T — z is invertible, this indicates that z € spT" if and only if Z € spRy(zo), that is
(5.5.3.18) sp(T) ={h™"(2) =20+ Z7"; Z € spRr(z) NC*} .
Since the resolvent (T" — zy)~! is compact, the elements of spRz(zy) N C* are isolated.

The same applies concerning their images by the diffeomorphism 2=! : C* — C \ {20}
Note that the possible accumulation point of the spectrum at 0 is sent to +co.

Let A € sp(7T'). Since A # zy, we can find some r > 0 such that the closed disc D(\, 7]
of center A\ and radius r does not contain zp, and it contains only A as element of the
spectrum. Let Iy := JD(\, r] be the circle of center \ and radius r. By the resolvent

formula (.4.3.5)), we have
1 1 —
Py=—— [ Ry(2)dz= ——(/ Rir(z) = Br(z) dz) (T — z).
T\

21 Jp, 2m Z— 2

Since z — (2 — 29)~! is holomorphic in a neighborhood of D(\, r|, there remains

Py :—L</F RT—(Z)dz>(T—z0)

211 NE2aE )

— _%RT(«ZO) </m —Z*[Ry(20) — Z] - dz) (T — )
B _%RT%) </h(m [Rrz0) = 2] dZ> (T = ).

We recognize on the right hand side (inside brackets) the Riesz projection P, associated
to the compact operator Rp(z). Thus, the rank of P, is finite, and the same applies
concerning the rank of P. U

Remark 5.11. — Even if a closed operator has compact resolvent (with a non empty
resolvent set), the discrete spectrum might be finite (and even empty!).

Exercise 5.12. — The context is as in Exercice Identify the elements of sp(7)\ {0}.

Solution: Since T' is compact, any A € sp(7") \ {0} is isolated with finite algebraic
multiplicity. By Corollary[3.36] it must be an eigenvalue. Thus, there is v # 0 such that

0 = Auyg, Up = A oy = AT (n)) M.
This is possible only if u = 0. Therefore sp(7") = {0}. o

Exercise 5.13. — [Application to elliptic equations] Let Q@ C R™ with n € N* be a
bounded open set with smooth boundary. We work on L?(Q2). Define Dom (T) =
H2*(Q) N H}(Q) and T : Dom (T) — L*(Q) given by T := —A + 1. We admit that
T' is a bijection with compact (right) inverse /. For each A € R, show that either the
homogeneous equation 7'uv — Au = 0 has a nontrivial solution, or that the inhomogeneous
equation Tu — Au = f possesses a unique solution u € Dom (T) for each given datum

feL*Q).
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Solution: As a consequence of Fredholm alternative, either x4 is an eigenvalue of K, or
the operator K — 1 is bijective from L?(() to itself. Consider some i # 0.

If 1 is an eigenvalue of K, we have Tu = p~'u with u # 0. Then, the homogeneous
equation 7w, — Au = 0 with A = p~! has a nontrivial solution.

If K — u is bijective, we have (K — u)T = Id — pT = —u(T — ') is a bijection. Then,
the inhomogeneous equation Tu — Au = f with A = p~! possesses a unique solution
u € Dom (T') for each given datum f € L?(2).

The case A = 0 can be dealt separately. o

5.4. Study of the complex Airy operator
The complex Airy operator
L =D +ix, z€R, D:=—i0,

appears in many contexts: mathematical physics, fluid dynamics, time dependent
Ginzburg-Landau problems, and so on. Consider H = L?(IR) equipped with the usual
scalar product (-, -). We set

Dom(Z.) = {¢ € L*(R); (DI +iz)y € L*(R)}.

The aim of this paragraph is to examine the properties of the operator (Dom(c?i), gi)
through as a succession of corrected (small) exercises. This is an opportunity to illustrate,
review and practice many notions and tools that have been previously introduced.

Exercise 5.14. — Prove that .7, is a closed operator.

Solution: Come back to Proposition [2.12] criterion (). Let (1/,,) € Dom(.%4 )N such that
¥, — 1 and L1, — Y in the sense of L?(R). We have 1), — Z41 in the sense of
distributions. The limit is unique so that ) € Dom(.%,) with £y = . o

Exercise 5.15. — Prove that, for all u € ‘KOOO(R), we have

(5.5.4.19) Re(ZLiu,u) = ||u/||*, ||Leul]® = ||| + ||zul|® + 2Tm (v, u) .

Solution: Notice that D? = —9?, and therefore (after integration by parts)
Re(Zyu,u)y = /(—8§u:l:ixu)ﬂdx = / |u'|*dz.

On the other hand

| -Lrul? —0%u + izu) (02U Firu) da

[W'|? + |zul? + i(—2ud2,u + 2uds,u)) do

I
—— e —

(
(
(

W'|* + |zul® + i(ud,t — u,u) dz.
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Exercise 5.16. — Deduce that there exists two constants ¢ > 0 and C' > 0 such that, for
all u € 65°(R),
(5.5.4.20) ¢ (JJlullne@) + llzull) < ||ZLeull + ull < C (ullnzw) + |lzul]) -

Solution: Applying two times the Cauchy-Schwartz inequality and using (5.5.4.19), we
first get that
i (' )| < S+ 5l < el + 5l
This also implies that
ullfe ey + lzul® = a1 + 117 + llul® + [lou]® < 2/|-Leul® + 3]u]*.
We can take ¢ = 1/ /6 for instance. Moreover
Sl < o + el + 3l
so that
%(Hi@UHQ +lull?) < 2(llullfieg) + llzull®)-
We can take C' = 1/(2v/2). o
Exercise 5.17. — Prove the density of €5°(R) in Dom(.%..) for the graph norm
[ull 2 = | Zull + [lull
Solution: Let u € Dom(.#). From (the left part of) (5.5.4.20), we know that u € H*(R)
and zu € L*(R). Let xy € €;°(R) be such that 0 < y < 1,and y = 1on | — 1, 1], as well

as x = 0 outside the interval [—2,2]. For R > 0, define xr(x) := x(z/R), and introduce
up = Y ru. Fix any € > 0. For R large enough, we obtain that

lzup — zu|| < C e, lur — ullpe@e < C e

From (5.5.4.20), this means that ||up — u|| . < €. There remains to approach up. Recall
that 65°(R) is dense in HZ(] — 2R, 2R[). Thus, we can find a sequence (u,,) in €5°(R)Y,
with supports contained in | — 2R, 2R], converging to ug in H*(R). Since |z| is bounded
by 2R on the support of u,,, we find that zu,, goes to xur in L>(R). The right part of

(5.5.4.20) gives the conclusion. o
Exercise 5.18. — What is the adjoint of .Z7.?
Solution: First observe that

V(,x) € 67 (R) x ¢5°(R),  (Zat), x) = (¥, Zix) = (¥, L5 x)-

Thus, we have Dom(.Z%) C Dom(.Z}). The rest of the proof follows the same lines as in
Section 2.2.4l We find that

Dom(Z) = {¢ € H*(R) : 2 € L*(R)} = Dom(.Z;)
and L} = Z-. ©

Exercise 5.19. — Prove that %, + 1 is bijective. One can first prove that it is injective
with closed range, and then that the range is dense.

Solution: Assume that (.Zx + 1)u = 0. Then
Re ((Zx + Du,u) = [[u']* + [Ju]* = 0,
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which implies that © = 0. On the other hand
(Ze + Du, (ZLy + Du) = | ZLeul)® + 2Re (u, Lru) + ||ul|?

1
= [[u"[I* + [lzul® + 2Im (v, u) + 2[[/||* + [|u]|* >

Sl
Just apply Proposition to get that %, + 1 has a closed range. From Proposition
we also know that

ker(Zyr +1)* = ker(Lx + 1) = {0} =ran (L + 1)+,

and therefore
ran (Zy + 1) =ran (L +1) = {0} = L2(R).

Exercise 5.20. — Prove that the resolvent of %, is compact.

Solution: We use Proposition Let (v,) be a sequence in Dom(.Z; )" which is
bounded for the graph norm. We know that (1),,) is bounded in H?(R), and that (x1),,)
is bounded in L?(R). By Kato-Rellich theorem and exploiting some exhaustion of R by
compact sets, we can extract a subsequence still denoted by (1),,), such that (1,,) does
converge in L? on all compact subsets of R, to some ¢ € H?(R) satisfying z¢) € L*(R).
On the other hand, we have

/ [t —0|? dz < R‘Q/ 22, — |2 da < 23—2/ 2 (|0 ? + [0 da .
B(0,R]e B(0,R]¢ B(0,R]e
Thus, for all € > 0, we can find some R large enough such that

Jm s = Yllesor) =0, [¥n = Yll2(po,re) < €.
This meand that (1,,) goes to ¢ in L*(R). o

Exercise 5.21. — Show that, if X belongs to the spectrum of %, then, for all & € R,
A + 2« also belongs to the spectrum.

Solution: The idea is to conjugate .Z, with the (invertible and continuous) translation
operator 7,9 (z) = 1(x + a). Remark that 7, ' %, 7, = %4 +ia. o

Exercise 5.22. — Determine the spectrum of .Z.
Solution: It is empty!

Otherwise, the spectrum of .Z contains (at least) one point z. In view of Corollary [5.10]
it should be discrete. Taking into account Exercice it should also contain the whole
vertical line passing through z. This is clearly a contradiction. o

5.5. An application of the Grushin formalism
Lemma 5.23. — Consider P and () two projections such that |P — Q|| < 1. Then,
dim RanP = dim Ran(@ .
Proof. — We let
U=QP+ (Id—Q)(ld— P) € L(Ran(P),Ran(Q)) ,
V=PQ+ (Id— P)(ld — Q) € L (Ran(Q), Ran(P)) ,

and notice that UV = VU = Id — (P — Q)?. Thus UV and VU are bijective, and so are
U and V. The conclusion follows. ]
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Lemma 5.24. — Let Q) be a non-empty open set of C and (4.) .cq be a family of bounded
operators which is weakly continuous in the sense that

Vi e H, Q3 zw— B, is holomorphic.
Then, the family is strongly continuous, meaning that

Q> 2z A, € L(H) is holomorphic.

Proof. — First, let us show that 2 5 z — 4, is continuous. Let z5 € €2 and > 0 such
that D(zo,7) C 2. We consider the family of bounded operators
(=22
2= 20 z€D(z0,m)\{#0}

It satisfies the assumptions of the Banach-Steinhaus theorem and we deduce that Z is
continuous at zy. Then, for all z € () and a convenient contour I', the Cauchy formula

gives
1
Bap = — L

2im Jrp (— 2
The continuity of & implies that, for all ¢ € H,

e =D

C.

Thus,
1 B
z = 5. _ S dC )
2im Jp(— 2
and this formula classically implies the holomorphy. 0

Proposition 5.25. — Consider a family of closed operators (Z;)¢cq where Q@ C Cis a
non-empty open set. We assume that this family is analytic in the sense that

(i) Dom (%) is independent of £. This common domain is denoted by D.
(ii) Forallvy € D, Q 3 & — L) is holomorphic.
Let &y € Q and zy € C. We also assume that
(iii) ker(.Z, — 2z0) = span ug, with ug, # 0.
(iv) ker( £ — Zp) = span vg, with (ug,, ve,) # 0.
Then, there exist open neighborhoods V and W of &y and 2, respectively, as well as
some holomorphic function p : V — W such that, for all (£,z) € V x W,

2 € sp(L) & = = ple).

Moreover, dimker(Z; — p(§)) = 1 and we can find an analytic eigenvector (ug)eey
associated with |i.

Proof. — For all (£, z) € 2 x C, we consider

_ (L2 vy
%{,z_(<.’u§0> O)DXC—>HX(C

We can check that ., ., is bijective and

-1 _ ("%O _ZO)_IHUE “Ug
%50720 - ( <"U§0> 0 0 )
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where I1,, is the orthogonal projection on span vg,. Then, we write

%&Z _ ///50@ + (.,E/ﬂg — DZ%O —Z+ 2 0)

0 0
Le— %Ly —2+2 0 _
— (Id + ( 3 60 0 O> jlso,lzo) My 2
_ (Id + (_H% 2 m ), ZWO)) My

Note that (&, z) — (Z — 2)ug, is holomorphic by assumption. Moreover, the operator
e = (Le — 2)(Lgy — 20) My 1 H—H

”50

is closed and thus bounded, by the closed graph theorem. We can use Lemma|[5.24]to see
that (¢, z) — 27 , is analytic (as a sum of a function analytic in £ and a function analytic
in 2). For (¢, z) close enough to (&, 2¢), the operator

is bijective, and so is .#; .. Thus, we can write

-1 E0(€>Z) EJF(&’ Z)
M, = (E(&Z) Ei(faz)) ’

and we have z € sp(.%;) if and only if £, (&, z) = 0. The function E, is analytic with
respect to (&, z) near (&g, 2o). By using a Neumann series, we get

Ey (80, 2) = (2 — 20){ugy, vy) + 0|2 — 20]") .
In particular,
0. E+ (80, z0) = {ugy, vg,) # 0.
With the analytic implicit functions theorem, we deduce the existence of p.

Now, consider a contour I" enlacing 1()) and define, for all £ € V,

1
P=_— — Z)HdC.
e =5 F(C ) d¢
Since the projection-valued application £ +— P is continuous (in fact analytic) and P,
is of rank one, so is P: by Lemma [5.23] In particular, Psu, is a non-zero (analytic)
eigenvector associated with (). [

5.6. Toeplitz operators on the circle

The following presentation is inspired by a course which has been given by G. Lebeau
at the Ecole Polytechnique. In this section, we consider H = L2(Sl, C). If u € H, we
denote by (uy,)nez the family of the Fourier coefficients of u:

1 2w

We define P : H — H by, for all u € H, (Pu),, = u, if n € Nand (Pu),, = 0ifn < 0.
The range of P is called the Hardy space and denoted by 2.

YneZ, u, u(f)e=" a4 .
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Definition 5.26. — Leta € ¢°(S!,C), and M, : H — H be the operator corresponding
to the multiplication by a. The operator T'(a) := PM,P : H*> — H? is called the Toeplitz
operator of symbol a.

Lemma 5.27. — Leta € €°(S',C). We have T'(a) € L(H?) and ||T|| < ||a]|o-
Define e,, € €°(S', C) by €, (0) := ™.

Lemma 5.28. — Let n € Z. Then, [M.,, P] is a finite rank operator (and thus it is
compact).

Proposition 5.29. — Let a € €°(S', C). Then, [M,, P] is a compact operator:

Proof. — By the Fejér theorem, a can be approximated by trigonometric polynomials in
the sup norm. 0

Proposition 5.30. — Let a,b € €°(S', C). Then, there exists K € K(H?) such that
T(a)T(b) = T(ab) + K .
Proof. — We find K = P[M,, P|M,P. 1t suffices to use Proposition O

Proposition 5.31. — Let a € €°(S', C). Assume that a does not vanish. Then, T'(a) is a
Fredholm operator.

Proof. — 1t is a consequence of Proposition with b = a7 1. O

Lemma 5.32. — Let a € €°(S',C). Assume that a vanishes on a non-empty open set.
Then, T'(a) is not a Fredholm operator.

Proof. — Letus consider a closed bounded interval [y, 72| C [0, 27| withy; < v and on
which a is zero. If o € R and if p, is the translation by « defined by p,u(0) = u(0 — «),
we have [p,, P] = 0. We choose @ = 7, — 7;. Then, there exists n € N such that
(paMa)" = 0.

By using commutators (see Proposition [5.29), we see that (p,T'(a))" is compact. If
T(a) were Fredholm so would be (p,7'(a))™ (see Proposition and there would exist
S € L(H?) and K € K(H?) (see Proposition|[5.3)) such that

S(paT(a))" = Idgz + K,

and thus Id;2 would be compact. This would be a contradiction. Therefore 7°(a) is not
Fredholm.
[l

Proposition 5.33. — Let a € €°(S',C). Assume that there exists 0y € S* such that
a(6y) = 0. Then, T'(a) is not a Fredholm operator.

Proof. — For all € > 0, there exists @ € °(S',C) such that ||a — dl|.o < € and a
vanishes in a neighborhood of 6. If a were Fredholm, so would be a by Lemma
With Lemma [5.32] this would be a contradiction. O

Proposition 5.34. — Let a € ¢'(S',C). Assume that a does not vanish. We can write
a(f) = r(0)e' 9, withr > 0, a of class €. Then

) 2 _ 1 2m
ind7T(a) =indT'(e") =k := a(27) — a(0) - _/ “ 90
2m 2im Jo a
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Proof. — Let us consider the following continuous family (a¢).c(o,1:
a;(0) = (1 = t)r(0) + t)e®

For all ¢ € [0, 1], the function a; does not vanish. We see that (7(a;)):c[0,1] is a continuous
family of Fredholm operators. The index being preserved by perturbation, we get the first
equality. For the second one, we consider

fi(0) = p(L=t)ia(0)+iktd _ iox(0)+it foe(kfa’(u))du.

It defines a continuous 27-periodic function. We get
ind T(e") = ind T(e'*) = k.

5.7. Notes

1. The Fredholm theory is born with the study of linear integral equations (see [9] and
[3, Chapter I11]).

ii. This chapter is inspired by [38, Appendix D], see also [31] where the power of the
Grushin formalism is explained with various examples. This formalism, inspired by
elementary considerations of linear algebra, was originally used to study pseudo-
differential operators ([11}30]).

iii. Section[5.5]can be seen as a very particular case of the perturbation theory described
in Kato’s book [18, Section VII.2]. The advantage of the Grushin formalism is to
provide a more synthetic presentation. Note that Lemma [5.23] can be found in [18,
Section 1.8].

iv. The Reader is invited to compare our presentation to the one in [2, Section VI.3].



CHAPTER 6

SPECTRUM OF SELF-ADJOINT OPERATORS

This chapter is devoted to the special case of self-adjoint operators. We explain that
the discrete spectrum and the essential spectrum form a partition of the spectrum, and we
give various criteria (via Weyl sequences) to characterize these spectra. We also prove the
famous min-max theorem, which characterizes the low lying eigenvalues of a self-adjoint
operator bounded from below. This chapter is illustrated by means of various canonical
examples, such as the Hamiltonian of the hydrogen atom.

6.1. Compact normal operators

Lemma 6.1. — Let'T € L(H) be a normal operator.
i. If V C His a subspace such that T(V) C V, then T*(V+) c V4.
ii. We have ker(T) = ker(T™).

Proof. — Assume that V' is a subspace such that T'(V) C V. Foru € V* andv € V, we
have

(T"u,v) = (u, Tv) =0.
For the second point, note that, for all x € H,
|Tx||? = (T*Tx,x) = (TT*z,x) = | T*x|*.
O

Theorem 6.2. — Assume that H is infinite dimensional. Let us consider T' € L(H) be
a compact normal operator. Then, its non zero spectrum is discrete and 0 belongs to the
spectrum. Let us consider the sequence of the distinct non zero eigenvalues (\;)1<j<k
(with k € NU {+oc}) and let \g = 0. Then, we have the decompositions

k k

k
(6.6.1.1) H=ker(T - X)), T=> NP=) NP,
7=0

§=0 j=1

where Pj is the orthogonal projection on ker(T' — X,).

Proof. — If A\, € sp(T) \ {0} with A # p, then the corresponding eigenspaces are
orthogonal. Indeed, if u € ker(T'— A) and v € ker(7T — p), by Lemma we have
v € ker(T* — 1) and

0= (T = Nu,v) = (u, (T" = \v) = (7 = \){u,v).
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We consider the Hilbertian sum
k
V= ker(T - )\)).
7=1

The subspace V' is stable under the action of T, so that V' is stable under 7*. Thus, we
can consider Tﬁ/ . € L(V1). Ttis a compact normal operator on V. Its non zero spec-
trum does not exist. Therefore T[{/ . € L(V*) is a normal operator with zero spectrum
and 7}, = 0. Thus V- C ker T = ker(7’) and then V* = ker 7"

When £ is finite, the sense of is clear. Assume that k¥ = +00. We can always
adjust the eigenvalues \; with j > 1in such a way that the |\;| form a decreasing sequence
going to zero. Then, introduce

By Proposition [3.27, we know that
T — Tyl =r(Ry) = sup A < [An] — 0.

j=N+1

]

Proposition 6.3. — Assume that H is of infinite dimensional. Let us consider a self-
adjoint operator T with compact resolvent. Then, its spectrum is real, discrete and can
be written as a sequence tending to +oc in absolute value.

Proof. — By Proposition [2.64] the resolvent set contains +i and —:. The spectrum is
real, and we can use Corollary [5.10]to see that the spectrum of 7" is discrete. The operator

(T +14)~* is compact and normal. By Theorem 6.2} we have (6.6.1.1) for (7' + i)', and
thereby

TU]':/L]'UJ', ,uj:)\jfl—z'ER, Uj:PjUj, Og]gk
Since the \; go to zero, the y; tend +o0. [
Exercise 6.4. — Let ) C R? be a bounded open set.

i. Prove that the spectrum of the Dirichlet (resp. Neumann) Laplacian on (2 is real,
discrete and can be written as a sequence tending to +oc.

ii. Consider the case d = 1 and 2 = (0, 1). Show that the Dirichlet Laplacian is bijec-
tive. Exhibit a Hilbertian basis of L?(2) made of functions in H}(€2).
Exercise 6.5. — Prove the statement in Remark 4.27]

Proposition 6.6 (Singular values). — Let T' € L(H) be a compact operator. Then,
(i) T*T and |T| are compact and self-adjoint. Moreover, ker T*T = ker |T'| = ker T.

(ii) If (Sn)n>1 denotes the non-decreasing sequence of the positive eigenvalues of |T)|,
associated with an orthonormalized family of eigenfunctions (1,,)n>1, then the series

Z Sn('v wn>wn

n=1

converges to |T| in L(H).
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(iii) The series

Z Snl*s Un)on with o, = sngq/Jn

n=>1

converges to T in L(H). The family (p,,),>1 is orthonormalized.

(iv) The series

Z S?L('v ¢n>¢n

n>1

converges to T*T = |T|* in L(H).

Proof. — Only the third point requires a proof. It is enough to notice that 77Ty, =
s24hy,. O]

6.2. About the harmonic oscillator

6.2.1. Domain considerations. — Consider the operator
Ho = (¢5°(R), —0; +27).

This operator is essentially self-adjoint as we have seen in Example Let us denote
by H its closure. We have

Dom (H) = Dom (H;) = {1 € L*(R) : (=02 + 2°)y € L*(R)}.

By using the results of Section [2.6.3] we also see that H is the operator associated with
the sesquilinear form defined by

Yo, € BH(R), Q(e,v) =/ ¢V + 2°p0) da.

R
We can prove the following separation property.

Proposition 6.7. — We have
Dom (H) = {¢ € H*(R) : 2%y € L*(R)}.

Proof. — The proof is another illustration of the difference quotient method. Let ¢ €
Dom (). It is sufficient to prove that ¢»” € L*(R). There exists f € L?(R) such that

V(p € %OOO(R)a <axw7 a:c(;p> + <$¢7$90> = <f7 %0> )
where the bracket is now the L-bracket. Since ) € B!(R) and ¢;°(R) is dense in B! (R),
we can extend this equality and get

Vo € BI(R),  (3:9, D) + (00, 20) = ([, ).
Let us define the difference quotient

r+h)— o
If ¢ € BY(R), then Dy, € B'(R). We get
V(p € BI(R)v (aﬂ/% ath90> + <37¢733Dh80> = <f> Dh90> :

It follows that

reR, h#0.

<8x¢a 8;,;Dh§0> = _<axD—h¢a 5x80>
and
(x¢,2Dnp) = —(@D_pth,xp) — (¥(x — h), xp) — (2, p(x + h)) .
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We find, for all ¢ € B'(R) and & # 0,
(02 D_pi, 0pp) + (xD_ptp, 20) = —(f, Dpyp) — (U(x — h), xp) — (¢, p(z + h)) .
Applying this equality to ¢ = D_,1), we get

<aa:th¢7 afohw> + <xD7hw7 fohw>
= — ([, DD_pp) — (Y(x — h),xD_py) — (xp, D_pyp(x + h)).

Then we notice that

[(fs DaD_n )| < || flle@) | D D-n |2 (m)

| fllez@) 102 D_n| L2 (w)
1
<5 (I1Eaqey + 10 D=ty

where we have used Proposition We can deal with the other terms in the same way
and thus get

10: D_n|| 2y + NleD_pl|F2m)
< 5 (17 Rage) + 19D lagey + W0y + 2 Dot gey + 1l + A1)
We deduce that

ID_nu||2 gy + e D_plF2my < I F P2y + 101 my + 10NBwy + [RI¢ R ) -

We may again use Proposition and we conclude that 9,7) € H'(R) and z¢) € H'(R).
O]

<
<

6.2.2. Spectrum of the harmonic oscillator. — We have seen in Exercise that
has compact resolvent. Actually, one could also directly use Propositions and
Thus, the spectrum is real, discrete and it is a non-decreasing sequence (A, ),>1 tending to
~+o0o (we repeat the eigenvalue according to its multiplicity). We would like to compute
these eigenvalues.

Let us consider the following differential operators (acting on . (R))

azi(&mL:c), c=

7 (=0 + ).

1
V2
We have

2ca = —0> + 2% — 1, la,c] =1.
Lemma 6.8. — For all ¢, € ./ (R), we have
<@90>¢>L2(R) = <90,C¢>L2(R)-
Lemma 6.9. — Foralln € N\ {0},

ac® = nd" '+ a.

Proposition 6.10. — For alln > 1, we have \,, = 2n — 1. In particular, the eigenvalues
are simple.
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Proof. — We let go(z) = e **/2. We check that ag = 0. In particular, we have 1 €
sp(H).

For n € N, we let g, = ¢"go. By induction, we see that g, = H,go where H, is a
polynomial of degree n. In particular, the functions g, are in the domain of the harmonic
oscillator.

Let us notice that

cac" = nc" + " a.
We get that
Hg, = (2n+ 1)g, .

In particular, {2n 4+ 1,n € N} C sp(H).
Let us check that (g, ),en is an orthogonal family. Let n, m € N with n < m. Let us
consider

<gmgm>L2(R) = <Cn90> Cm90>L2(R) = <aan90>go>L2(1R) =0,

where we used Lemmas [6.8]and [6.9] agy = 0, and an induction procedure.
Let us check that the family is total.Take f € L2(R) such that, for all n € N,
(f,gn)12@m) = 0. It follows that, for all n € N,

/ 2" f(x)e P de = 0.
R
For all ¢ € R, we let
P& = [ ey da
R
The function F' is well defined. Now, we notice that

- \k
/ (=ixt) S 2y
R k!

k=0

By the Fubini-Tonelli theorem, we have

/RZ|f |£L’€| —m2/2d Zlﬂk/’f |$| —m2/2dx.

k=0

Then, we have

400 k k %
S [ 1witerar < i R>Z ’k', ([ e ar)
k=0 '
) — I x k_—x2/4 —z2/2 %
< £l R)Z ma ( e )(/Re dx)
Z |’S‘k max <|1’|k —1’2/4>
+oo L
oy g (2—) el
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Since this last power series is convergent (with infinite convergence radius), we can apply
the Fubini theorem and we get

Fo =3¢ [ 1St -0

Therefore, the Fourier transform of fe=*"/2is 0 and f = 0

If we denote by ( f,,)nen the L2-normalization of the family (g, )nens (fn)nen is a Hilber-
tian basis of L*(R) such that H f, = (2n + 1) f,..

Since the spectrum of H is discrete, we only have to care about the eigenvalues. Let us
solve H1) = Ay with A € R and ¢ € Dom (H). We write the following decomposition,
converging in L%(R),

1/] = Z<¢7fn>L2(R)fn .

neN

For all p € .(R), we have

(¥, (H = Ne)ew =0.
Thus, by convergence in L*(R), for all ¢ € . (R),
ZW, fade) (fn, (H = Np)zw) = 0.
neN
We choose ¢ = f to see that

Z(@/), Fayeew (fr, (2K +1) = X) fo)ew) = (O, fe)e@((2k+1) =) =0.

neN

If, for all £ € N, (¢, fi)i2m) = 0, then ¢» = 0. Therefore, there exists k& € N such that
(2k+1)—A=0.
We have proved that

sp(H) ={2n—1,n e N\ {0}}.

Let us now prove the statement about the multiplicity. Consider a solution ¢ €
Dom (H) of Hy = (2n + 1)¢. For all k € N, we get

W, fidzm (2k +1) — (2n +1)) = 0.
Thus, for k # n, (1, fk>L2(]R) = 0. Thus, 7 is proportional to f,. 0

6.3. Characterization of the different spectra
6.3.1. Properties. —

Lemma 6.11. — If T is self-adjoint, we have the equivalence: \ € sp(T) if and only if

there exists a sequence (u,,) € Dom (T') such that ||u,|nw = 1, and (T — \)u,, — 0
n—--—+0oo
in H.

Proof. —

<= By Lemma if there exists a sequence (u,,) € Dom (7') which is such that
|unllp = 1 and (T — N)u, ¢ 0, then \ € sp(7)).
n—-+00
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= If A = A\; +i)\y € C\R, thatis Ay # 0, by Proposition applied to the self-adjoint
operator \, *(T'— \;), we can infer that T'— ) is invertible (with bounded inverse), so that
A & sp(T), and the criterion cannot be verified due to the contradiction between

[unlln =1, BT = Nup = un  — 0.

n— 400

We can restrict the discussion to the case A € R. If there is no sequence (u,,) C Dom (T')
such that ||uy,||n = 1 and (7" — N)u, - 0, then we can find ¢ > 0 such that
n—-+00

(T — Nul| = ||, Vu € Dom (T).

Therefore 7' — \ is injective with closed range. But, since 7' — A = (T' — \)*, we have
ran (T — ) = ran (T — A) = (ker(T — A)*)" = (ker(T — \))* = {0}* = H.
This means that 7' — X is surjective, and therefore A € p(T). O
Lemma 6.12 (Weyl criterion). — If T is self-adjoint, then A € sp.(T) if and only if

there exists a sequence (u,,) C Dom (T') such that
(ii) (u,) has no subsequence converging in H ;
(i) (T — N)uy, 0 in H.

—
n—-—+o0o

This means that the condition (ii) allows to distinguish the essential spectrum.

Proof. — First, remark that if (u,) with ||u,||y = 1 has a subsequence converging in H
to u, then we must have ||u||y = 1. Indeed, we have (after extraction of a subsequence)
0= lim |lu, —ul®*= Lm (1 — (u,u) — (u,u,) + |ul|?) =1 — ||Jul|%
n—-+00 n—-+00

If A & sp(T), then T' — ) is invertible and u,, — u = 0, in contradiction with ||u|ly = 1.
If A € sp(T')\spess (7). the operator T'— A must be Fredholm (see Proposition[3.47)and the
following remark). Let (u,,) C Dom (7') such that ||u, ||y = 1 and lim,,_, oo (T — N u,, =
0. The operator T' — X : ker(T — A\)* — ran (T — )) is injective with closed range.
Therefore, there exists ¢ > 0 such that, for all w € ker(T — \)*, (T — MNw]|| = c||w]|.
We write

Up = Up + Wy , vy, € ker(T — )\, w,, € ker(T — \)*,

and we have

(T = N * = (T = Myl + (T = Nwa]*.
We deduce that w,, — 0. Moreover, (v,) is bounded in a finite dimensional space, thus
there exists a converging subsequence of (uy,).
Conversely, let us now assume that any sequence (u,) C Dom (7") such that ||u,||n = 1
and lim,,,, (T — A)u,, = 0 has a converging subsequence, going in H to some u with
|lullp = 1. Then A € sp(7"). Moreover, the kernel ker(7" — \) is finite dimensional.
Indeed, if it were of infinite dimension, one could construct a infinite orthonormal family
(uy) in ker(T" — \) and in particular we would get u,, — u = 0 (weak convergence),
which is a contradiction.

Let us now check that
>0, VYucker(T N> (T — Nul = cljul.
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If not, there exists a normalized sequence (u,, ) in ker(7T'— )~ such that || (T'— \)u,,|| — 0.
By assumption, we may assume that (u,) converges to some u that necessarily must
belong to ker(7T" — )\)L. But since T" — X is closed (because it is self-adjoint), we have
(T'— N)u = 0 so that u = 0, and this is a contradiction. Thus, the range of 7' — X is closed
and

(6.6.3.2)
codimran (7'— \) = codimran (7" — A) = dim ker (7" — \) = dim ker (7" — X)
is finite. Thus 7" — X is Fredholm and A ¢ sp. (7). O

Lemma 6.13. — Assume that T' is self-adjoint. Then N\ € sp.(T) if and only if there
exists a sequence (u,,) C Dom (T') such that

@ [lunlln=1;
(i) (u,) converges weakly to 0 ;
(i) (T — N)uy, 0 in H.

_>
—rt00
A sequence (u,) satisfying (i) and converging weakly to 0 has no subsequence converging
in H. Otherwise, the limit (of norm 1) would be 0. The criterion (ii) of Lemma |6.13|is
stronger than the condition (i) of Lemma[6.12] Thus, Lemma[6.13]is a slight improvement
of Lemma

Proof. — Let A € sp(T'). In the case dimker(7" — Ald) = 400, we can select some
orthonormal basis (v,,) of ker(7T" — Ald). The sequence (v,,) is weakly converging to 0
and, as expected, it is such that (7" — \)v,, = 0.

Now, we consider the case when dim ker(7" — A\) < +o00. By Lemma there exists
a sequence (u,) C Dom (7') such that ||u,||n = 1 with no converging subsequence such
that we have lim,,_, , (T — \)u,, = 0 in H. We can write

Uy = Ty + Ky, with G, € ker(T — N, k, € ker(T — \).

We still have
(T — Ny, =T —-Nu, — 0,

n—-+0o
and we may assume (up to a subsequence extraction) that (k,) converges to k. Since
(u,) has no converging subsequence, (7, ) does not converge, and so it does not go to 0.
Therefore, up to another extraction, we may assume that
deo >0, VneN, |a,]>eo.
Define i, = |||/~ 4, so that

laall =1, T = Nl < ' (T = Naull = 0.

o0

Up to another extraction, we may assume that (a,,) converges weakly to some @ € H.
Then

Vv € DomT = DomT”, (T — N)tp,v) = (U, (T —AN)v) — 0= (4, (T —\)v).

n——+o0o

This implies that
@ € Dom (T — A\) = Dom (T" — \), u € ker(T—\).
By construction, we have i, € ker(T' — \)*, and thereby
VneN, VYoveker(T—N), (t,v)=0.
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Passing to the limit, there remains
Vo eker(T—N), (a,v)=0.

In short, we have obtained that & € ker(T — \) N ker(T — A\)* = {0}, and thereby
@ = 0. We have found a sequence with the required property. For the converse, it is just
an application of Lemma [6.12 [

Definition 6.14. — We call Fredholm spectrum spg.4(T) of T' the complement of the
essential spectrum of 7" in the spectrum of 7'.

In other words, we have the partition
sp(T) = SPfred (T) U Spess<T>7 SPfred (T> M spess(T> = (Z) .

Lemma 6.15. — Let T’ be self-adjoint. Any element of the Fredholm spectrum is isolated
insp(7T).

Proof. — Fix X € sp(T) \ spess(T'). By Lemmal6.11] there exists a Weyl sequence (u,)
of unit vectors such that (7" — \)u,, — 0. By Lemma we may assume that (u,,)
converges to some u (of norm 1) and we get (T — A\)u = 0. The eigenvalue A has finite
multiplicity because 7' — A is Fredholm. Let us prove that it is isolated. If this were not
the case, then one could consider a non-constant sequence (\,),, € sp(T)" tending to \.
By Lemmal6.11] for all n € N, we can find u,, satisfying ||u,|| = 1 and

A=A\,
1T = AnJugl] < 2=l

and therefore

A— A,
1T = Aunll < T = Anyaal + e — A < 22

+ A=A — 0.

By Lemmal6.12} we may assume that (u,,) converges to some u € Dom (7') with ||ul| = 1.
It follows that (7" — A\)u = 0, and so
(T — Xp)u,ug) = (u, (T — M)un) = (A= A\ {u, uy)

By the Cauchy-Schwarz inequality, we have

(T = A)ua| 1
<—— < -
)] < B <
which implies that (u,,, u) — 0, and we get u = 0, which is a contradiction. O

Lemma 6.16. — Let T be self-adjoint. Then, we have the following properties
i. If A € sp(T) is isolated, then it is an eigenvalue.
ii. All isolated eigenvalues of finite multiplicity belong to the Fredholm spectrum.

As a consequence, all isolated eigenvalues contained in sp.(7") have infinite multiplicity.

Proof. — Let us prove (i). To this end, consider an isolated point A € sp(7T). By defini-
tion, this means that there exists 9 > 0 such that, for all ;1 # X such that | — A\| < &,
we have p ¢ sp(7'). For all € € (0,¢0), we introduce

Po=— [ (-1 tac=r,

20T I,
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where I'. is the circle of radius € centered at A. Since 7' is closed (and using Riemannian
sums), the operator Py is valued in Dom (7") and

1 -NP= g [N ac= o [ w1y

£

Now, we use the resolvent bound to get (as soon as € is chosen small enough) that
1 1
. < :
dist (¢; SpT) ~ |A = (]

Thus, we infer that ||(T — \)P|| < € for all ¢ € (0,e0). Therefore, P is valued in
ker(T — \). It remains to apply Lemma to see that the range of P = P* is not {0}.

Let us now consider (ii). Fix an isolated element A € sp(7). It is still isolated in
SP(7|ker(r—x)+) While, in contradiction with the point (i), it cannot be an eigenvalue of
the restriction 7}y, (r—x)+. This implies that A € p(7T}yer(r—n)+ ). Thus, there exists ¢ > 0
such that

(T =7 <

Yu € ker(T — \)*, (T = Nul| = c||ul| .
We deduce that the range of 7' — X is closed. We can use and, if \ is of finite
multiplicity, we have therefore
dim ker(7' — \) < 400, codimran (7" — \) < +o0,
so that 7" — X\ is Fredholm. [

Corollary 6.17. — Let T be self-adjoint. Then, the discrete spectrum coincides with the
Fredholm spectrum. We have spgoq(T') = spgis(T).

Proof. — Fix A in the Fredholm spectrum. Then, by Lemma |6.15] it is isolated. We
have seen in the proof of Lemmal6.16| that ran P C ker(T — \). Since the dimension of
ker(T' — \) is finite, ) is of finite algebraic multiplicity. We have also seen in the proof of
Lemma6.12] that the range of 7' — ) is closed. Thus A € spy; (7). At this stage, we can
assert that spgq(T") C spgis(7'). The converse is guaranteed by ii of Lemma [6.16] O

Finally, let us prove another useful property.

Lemma 6.18. — Let T be self-adjoint. Consider \ € sp.(T'). Then, for all N € N* and
e > 0, there exists an orthonormal family (u)1<p<n Such that, foralln € {1,... N},

(T = Nugll < e

Proof. — If ) is isolated, then it is an eigenvalue of infinite multiplicity (see Corollary
and the conclusion follows. Let & € (0,1). If X is not isolated, we may consider a
sequence of distinct numbers of the spectrum (\,,),en tending to A and such that, for all
J,k € N, we have |)\j — | < % If N =1, by the Weyl criterion, we get the existence of
ug such that [|(T" — Ay)uf|| < 5. The conclusion follows for N = 1 since [A — A;| < 5.

Let us now treat the case when N = 2. By the Weyl criterion, we can find u] and @5 of
norm 1 such that

. € . €
1T = Auill < 5lAs = Ael 1T = Ao)as]] < A = Aol
Since 7' is self-adjoint, we have

(A = Ao)uf, a3) = (u, (T = Ao)u) + (A — T)ui, )
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which implies that |(u5, @5)| < e. Setting

up = s — (@5, uius,  wilup,  VI—2 < ugl
we have - .

1T = Do)l < S = dal 4+ (1A = Dol + A0 = Xol) -

Up to changing ¢, the conclusion follows for N = 2.

We leave the case N > 3 to the reader. O
6.3.2. Determining the essential spectrum: an example. — As in Exercises

and [5.7, we consider a function V € %°°(R? R) such that VV is bounded and
lim|g| 400 V(2) = 0. We are interested in the essential spectrum of the operator £ + V'
with domain H?(RR). This operator is self-adjoint. Its spectrum is real. With Exercise
we have sp (-2 + V') C [0, +00).

Let us prove that sp. (-2 +V) = [0, +00). Let us start by showing that 0 € sp...(-Z+V).
For that purpose, we use Lemma Let us consider x € %;°(R?) such that || x || 2re) =
1. Forn € N, we consider x,(z) = n 2y(n"'z — ne1). The sequence (y,) is L2-
normalized and converges to 0 weakly. For n large enough, we have

I(Z +V)xall = [ZLxall = O(n7%).
Let us now consider k € R and the sequence x,, . = €'*"x,,. We have
(L +V = )il = €™ (L +V = B)xn + £, e xall.
But,
e kL, e*] = K — 2ikV
and we deduce that k* € sp (£ + V), forall k € R.

6.4. Min-max principle

6.4.1. Statement and proof. — Our aim is to give a standard method to estimate the
discrete spectrum and the bottom of the essential spectrum of a self-adjoint operator 7" on
an Hilbert space H. We recall first the definition of the Rayleigh quotients of a self-adjoint
operator 7.

Definition 6.19. — Let (Dom (T), T) be a self-adjoint operator on H, which is assumed
to be semi-bounded from below. The Rayleigh quotients which are associated with 7" are
defined for all positive natural number n € N* by

pn(T) = sup inf (Tu, w)n

Y1 yeethp—1 WESPAN (1,0 1)+ (u,u)H
uw€Dom (T'),u#0

Remark 6.20. — Note that T" is associated with a quadratic form () defined by
Vu € Dom (T), Q(u) = (Tu,u).

Since () is bounded from below on Dom (7"), we may < close > this quadratic form in the
sense that, for some M > 0, there exists a vector space, denoted by Dom (@), containing
Dom (T') (as a dense subspace) such that (Dom (Q), Q+ M]|-||?) is a Hilbert space. From
the Lax-Milgram repesentation theorem, the form Q+ M ||-||* is associated to a self-adjoint
operator 7. We have T + M1d C T and thus, by self-adjointness, T + M1d = T.
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With this in mind, we can replace u € Dom (T") by v € Dom (Q) and (T'u, u) by Q(u)
in the definition of s, (7).

Lemma 6.21. — If T is self-adjoint with non negative spectrum, then p,(T) > 0.

Proof. — Let us assume that 1, (7') < 0. We may define the sesquilinear form
Q(u,v) = (T = m(T)) "u, v).
Then, () is non-negative. Thus, the Cauchy-Schwarz inequality provides, for u,v € H,
(T = (7)), )] < (T = (1))~ w2 (T = (1)) ™Mo, 0) 2.

For v = (T — p1(T)) ! u, this becomes

[oll* < (v, To = (D)) 2{(T = pua(T)) "0, 0)%
By the definition of 1 (T), there is a sequence (v,,) which is such that

|lvall = 1, (Tvop, v,) — (7).

We must have

1 1l
1< ((n, Tvn) = (7)) 2 (T = pua (T)) 7|2,
which furnishes a contradiction when n — +00. O]

The following statement gives the relation between Rayleigh quotients and eigenvalues.

Theorem 6.22. — Let T be a self-adjoint operator with domain Dom (T'). We assume
that T is semi-bounded from below. Then the Rayleigh quotients ., of T' form a non-
decreasing sequence and one of the following holds:

i. pn(T) is the n-th eigenvalue counted with mutliplicity of T, and the operator T has
only discrete spectrum in (—oo, pu,(T)].

ii. 1, (T') is the bottom of the essential spectrum and, for all j = n, 1;(T) = p,,(T).

Proof. — By definition, the sequence (1) is non-decreasing. Then, we notice that
(6.6.4.3) a < i, => (—00,a) Nspe(T) = 0.
Indeed, if A € (—o0, a) were in the essential spectrum, by Lemma/|6.18] forall N > 1 and

£

e > 0, we could find an orthonormal family (u;);c(1,.. v} such that |[(T" — X)u;|| < ik

-----

Then, given n > 1 and taking N > n, for all (¢4, ...,%,_1) € H, there exists a non-zero
. . . . N

w in the intersection span (uy, . .., un)Nspan (1, ..., ¥p 1) We write uw = 377 | aju;.

Then

1
2

T T — -
(T, u)n <A+M<A+<Z|I(T—A)uj|l2) <A+te
j=1

{u, u)n [l

It follows that 1,, < A+¢. For € small enough, we get y,, < a, which is a contradiction. If
~ is the infimum of the essential spectrum (suppose that it is not empty), we have p,, < 7.
Note also that if 1, = +oco for some 7, then the essential spectrum is empty. This implies
the second assertion.

It remains to prove the first assertion. We assume that j,, < 7. By the same considera-
tions as above, if a < p,, the number of eigenvalues (with multiplicity) lying in (—oo, a)
is less than n — 1. Let us finally show that, if @ € (u,, ), then the number of eigenvalues
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in (—oo, a) is at least n. If not, the direct sum of eigenspaces associated with eigenvalues
below a would be spanned by 1, ...,,_1 and

. Tu,uy
Hn 2 inf u 2 a,
uespan (Y1, on—1)- (U, U
weDom (T),u#0

where we have used Lemma and the fact that sp(7}r) C [a, +00), with

F= span (wla s 71071—1)L .
[

An often used consequence of this theorem (or of its proof) is the following proposition.

Proposition 6.23. — Suppose that there exists a € R with a < inf sp(T') and an n-
dimensional space NV C Dom T such that

<T1/17¢>H g anHQ’ \V/Z/J c V7

Then, the n-th eigenvalue exists and satisfies

M(T) <a.

Remark 6.24. — When the Rayleigh quotients are below the essential spectrum, the
supremum and the infimum are a maximum and a minimum, respectively.

Proposition 6.25. — Assume that j1, < inf sp(T). Then, u is a minimum of the first
Rayleigh quotient (written with the quadratic form ()). Moreover, any minimizer of the
first Rayleigh quotient belongs to the domain of T’ and is an eigenfunction of 'I' associated

1o U.

Proof. — The fact that p; is a minimum comes from that any eigenfunction is a mini-
mizer. Now, consider a minimizer uo € Dom(()). We have
. Q(uo)
/’Ll - 2
[[uolli

Consider v € Dom((), and, for ¢ small enough,

' luo + tollf

Writing that ¢'(0) = 0, we get, for all v € Dom (Q),
Q(uo, v) = p (o, v)n -
This shows that ug € Dom (7") and then T'ug = 1. O

Remark 6.26. — We can extend the result of the last proposition to the other Rayleigh
quotients.

Exercise 6.27. — Let 2 C R? be an open bounded set. Prove that there exists ¢(€2) > 0
such that, for all ¢» € H}(Q2),

/Q Vol de > (@)l

What is the optimal ¢(£2)? We will consider the Dirichlet Laplacian on ).
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Exercise 6.28. — Consider the self-adjoint operator .# associated with the quadratic
form

Vi e H'(R), Q)= /R WP+ V()P d,
where V' € €;°(R, R).

1. What is the essential spectrum?

ii. We assume that fR V(z) dz < 0. Prove that the discrete spectrum is not empty.

6.4.2. Sturm-Liouville’s oscillation theorem. — We consider the operator . =
-2+ V(x), with V € €>([0,1]), on [0, 1] and domain

Dom (£) = {1 € Hy((0, 1)) : (=02 + V(x))w € L((0.1))} .

£ is a self-adjoint operator with compact resolvent. Therefore, we may consider the
non-decreasing sequence of its eigenvalues (\;,)pn>1.

Lemma 6.29. — The eigenvalues of £ are simple.

Proof. — It follows from the Cauchy-Lipschitz theorem. [

For all n > 1, let us consider an L2-normalized eigenfunction u, associated with \,,.
Notice that (u,,, u,,) = 0 if n # m and that the zeros of u,, are simple and thus isolated.

Theorem 6.30. — For all n > 1, the function u,, admits exactly n — 1 zeros in (0, 1).

Proof. — Let us denote by Z,, the number of zeros of u,, in (0, 1).

Let us prove that Z, < n — 1. If the eigenfunction u, admits at least n zeros in
(0,1), denoted by z1,...,2,. Weletzy = 0 and 2,1 = 1. We define (u,;)j=0,.n
by un j(x) = u,(x) for z € [2;, zj41] and u,, j(x) = 0 elsewhere. It is clear that these
functions belong to the form domain of .# and that they form an orthogonal family. By
integrating by parts, we get

Vo € span  un g, Q(va> < )‘TLHUHE2((O,1)) :
j€{0,....,n}
By the min-max principle, we get \,,.; < A, and this contradicts the simplicity of the
eigenvalues.

Let us now prove that Z,, > Z,,_; + 1. It is sufficient to show that if u,,_; is zero in z
and z; (two consecutive zeros, for example u,,_ is positive on (zy, z1)), then w,, vanishes
in (2o, z1). Indeed, this would imply that w,, vanishes at least Z,,_; + 1 times. For that
purpose we introduce W ( f1, fo) = f{ fo — f1f; and compute

W(unfb un)/ = <>\n - )\nfl)unflun .

Assume that u,, does not vanish on (2, z1). For instance u,, > 0 on (2o, z1). Then, we get
W (tp—1,u,) > 0. We have W (u,,_1,u,)(z0) = 0 and W (u,_1,u,)(z1) < 0, and thus
we get a contradiction.

The conclusion follows easily. [

6.4.3. Weyl’s law in one dimension. —
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6.4.3.1. Two examples. —

Definition 6.31. — If (L,Dom (L)) is a self-adjoint operator and £ € R, N (£, E) de-
notes the number of eigenvalues of £ below F.

Let HP™ = h?D? be the Dirichlet Laplacian on (0, 1). Its domain is given by
Dom (Hp™) = H*(0,1) N H(0, 1),
and HP™ has compact resolvent. We can easily compute the eigenvalues:
Ao (HF) = BPn*7?, n € N\ {0},
so that, for £ > 0,

N )~ Y]

ve&_ b dx d¢.
h—0 Th 2h /{(35,5)6(0,1)sz £2<E}

In the same way, we can explicitly compute the eigenvalues when H;, = h?D? + 2%, We
have

A (Hp) = (2n— 1)h, n e N\ {0},
so that, for £ > 0,
FE 1

N(Hp B) ~ — dzdg.
( h )h—>0 2h 27Th {(z,6)eR2: £2+22<E} ! 5

From these examples, one could guess the more general formula

N (H, B) ~ —— dedé = — /\/E V), da .

h=0 2Th [ (2 g)ere: 24V (2)<E)

6.4.3.2. Statement in one dimension. — We propose to prove the following version of
the Weyl law in dimension one. For a more general presentation, one can read [26, Vol.
1V, Section XIII.15].

Proposition 6.32. — Let V : R — R be a piecewise Lipschitzian function with a finite
number of discontinuities and which satisfies:

L. V=l whenx — Foowith (o < l_o;
il. /({100 — V), belongs to L*(R).

Consider the operator H;, = h?*D? + V(z) and assume that the function (0,1) > h —
E(h) € (—00,l ) satisfies

i. forany h € (0,1), {zr e R: V(z) < E(h)} = [Tmin(E(h)), Tmax(E(h))];

ii. hY3(2max(E(R)) — 2min(E(R))) — 0;
h—0

iii. E(h) —> Ey < liw.

Then

(Hh, /\/ EQ— dﬂ?
h—>0 7Th
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6.4.4. Proof of the Weyl law. — The following lemma is a consequence of the defini-
tion of the Rayleigh quotients.

Lemma 6.33 (Dirichlet-Neumann bracketing). — Let (s;);cz be a subdivision of R
and consider the operators (with Dirichlet or Neumann conditions on the points of the
subdivision)

Dlr/Neu @ HDlr/Neu
)

JEZ

where HDlr/Neu is the Dir/Neu realization of h*D? + V(z) on (s;, sj+1). We have, in
terms of the domains of the quadratic forms,

Dom (Q}") € Dom (Qp,) C Dom (Q)*"),
and the Rayleigh quotients satisfy, for all n > 1,

Nn(HNeu> Nn(Hh) < Nn(/HEir) .

We can now start the proof of Proposition [0.32]

We consider a subdivision of the real axis (s;(h®));cz, which contains the disconti-
nuities of V/, for which there exist ¢ > 0, C' > 0 such that, for all j € Z and h > 0,
ch® < sj41(h*) — s;(h*) < Ch®, where o > 0 is to be determined. Denote

Jmin(h?) = min{j € Z : 5;(h*) = 2min(E(h))}

Imax(h®) = max{j € Z : s;(h%) < Zmax(E(h))}.

For j € Z we introduce the Dirichlet (resp. Neumann) realization on (s;(h®), sj4+1(h*))
of h?D?+V (z) denoted by H,?f; (resp. /Hﬁ?“). The Dirichlet-Neumann bracketing implies
that

Jmax(h®) Jmax(h®)+1
> N(HPE E(h)) < N(Hy, E(h)) < Z N<H§3&E<h>)
] Jmm(h) ( )

Let us estimate N(#H})¥, E(h)). If Q) denotes the quadratic form of H})¥, we have

sj+1(h%)
Qi () < / W2 (@) + Viswp (@) * dz, - Vi € G5°((55(h), 5541(h)))

5 (h™)
where

V},Sup,h = sSup V(x) :
z€(s;(h%),554+1(h*))

We infer that

N(HDE E(h)) > # {n >1:n< %(8j+1(ha) - Sj(ha))\/<E<h) - Vj,sup,h>+} )

so that

NCHEE, B(1)) > (s (%) = s5 (1)) /(B (D) = Vi), — 1
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and thus

Jmax(ha)
> N(HRY E(h) >
j:Jmin(h )
Jmax(h®)
— (sj+1(h%) — Sj(h“))\/(E(h) — Visupn) 4 = (Jmax(h®) = Jmin(h®) + 1)

j:Jmin (ha)

Let us consider the function

and analyze

Jmax(ha)
(s5e1(1) = s, CE®) = Viwna), = [ 5o
J:Jmin(ha)
Jmax(h S]+1(h
\ / ) V}',sup,h)+ - fh(x) dw
']mln 83
Tmax E(h SJmin(ha)
+/ f()d:c—i—/ fn(x)dx
8 Tmax (h) zmin(E(R))
Jmax h® ) 57+1
< Z / (h) = Viswp), — fu(z)dz| + Che.
Jmln ha s
Using the trivial inequality | /a; — /b, | < \/|a — b|, we get

11l@) = (B() = Vi) | < wv Vs

Since V' is Lipschitzian on (s;(h*), s;+1(h*)), we get:

Jmax sj+1 _
Z / (h) = Visupn)y — fn(@) dz| < (Jmax (h®) = Junin (R*)+1)Ch R
=Jmin(h®) *®

mln

This leads to the optimal choice o = % and we obtain the lower bound

Jmax(h?/3)

> NGRS E0) >~ ([ ) e = CHOmal0) = S 17) + 1)

j:Jmin(h2/3)

It follows that

N(H, E(h)) > W—lh < /R fu(z) dz — ChY3 (2max(E(R)) — Zmim (E(R)) — C’h) .

Note that f4(z) < /({100 — V(2))4, so that we can apply the dominated convergence
theorem. We can deal with the Neumann realizations in the same way.
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6.4.5. Some exercises. —

Exercise 6.34. — We wish to study the 2D harmonic oscillator £ = —A + |x|2.
1. Write the operator in radial coordinates.
ii. Explain how the spectral analysis can be reduced to the study of:
_35 _ ,0_10,, + p—2m2 + p2 :
on L*(pdp) with m € Z.
iii. Perform the change of variable ¢t = p?.
iv. For which «vis t — t*e~*/? an eigenfunction ?

v. Conjugate the operator by t~™/2¢!/2, On which space is the new operator £,, acting
? Describe the new scalar product.

vi. Find the eigenvalues (and eigenfunctions) of £,, by noticing that R [X] is stable
under £,,. These eigenfunctions are the famous Laguerre polynomials.

vii. Conclude.

Exercise 6.35. — Let h > 0. We consider V € ¥*°(R,R). We assume that V' has a
unique minimum at 0 and that

V(0)=0, V"(0)>0.

We recall that the operator (—h?0? + V(z), 65°(R))is essentially self-adjoint and we
dednote by .}, its unique self-adjoint extension.

i. What is the domain of .%},?
ii. Prove that .7, is unitary equivalent to .,5}2;:, the unique self-adjoint extension of
(—hd2 + V(h2y), 6°(R)) .
iii. Let n € N*. We know that there exists a non-zero function H,, € .¥(R) such that
~H! +2*H, = (2n - 1)H,, .
Find f,, € . (R), non-zero, such that

H <.5?; — (20— 1)h VH(O)) i

e

= O(h
h—0
L2(R)

2 )

iv. Prove that, for all n € N*,

dist (sp(fh), (2n —1)h VNQ((D) = ﬁ(h%).

v. Thanks to a Weyl sequence, show that [V, +00) C spe(-Z3).
vi. Let A < V.

(a) Explain why there exist a function y € 65°(R) and ¢ > 0 such that
V-A+x=>c.
Notice that {V < A} is compact.

(b) We consider .#), \ = h*D? +V — X\ + x (with the same domain as .%},). Prove
that ., ) is bijective and give an upper bound for the norm of its inverse.
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(c) Let (u,)nen be a bounded sequence in L*(R). Prove that v, = x.#, Y, is
bounded in H'(R) and that it is equi- L-integrable. What can we say about the
operator ., 2

(d) Establish that .}, — ) is a Fredholm operator with index 0.

vii. What is the essential spectrum?

viii. Show that, if A is small enough, the operator .Z}, has discrete spectrum and give an
upper bound of the smallest eigenvalue.

6.5. On the ground-energy of the hydrogen atom

Let us consider the following quadratic form

weH®), Q= [ (1= ivp) a.

It is not immediately clear that the non-positive term is well-defined.

1
|z]

Proposition 6.36. — There exists C' > 0 such that, for all ) € H'(R3), we have
1
(6.6.5.4) / —¢1? dz < Clle|1fn @) -
RS | 7]
Moreover, there exists C' > 0 such that, for all ) € H'(R3),

1
(6.6.5.5) Q) = §||V?/)||EQ(R3) — C|[Y[[P2@s) -
In particular, up to shifting Q, it is a coercive quadratic form on H'(R?).

Proof. — We have
1 1
—|w|2da:</ L dz + o2
/JR3 || B(0,1) || V&

< Ol 1R arsy + 191122 gs) »
where we used the Cauchy-Schwarz inequality and the fact that ul' € L2 (R%). Let us

loc
now use a classical Sobolev embedding theorem H!(R3?) C LP(R?) for p € [2,6]. In
particular, there exists C' > 0 such that, for all ¢ € H*(R?),
[ 1IEs sy < Clllln sy = CUIDIE@s) + IV IIE2@s)) -

Consider ¢ € H!'(R3) and a > 0. Inserting () = p(a-), we get

_3 1
lellZa@s) < Cla™2ll@llt s + a2 [ Velltazs)
When || Vl|2rs) # 0, we choose
o ||90||L2(R3)

IVl
and get
1 3
||SOHE4(R3) < O||90||52(R3)||VSOHE2(R3) :
This last estimate is actually true for all o € H'(IR?). It follows that
1 1 3
[Tl 4o < Cl s IV s+ 11Rse

]



108 CHAPTER 6. SPECTRUM OF SELF-ADJOINT OPERATORS

We recall the Young inequality

_,ar b4 1 1
ab<eP—+e'—, a,b>20, >0, pe(l,4+0), —-+-=1.
p q p q
Choosing p = 4 and q = 3, we get
1 H¢HL2(R3 3 a4
[ o < ( + 2 [T Ragasy | + [l
Choosing ¢ such that 2 5% = %, the conclusion follows. O]

We may consider .Z the operator associated with () and given by the Lax-Milgram
theorem. In Quantum Mechanics, the (Schrodinger) operator .# describes the hydrogen
atom. The infimum of its spectrum, denoted by F, is sometimes called < ground-energy .
Let us compute its value. From the min-max theorem, we have

Juo (V0 = 1) da

E = inf
peH(R3)\{0} 19112 gs)

Proposition 6.37. — We have

1
E<——.
4

Proof. — Let us consider the test function
Y(x)=e  a>0.
We use the spherical coordinates
xr=rsinfcos¢p, y=rsinfsing, z=rcosl,

with (7,6, ¢) € (0, 4+00) x [0,7) X [0,27). We get

“+oo
/ e 20kl qp = 47?/ rle2om dr
R3 0
In the same way,

+oo
/ (WW ’W) dx:‘”/ (a®r® —r)e " dr.
R B O

Integrating by parts, one easily gets
+o0 1 +o0 1
2 _—2ar —2ar
dr = — dr = —.
/0 ne " e /0 e " a2

Joo (V0L = 10 ) da
122 e,

With o = 3, we deduce the result. ]

We deduce that

=ala—1).

Lemma 6.38. — The subspace ¢5°(R? \ {0}) is dense in H'(R3).
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Proof. — We know that ¢°(R?) is dense in H'(R?). Let ¢ € H(R?®) and ¢ > 0.
Consider ¢ € 65°(R?) such that

| — ollh@s) <e.

Let x be a non-negative smooth function such that 0 ¢ supp(x) and x(z) = 1 for all =
such that |z| > 1. Let us consider

n(x) = x(nx)p(z) .
We have
lon = @llfinmsy = llon — @lltems) + 1Ven = Vollizgs
= |lon — @llt2@s) + X (n-) Vo = Vo + noVx(n) [Pz gs) -
By the dominated convergence theorem,
Jim Jon = @llta@s =0, lim x(n) Vi = Vepltags) = 0.
We have
eV x(n)[[F2gsy = 17" /R3 IVx (W) Plo(n )P dy < n VxR @ loll2 -

Therefore, for n large enough, we get

ln — sy < €.

The conclusion easily follows.

O
Lemma 6.39. — We have
Juo (IV02 = H1w2) do
E= inf 5 .
YeFse (R3\{0})\{0} 191172 s

Proof. — Tt follows from (6.6.5.4) and Lemma[6.38] O
Proposition 6.40. — We have

1

E=—-.
4

Proof. — Let e > 0. There exists ¢ € 65°(R? \ {0}) such that

Juo (IV012 = L 10f2) do
> ;
122 e,

We use again the spherical coordinates, and we let

—£&.

W(r, 8, ¢) = 1(rsinb cos ¢, rsin O sin ¢, r cos ) .
We have
T 2 [e’) 7 7 7
Q(¢)=/ / /+ <|8rzﬁ|2+|affl2+ OV _ WP)TQSin@de@dgb
o Jo Jo

r2sin?6 r

T 2 +oo ~2_|1;_’2 ) .
2/0/0 (/0 [|8r¢| | dr | sinfdfde.
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Let us consider the quadratic form, in the ambient Hilbert space L*(R ., 72 dr), defined,
forall f € €;°(R4),

+o00
q(f)=:/€ (P = f2) 2 dr.

Let us show that ¢ is bounded from below by _411' In fact, we can write

400 2 1 0o
o) = [ g [l
0 4 Jo
+oo +o0 2
1Re/ (1) r*dr = —/ ﬁ7’2d7°.
2 0 0 T

1
Q) = _Z||w||iQ(R3)'

since

We deduce that

Thus, for all € > 0,

Actually, the spirit of the proof of Proposition [6.40| can also be used as follows.
Proposition 6.41 (Hardy-Leray inequality). — For all ) € H'(R?),

(6.6.5.6) LRy, IV}
0. 1 - |:13|2 I X L2(R3) -

Proof. — Let us consider first v € 5°(R? \ {0}). By using the spherical coordinates,
we have

27 400 2 2
|vaL2(R3 / / / (laTwF |8977Z)| |a¢¢| > ,,,,2 sin @ dr dé d¢

r2 sin?

2m +o00 N
2// (/ |r8rw|2d7’)sin6d0d¢.
o Jo 0

Expanding a square and using an integration by parts, we get

-2
“+o00 5 w —+o0 ~ o 1 “+o0 - o 1 —+o0 o~

rop + —| dr = |rop|*dr + = [|*dr + = rO-(|1]7) dr

0 2 0 4 Jo 2 Jo

+o0 N 1 +oo
_/ o, G2 dr — -/ D dr.
0 4 Jo
We infer that

+0o0 5 1 +o0 5
/ |7’8/¢]2 dr > —/ 7”2\1#]27”2 dr.
0 4 Jo

We deduce that (6.6.3.6) holds for all ¢ € 5°(R3 \ {0}).
Now, recall Lemma 6.38[, and take ¢ € H!(R?). There exists a sequence (1,) C
%52 (R3\ {0}) converging to ¢ in H'(R?)-norm. We have

1 |¢n|2 2
Z/Rg. |ZE|2 dx < HVQ/JnHLz(Rg).
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The right-hand-side converges to \|V¢HEQ(R3). Since (v,,) converges to 1 in L2(IR3), it
has a subsequence (),(,)) converging to ¢» almost everywhere. By the Fatou lemma, the
conclusion follows. [

Proposition 6.42. — The ground-energy E belongs to the discrete spectrum of £ .

Proof. — Let us actually prove that all the negative eigenvalues belong to the discrete
spectrum. Let us use the Weyl criterion. Consider A < 0 in the spectrum of .Z. Let
(u,) C Dom(Z) be such that ||u,| = 1 and

lim (& — MNu, =0.

n——+o0

Taking the scalar product with u,,, and using the definition of .Z’, we have

lim Q(u,) = A\.

n—-+00
There exists Ry > 0 such that, for all |z| > Ry

T s P
2

Let £ > 0. There exists R > 0 such that, foralln > 1,

/ up|*dr < €.
|z|>R

From (6.6.5.3), we deduce that (u,,) is bounded in H'(R?). Thanks to the Kolmogorov-
Riesz theorem, we infer that {u,,n > 1} is relatively compact in L?(R?). In particular,

(u,) has a converging subsequence. We deduce that A\ belongs to the discrete spectrum.
O]

It requires a little more work to prove that £ is a simple eigenvalue. Let us first describe
the domain of .Z".

Proposition 6.43. — We have
Dom (.£) = H*(RY) .
Proof. — We recall that

Dom (£) = {¢ € H'(R?) : H'(R?) 3 ¢ = Q(y,¥))
is continuous for the L%(R?)-topology} .

Then, due to Proposition [6.41], the fact that 1) € Dom (%) is equivalent to the fact that
¢ € H'(R?) and the continuity of

HY(R*) 2 pr | VeVidr.
R3

Taking ¢ € 65°(IR?) and using the Riesz representation theorem, we see that

Dom (.Z) = {¢ € H(R?) : —Ayp € L2(R%)} = HA(R?).
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Consider our test function of Proposition , vo(z) = (8#)*56*%. It belongs to

H2(R?), and a computation in spherical coordinates gives

Lo = —iwo-
Let us now turn to the proof of the simplicity of the smallest eigenvalue.
Proposition 6.44. — For all {» € HL(R?), we have || € H'(R?) and
IVille@s) < [VIY[lle@s) -

Proof. — Consider p € €5°(R?) and 1) € H'(RY). We may consider a sequence (,,) C
%5°(R?) such that lim,, ,, « v, = ¢ in H'(R3). For alle > 0 and 2 € C, we let

2le = V22 + €2 —e(< J2]) -

By dominated convergence, we have
/ Vo l|lde = lim/ V|l dz
R3 e—0 R3

= lim lim / V|| do
3

e—0n—+o0 R

= I h [, VIenlde
= —lim lim —Re (¥nVn) dx
e=30n—+00 Jp3 |¢n|2 4 g2
By using that lim,,_, |, V¢, = V4 in L2(RY), we get
/ Ve l|yplde = — lim Tim Re (0 VY) dx
R3 —0n—+oo R3 ‘wn‘2+82

Up to a subsequence, we may assume that lim,,, . ¥, = 1 almost everywhere. By
dominated convergence, we find

RO
T

P
de = — R - dz .
/st"” . /RJ” eww) g

V| € L2(R?), and V|| =Re (%w) ,

and the inequality follows. O

Vgp || de = — hm

and then

This shows that

Lemma 6.45. — Let 1) € H%(RY) be an eigenfunction of £ associated with —;11. Then,
4| is an eigenfunction of £ associated with —3.

Proof. — From Proposition and the min-max theorem, we have
Lo QW . el o . Qw1

1 Moy~ Tl ageey ~ vemteno TulPas 4
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From Proposition 6.25 we deduce that |1)| € Dom () = H?(R%) and

1
2l = —lvl.
[

Proposition 6.46. — Let ¢ € H*(RY) be an eigenfunction of £ associated with —.
Then, ) is continuous and does not vanish.

Proof. — The continuity of 1 follows from H*(R?) C ¢°(R?). From Lemma|6.45| we
have u := |¢)| € H*(R?) and

1 1

—Au — mu =%
or
—Au + 1u = iu
47 af
From Proposition , we have v := ﬁu € L2(R?). Using the Fourier transform, we get
Fu—i—— e LI(RY.

1
€12+ §
We recall that, for all w > 0,

1 e—vlal
F = :
(Iél2 +w2) 4|z

By the inverse Fourier transform, we get

1
N N S P )
we) = [ e )y
Since v > 0 and v # 0, we get that, for all z € R3, u(x) > 0. O

Corollary 6.47. — The spectral subspace ker (.,? + }L) is of dimension 1. Moreover,
ker (.f + —) = span (8#)’%(7 :

Proof. — Consider ¢; and v, two independent eigenfunctions. We can find a linear
combination of them vanishing at 0. This is impossible by Proposition [6.46] O

6.6. Notes

i. The interested Reader can read [3, Chapter VI] where the min-max theorem is proved
and illustrated in the context of differential equations.

ii. The Weyl’s law (see the original reference [36]) in higher dimensions is proved in [3,
Chapter VI, §4], see also the detailed proof in [26, Chapter XIII, Section 15].

iii. The Sobolev embedding used in the proof of Proposition is proved in [2, Theo-
rem IX.9 & Corollary IX.10].

iv. In the proof of Proposition [6.41] we used [27, Theorem 3.12].

v. Proposition [6.41] was proved for the first time by Leray in [21, Chapitre III], and it
actually implies Proposition [6.36]
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vi. It is possible to give a complete description of the discrete (and essential) spectrum
of the hydrogen atom by means of the famous spherical harmonics and the Laguerre
polynomials, see [34, Section 10.2].



CHAPTER 7

HILLE-YOSIDA AND STONE’S THEOREMS

This chapter is about the relation between 6 °-groups and their generators. In particular,
we explain why to each unitary 6°-group we may associate a unique self-adjoint operator.
More importantly, we prove that any self-adjoint operator generates a unitary 4°-group
which solves an evolution equation (e.g., the Schrodinger equation).

7.1. Semi-groups

Definition 7.1. — Let E be a Banach space. A %°-semigroup is a family (7});>o of
bounded operators on £ such that

1. forall s,t > 0, T, T = Ty,
ii. Ty = 1d,
iii. for all z € E, the application R, > ¢ — Tix is continuous.
Exercise 7.2. — Consider the vector space
Guw = {f : [0, +oo[—> R; f is bounded and uniformly continuous }

equipped with the sup norm. This is a Banach space. Then, for all ¢ € R, define the
translation operator
T, Cw — Cw
fC) = Tf() = ft+)
Show that the family (7}) is a €°-semigroup.
Solution: We have

I T@)f Neee@n=I F e rood<I S ooy,

with equality when the support of f is contained in [t,4+o00[. It follows that T'(¢) is a
bounded operator satisfying ||7'(¢)|| = 1. The items i. and ii. follow directly from the
definition, whereas iii. is a consequence of the uniform continuity of f € %. o

Lemma 7.3. — Let (T});>0 be a €°-semigroup. Then, there exist M > 0 and w > 0 such
that

(7.7.1.1) Vi>0, |Til < Me“t .
Proof. — For all t > 0, we have
T < | Ta)[* sup |17
s€[0,1]
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Now, for all z € E, the family (||7sx||)scjo,1) is bounded (by continuity of the semi-group
on the compact [0,1]). Since F is a Banach space, we can use the Banach-Steinhaus
theorem to deduce that (7),cp 1 is bounded. The conclusion follows with

w=In|T, M = sup ||Ts]| -
s€[0,1]
[l
Definition 7.4. — Let (T})>0 be a € -semigroup. The infinitesimal generator generated

by this semigroup is the unbounded operator (Dom (A), A) defined by
Dom (A) := {x € E; lim ¢t 1T, — 1d)x exists} :
t—0+
as well as
Va € Dom (A), Az = lim t (T, — Id)x.
t—0+

Observe that Dom (A) is indeed a linear subspace, and that A is by construction a linear
map. In particular, we have 0 € Dom (A) and, of course, A0 = 0.

Exercise 7.5. — The context is as in Exercice[Z.2l Show that

Dom (A) = {f € €w; f' € G}, Af = f'.
Solution: For f € Dom (A), we must have

Af = lim t 7 [f(t +) = f()] = f'(:) € Cu,
t—0t

which gives rise to

Dom(A)C{fE‘fub;f’ECub}, Af = f.
Conversely, assume that [ € %, is such that f' € €,;. Then

A+ = FO) = O ey = sp 1] [ [£() — £(a)] el

zeER t T
< S [f'(7) = f'(2)] = o(1).
T—x|<t
And therefore f € Dom (A) with Af = f'. o

Let us now discuss some properties of A. In the following the integrals can be under-
stood in the Riemannian sense.

Proposition 7.6. — Let (T});>0 be a €°-semigroup and A its generator. Then,

(1) forall x € F andt > 0, we have
1 t+e
lim — Tixds =Tix.

e—0 € ¢

(i1) forall x € F andt > 0, we have

¢ t
/ Tsxds € Dom (A), A/ Tsxds = (T — 1d)z.
0 0
(iil) for all x € Dom (A) and t > 0, we have Tyx € Dom (A). The application t — Tix
is of class € with
A(T)

dt

= ATz = T, Ax.
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(iv) for all x € Dom (A), for all s,t > 0, we have
t
(T, — Ts)x = / AT, xdr.

Proof. — The point (i)) follows from the continuity. For the point (ii), we write, for all
e >0,
t 1 t 1 t
e (T, — Id)/ T,xds = —/ Tyicxds — —/ T,xds
0 €Jo €Jo

1 t+e 1 £
:—/ Tu:cdu——/ T,xdu.
€ Jt € Jo

Thus, we can take the limit ¢ — 0, and the equality follows.
Let us consider (iii). Lete > 0, x € Dom (A), and ¢ > 0. We have

1 1
(T~ 1)Tw =T, (E(TE - Id)x) .

The right-hand-side has a limit when ¢ — 07, which is 7;(Ax). By definition of Dom (A),
we have Tyx € Dom (A). Moreover, due to the continuity of 7}, this furnishes

T. o — T, d(T;
lim +2 o (Ti) = ATyx =T, Ax .
e—0+ 15 dt

Thus, by definition of Dom (A), we get T;x € Dom (A) and ATz = T;Axz. We have to
check the derivability on the left at ¢ > 0. We write

e Tx —T_cx) =Ty_(e W(Tox — ) = T)_.(Ax) + T1_. (e *(Tox — x) — Az).
Since ¢ ~ ||T;|| is locally bounded (by Lemma [7.3), the conclusion follows. The point
follows from the point (iii). O

Proposition 7.7. — Let (T}) >0 be a €°-semigroup and A its generator. Then, Dom (A)
is dense and A is closed.

Proof. — Fore > 0, welet R, = ¢! [[ T,z ds. Letz € E. We have R.z € Dom (A)
and lim._,o R.x = x. Thus, Dom (A) is dense. Then, we consider (z,,) € Dom (A)N
such that z,, — z and Az,, — y. For all ¢ > 0, we have

t
(T, — 1d)z, = / T,Ax, ds,
0

and thus, since s — ||T}|| is locally bounded,

t
(T, — Id)x = / Ty ds.
0
Dividing by ¢ and taking the limit ¢ — 0" we find that x € Dom (A) and y = Ax. O
With w as in (7.7.1.1)), introduce
A, :={A € C;Re > w}.

Observe that
| e M T ||[< Mem RO | o |

Given A € A, we define the Laplace transform

+oo
E>zx+— Ry = / e MT,xdt
0
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This is a bounded operator satisfying || Ry || < M(Re\ — w)~L.

Exercise 7.8. — Show that the map R : A, — L(F) is subjected to the resolvent
formula (3.3.1.2)).

Solution: We give just indications (there are some intermediate computations to be done).
Remark that

R _ R +oo +oo
AT :/ 6_(“_>\)7R,\d7'—/ 6_(“_>\)TRMC17'
0

= A 0
—+o00 400 —+o00 “+o00
= / / 6_(“_)‘)T6_’\TTT drdr — / / e_(“_’\)(TH)e_’\"TT drdr
0 0 0 0

“+o00 T —+00 “+00
= / / e~ =N qge= AT dp = / / e’”e’“sTHs dtds = R\R,.
0 0 0 0

o}

Lemma 7.9. — Let (T});>0 be a €°-semigroup and A its generator. Then, A, C p(A).
More precisely, we have

VAEA, VrzeE, (\—A'z=Rw.

Proof. — For all € > 0, we write
+oo
e N T, —Id)Ryz = ! / e M(Tyyer — Thx) dt .
0
Thus,
+oo —+o00
e N (T, —1d)Ryz = ¢ te / e M dt — et / e MTxdt,
15 0

so that

+oo £

e N T, —Id)Ryw = (e — 1) / e MTixdt —e™! / e MTxdt.

0 0

This proves that Ryz € Dom (A), that AR x = ARz — x, thatis (A — A)R) = Id. On
the other hand, for all z € Dom (A), we have

+oo +oo d
RyAx = / e M Az dt = / e M—_Txdt
0 Jo dt

= [e”\tTtx] ;OO + )\/ e M dt = —x + ARy
0

In other words, we also have Ry(A — A) = Idpom (4)- O

7.2. Hille-Yosida’s theorem

Definition 7.10. — A contraction on F is a linear map such that ||7'|| < 1.
Theorem 7.11 (Hille-Yosida’s theorem). — An operator A is the infinitesimal generator
of a contraction semigroup (T});>o if and only if

i. Ais closed and Dom (A) is dense,

ii. (0,4+00) C p(A) and, forall X > 0,

(A=X7 <A
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7.2.1. Necessary condition. — If A is the infinitesimal generator of a contraction semi-
group (7});>0, we have already seen that A is closed, that Dom (A) is dense, that M = 1
and that w = 0. In view of Lemma[7.9] we have ii.

7.2.2. Sufficient condition. — Let us now assume that A is closed and Dom (A) is
dense and that (0, +00) C p(A) and, for all A > 0, ||[(A — A\)7!|| < A7'. The idea is
to approximate A by a bounded operator and use the exponential. For A > 0, we let
Sy =AA—A)"land Ay, = AS,. For x € Dom (A), we have

MA—A 2 - A-AN-A) e =82 2=\ A)""Ax,

so that

lim S,z = x.
A—+too

On the other hand, we have
|z = S\e| < |lz = 2| + |53 — Sizll + [z — Sz

Since Dom (A) is dense, for all e € R, we can find Z € Dom (A) such that ||z — Z|| < e.
Knowing that ||.Sy|| < 1, the preceding inequality gives rise to

|z — Syz|| e +e+ lim ||Z — S\F| = 2e.
A——00

Thus, for all x € E, we have

lim Syz==x.

A—£oo
Since SHA = AS) on Dom (A), we deduce that
(7.7.2.2) Vr € Dom(A), lim Ayz = Az.
A—400

Observe that
NA=A) T =AA-NA=A) " +Td+ A= A)7"]

= )\[(A —AFNA=A) [d]

=MA—-A)T A=A+ ).
It follows that A, is a bounded operator. Moreover, for all £ > 0 and A\ > 0, we have

et — 6—t)\+t)\2(>\—A)—1 :

as well as
(7.7.2.3) [P || = e[| e O L e e IS < 1

Then, we write
1 q
etA)\x _ etA/,‘x, — etAH (et(A)\—AM)x _ .T) — / d_ [etSAket(lfs)AMx] dS
S
1
= / el el t(Ay — Az ds.
0

In view of (7.7.2.3), this gives rise to

e e — e || < t]|Axe — Al
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Applying (7.7.2.2), for all t € R, and all x € Dom (A), the family (e!**x), is of Cauchy
type when A goes to 400, and therefore it has a limit. By density of Dom (A) and since
e || < 1, this limit exists for all x € E. Thus, we can define

Tix = )\EIEOO e | Thz|| < limsup || x| .

—+00

From (7.7.2.3)), we can deduce that (T});> is a contraction ¢ °-semigroup. Let us consider
B its generator. Let x € Dom (A) and € > 0. We have

NI ~1d)z = lim e '(e" ~Id)x = lim 5_1/ eSA*A)\xds:e_l/ TsAzxds.
0 0

A—400 A—400

We deduce that € Dom (B) and Bx = Ax. Thus A C B.

It remains to show that Dom (A) = Dom (B). We do it by contradiction. Assume that
we can find z € Dom (B) \ Dom (A). Since 1 € p(A), we have (1 — A)Dom (A) = E.
But we have also 1 € p(B) so that (1 — B)Dom (B) = E. Consider (1 — B)z. We can
find € Dom (A) such that (1 — B)z = (1 — A)z = (1 — B)Z. By construction & # z,
which contradicts the injectivity of 1 — B.

7.3. Stone’s theorem

We work on a Hilbert space H.
Theorem 7.12 (Stone’s theorem). — Let & be a self-adjoint operator. There exists a
unique €°-unitary group (Uy)ser such that

(1) Uy : Dom (£) — Dom (%),

(ii) for all u € Dom (&), Uyu € €' (R,H) N ¢°(R, Dom (%)),
(iii) for all u € Dom (&), LU = i.LUu = iU L,

@iv) Uy = 1d.
We let U, = < forall t € R.
Conversely, if (Uy)ier is a € -unitary group, then, there exists a unique self-adjoint oper-
ator & such that, for all t € R, U, = ¢"Z. The domain is
(7.7.3.4) Dom (£) = {u cH: sup t H|Uu—ul| < —i—oo} :

0<t<1

7.3.1. Necessary condition. — Let .Z be a self-adjoint operator. The operator . is
closed with dense domain. For all A > 0, we have already seen that +¢H — )\ is bijective
and that we have ||(£i.Z—)\)"!| < A~'. Therefore, the operators +i.% are the generators
of €°-semigroups (U;");=o. We have %U Utu=—iLU; Ufu+ Ui LU u=0. We
get that, forall t > 0, U, U;fu = u. Welet U; = U, fort > 0and U, = U, fort < 0.

(Uy)ter is a €V-group. We have, for all t € R, U} = i.ZU;. For all u € Dom (.£), we
have

HUtqu (1.LUu, Uu) + (U, iLUu) = 0.

Thus, (Uy)ser is umtary.
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7.3.2. Sufficient condition. — Let (U;)cr be a ¢ °-unitary group. Let us write the gen-
erator of the ¢ ’-unitary semi-group (U;);>0 as i.Z. Applying Hille-Yosida’s theorem, the
operator .Z is closed, and it has a dense domain. Differentiating U, U_; = Id, we get that

‘ dU_, , dU_,
OZZXUtU_t‘i‘Ut dt :Ut[lgU_t—FT] N
and therefore —i.Z is the generator of (U_;);~0. Applying again Hille-Yosida’s theorem,
we know that 1 € p(—i%) or that —i.¥ — 1 = —i(Z — i) is invertible. In particular,

this implies that ran (.2 — ¢) = H and that ker(.Z* + i) = {0} . Then, differentiating
|Upul|* = ||ul|?, we get easily that . is symmetric. From Proposition [2.64) we deduce
that H is self-adjoint with

Dom (.£) = {u € H: lim t (U — u) exists}

t—0+

C {u €H: sup t H|Uwu —ul| < —i—oo} .
0<t<1

Then, take v € H such that
sup t | Upu — ul| < +o0,
0<t<1

and consider v € Dom (.Z). We have
1 1
e 1 — —_ = 1 — — < .
[{u, Zv)| = lim —|{u, U —0)| = lim —[U_u —u,0)| < Cllv]|
This shows that u € Dom (.£*) = Dom (.%).
Exercise 7.13. — Consider a self-adjoint operator (Dom (.Z),H). Let U : H — Hbe a

unitary transform, and let us consider the operator (Dom (,,5?), ,5,’7) defined by

Dom () = UDom (), and L =ULU".
i. Show that . is self-adjoint.

ii. Prove that, for all t € R, e = Ue*Z U1,

7.4. Notes

i. This chapter has been inspired by [37, Chapter IX].
ii. A direct proof of the Stone theorem can be found in [26, Section VIII.4].

iii. We used integrals of functions valued in a Banach space. In this chapter, these inte-
grals may be understood in the Riemann sense, since we only deal with continuous
functions. Nevertheless, if one wants to use, for instance, the dominated convergence
theorem and the Fubini theorem (as we will in the next chapter), it is more convenient
to use the Bochner integral (see the original reference [1]).






CHAPTER 8

ABOUT THE SPECTRAL MEASURE

The purpose of this chapter is to introduce the Reader to the notion of spectral measure
associated with a self-adjoint operator. Let . be a self-adjoint operator on H. Given a
function f : R — C, we would like to define functions f(.Z) of £ with the following
properties:

@) f(Z):Dom (f(&)) = H,
(i) [f(£), Z] =0,
(i) f(Z)+9(L) = (f+9)(Z) = 9(L)
(iv) [(L)9(ZL) = (f9)(&Z) = 9(L)f(Z)
{u € Dom (¢9(.2)); 9(L)u € Dom (f(£))}

Vv f(£L) = 1(Z2).

We make the construction progressively, by dealing with less and less regular functions
f(+). The framework is the Schwartz class .’ (R) in Section[8.1] the set L>*(R) of bounded
Borelian functions in Section [8.2] and just Borelian functions in Section A key step
of the construction is to give a definition of the spectral measure associated with .Z.
This measure may be decomposed thanks to the Lebesgue theorem, and so the Hilbert
space H can be. This allows to define the corresponding classical spectral subspaces
(absolutely continuous, singular continuous, pure point) and the corresponding spectra.
We also provide the Reader with some criteria to characterize the absolute continuity of
the spectrum.

+ f(£) on Dom (f(£)) N Dom (¢(2)),

on

8.1. A functional calculus based on the Fourier transform
We denote by .# the Fourier transform and by .% ~! its inverse, which are defined on
' (R) by

Fol©) = v tdn, o) = 7 Fule) = o [ Fu@ea

We can construct a functional calculus by using the inverse Fourier transform.

Definition 8.1. — Let H be a self-adjoint operator. For all f € .(R) and u € H, we let

(8.8.1.1) f(ZL)u ! /ﬁf(t)e”gudt,
R

“or

where the ¢-unitary group (e?%),cg is given by Stone’s Theoremm
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Note that the integral inside (8.8.1.1)) is absolutely convergent. We find f(.¥) € L(H)
with

1) < 52 [ 17 0]t < o
Exercise 8.2. — Consider Exercise and prove that, for all f € Z(R),
fU2vh)=Uf(2)u™!
Proposition 8.3. — Forall f,g € .7(R), we have ({i)—(v).
Proof. — Let us only prove (ii). We recall that
F(f9)=Ff~Tg.

Then, we write

H(L) (L) = -

=5 / LT f(H)g(L)udt

. / ”fyf()/ e Fg(r)udr dt

// WL F f(1) F g(r)udr di
// M Ff(t —1)Fg(r)udrdt

AN
27r/ FfxFg(t)udt

_i itL g
- / ¢ F(fg)(tyudt

27
= (f9)(L)u
]

We introduce A := % (R) @ C. Let f € A with f = fy+ \g. We extend the functional
calculus by adding the constants. Given f as above, we define

f(Z) = fo(ZL)+ N 1d € L(H).
Proposition 8.4. — For all f, g € A, we have ([i)—(v).
Lemma 8.5. — Let f € Awith f > 0. Then, we have, for all u € H,
(f(ZL)u,u) > 0.

Proof. — Lete > 0. The function (¢ + f )% belongs to A (the regularity is guaranteed by
the shift in ). We have

(e+ 1) (ZL)e+ 1) (L) = e+ )(2).
Thus, since (¢ + f)2(.%) is symmetric, for all u € H,
(u, (e + (L)) = (e + 2 (L)ul* > 0
Then, we take the limit ¢ — 0. O

Lemma 8.6. — Forall f € A, we have || f(L)|| < || flco-
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Proof. — Letus consider g = || f||%, — | f|* € A. We get, for all u € H,
{(9(L)u,u) >0,
so that
0 < (IfP(L)u,u) < (I fIINull®.
But, we have
(P (L)u,w) = ((FHL)u,u) = (F(L) F(L)u,u) = (f(L) (L), u)
= [ f(L)ull*.
[

Lemma 8.7. — Consider x € 65°(R,R) such that 0 < x < 1 equal to 1 in a neighbor-
hood of 0. For R > 0, we let xXg(-) = x(R™'). Then, for all u € H,

i ()=

Proof. — By definition, we have

2nxr(L)u = / Fxr(t)eudt = / R(FX)(Rt)e"“udt = /(ﬁx)(t}e”‘gmu dt.
R R R
We have, by continuity of the group, for all ¢ € R,
lim e/ By =,
R—+o00
Moreover,
I(ZX) O™ ul <UFX)Ollull,  Fx() € L'(R).

Therefore, we can use the dominated convergence theorem (or notice directly that the
convergence is uniform on the compacts) to get

lim xgr(Z)u

= — Z = =
R =0 RJx(t)udt X0)u =u.

8.2. Where the spectral measure comes into play

Given f € .#(R), we have defined f(.Z) € L(H). We would like to extend this
definition to the case of bounded functions. To this end, the idea in Paragraph [8.2.1]is to
test f(.Z) against vectors in order to recover linear forms which, in view of Lemma
are continuous on %, (R). In Paragraph this yields the notion of spectral measure.

8.2.1. Extending a map. —
Definition 8.8. — For all f € .(R) and u,v € H, we let
wu(f) = (f(L)u,v).

We would like to extend this formula to the set €, (R) of continuous functions tending
to zero at infinity.

Lemma 8.9. — The following holds.

i. Forall f € Z(R), w..(f) is a continuous sesquilinear form on H and

Jloo-.- (O < 1 lloo -
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ii. Forall u € H, the linear form w,,, : . (R) > f + wy(f) € C is non-negative and
continuous for the topology of || - || o-

iii. If S(H x H, C) denotes the set of the continuous sesquilinear form on H, the map
(L R), [ [lec) > f = w..(f) € (S(HxH,C), [ |)

is linear and continuous. It can be uniquely extended as a continuous linear map on
(€% (R), || - |lo)- Keeping the same notation w..(f) for the extended map, we have

Ve h®),  flw (A <l flloo
and, for all f € €°,(R), with f > 0, we have w..(f) > 0.

Proposition 8.10. — Let f € €°,(R). There exists a unique bounded operator, denoted
by f(X£), such that, for all u,v € H,

(f(L)u,v) = wun(f) -
We have ()—(v). Moreover, we have
A < M1l -
Exercise 8.11. — Let us recall Exercise and prove that, for all f € €°,(R), we have
fULU Y =UfL)U .

8.2.2. Riesz theorem and spectral measure. — Let us now recall a classical represen-
tation theorem.

Theorem 8.12 (F. Riesz). — Let X be a separated and locally compact topological
space. Let w be a non-negative form on 60 (X). Then, there exists a o-algebra M
containing the Borelian sets of X and a unique non-negative measure | on M such that

Ve ER), w(f) =/deu.

Moreover, this measure 1 is regular in the sense that, for all () € M,
() = inf{u(V): V opensets.t. Q C V},
() =inf{u(K) : K compact set s.t. K C Q}.

In view of iii of Lemma we can apply this theorem to X = R and w,,,. By this
way, we get a non-negative measure /i, ,, and a o-algebra M,, ,,.

Definition 8.13. — The measure ji,,,, is called the spectral measure associated with H
and u.

At this stage, we have

VERER.  (H L) = [ Fl

Now, we let

M=) Myu.
u€eH
It is still a o-algebra containing the Borelian sets.

Lemma 8.14. — For all u € H, the measure ., is finite, and j,, ,(R) = |lul*.
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Proof. — We recall Lemma (8.7} Let v € H. We use the function xz. We have, for all
R >0,
Wu,U(XR) < HUHQ?
and
i m) = [l
Moreover, we have

nln) = /R i) (N

With the Fatou Lemma, we get
puw(R) <liminf | xp(A) djtu. (V) < [Jul]* < +oo.
R—4o0 R

Thus, the measure 4, ,, 1s finite. It remains to use the dominated convergence theorem to
see that

||uH2 = REIEOO WU,U<XR) - MU,u(R) .
]

Definition 8.15. — Let () be a Borelian set. We consider the application ¢ : H — R
defined by

Hou— / LTodppuw = puu(2).
R

Lemma 8.16. — qq, is a continuous quadratic form.

Proof. — Note that 0 < 4,,,,(Q) < ||u/|*>. In particular, once we will have proved that
qq 1s a quadratic form, it will be a continuous quadratic form (by using the polarization
formula).

Since, for all v € H, p,, is a measure, we only have to prove the result when (2 is an
open set and even when (2 is an interval in the form [a, b]. In this case, we introduce the
sequence of continuous and piecewise affine functions ( f,,) such that f,,(x) = 1 on [a, b],
fa(z) =0forz <a— :andz > b+ L. By dominated convergence, we have

n—-4o00 n—-+o00

lim (f,(Z)u,u) = lim /an Aty = fuu(82)

and the conclusion follows from the polarization formula. [

Proposition 8.17. — Let f : R — C be a bounded Borelian function. Then there exists
a unique continuous sesquilinear form @..(f) on H such that

VueH, @ulf) = [ fd.
R

Proof. — With Lemma [8.16] this result is known for f = 1, for all Borelian set ).
From the measure theory, one knows that all bounded Borelian function is a uniform limit
of step functions. This implies that u —> fR f dfty 1s @ quadratic form. It is continuous

since | f £ dptus| < 1l -

From this proposition, we can define f(.£) via the Riesz representation theorem.
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Proposition 8.18. — Let f : R — C be a bounded Borelian function. There exists a
unique bounded operator, denoted by f(Z), such that, for all u € H,

Lu, u) /fduuu

When f € €%, or f € A, we recover the same f(.Z) as before.
Exercise 8.19. — Extend the result of Exercise to f bounded and Borelian.
Proposition 8.20. — Let | be a non-negative bounded Borelian function. We have
A < 11 lloo -
Proof. — For all u € H, we have
0 < (f(L)u,u) < | fllocllul®-
[

Proposition 8.21. — Let t € R and consider f(-) = e'. We have f(£) = e'Z. In
particular,

(8.8.2.2) VueH,VteR, (e"Pu,u) = / e Aty (M) -
R

Proof. — Let us consider p € %5°(R) such that 0 < p < 1, supp(p) C [—1,1] and
Jg p(x) dz = 2. We introduce x € .’(R) such that #x = p. For all n € N*, we let

pn() = np(n-) = F(x(n™1)).
Note that

x(n7'a) = 0" [ pu(wpetds = 2m) 7 [ pla)e ds.

Thus, lim,, 1o x(n7'2) = Tand ||x(n™) |l < 1.
Let us consider f,(-) = x(n™!)e" € #(R). For all u € H, we have

<mzmw=4nww.

By the dominated convergence theorem, we have

lim / fo dpt = / e gty u(N) -
R

n—-+o00 R

But, we also have

fulL)u = (2m) 7! / F (N e ud) = (2r) 71 / pn(A = t)eP L ud),
R R
and then
ncfﬁu=@wr%mf/lxaa"“fudx
R
so that

_ itZ

Therefore, we have, for all u € H,

(e u,u) = /]Reit’\ Aty u(N) -
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8.3. Spectral projections
8.3.1. Properties. —
Definition 8.22. — Let () be a Borelian set. We let g = 1o(%) € L(H).

Proposition 8.23. — There holds:
(i) £y = 0and Ex = Id.
(i1) For all open set S, Eq is an orthogonal projection.

(iii) For all open sets )y and )y, Eq, Fq, = Fq,nq,-

(iv) Let Q = en §2; be a partition with open sets. Then, for all u € H,
N
]:

Proof. — For the first point, we use Lemma(8.14] Let V' C R be an open set. By using an
exhaustion by compact sets of VV and Urysohn’s lemma, we can construct a non decreasing
sequence (f,) C €2(R) such that f, f,, = f, forall m > n and lim,, ., f, = 1y. For
all v € H, we have

<fn($)u7 ’LL> = / fn duu,u )
R
and thus, by Beppo Levi’s theorem,
lim (f,(ZL)u,u) = 1y (L)u,u).

n—-4o0o

This implies that, for all u,v € H,
lim (f,(ZL)u,v) = (1y(L)u,v).

n—+oo

We have, for all m > n,
(fm(L)u, fo(L) ) = ((fufm) (L)1, u) = (fu(L)u, u)

Taking the limit m — 400, we get

(LN (L), u) = (fu(L)u, u)
so that, for all ©w € H,

Ly (2)u,u) = (I (L)u,u) .

Thus 1y (.Z)* = 1y(Z) and it is clear that the operator 1y (-Z) is self-adjoint (by using

that f,, = f,). If V; and V; are two open sets, we easily get, by considering associated
sequences of functions,

Ly, (g)]le (3) = Lvinw, (i/ﬂ) :
Let us prove (iv). Take u € H. For all n > p, we have

Z]lgj (Lu|| = <Z 1o, ($>U,anj($)u> = <Z o, (L)u, u)
= /Ri]lﬁj d;uunm
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we get the desired convergence by the Cauchy criterion. [
Proposition 8.24. — Forall f,g € %B,(R,C), we have f(L)g(ZL) = (f9)(L).

Proof. — Let us denote by & the class of open sets of R. Let V' € &. Consider the set

We have & C /. It is clear that &' is a W—system Moreover, we can show that .o/
s a )\—system by using similar arguments as in the proof of Proposition The
monotone class theorem shows that the smallest A-system containing ¢ is the o-algebra
generated by 0, i.e., the Borelian o-algebra Z(R). In particular, we deduce that

BR) C o .
Playing the same game with V' € A(R), we get that
WW e BR), 1v(@)lw(ZL) = (Iylw)(L).
We can extend this formula by linearity to all steps functions f and g, we have
[(Z2)9(L) = (f9)(£L).

Since all bounded Borelian functions can be uniformly approximated by sequences of
step functions, we deduce the result. L]

Corollary 8.25. — There holds:
(1) Ey =0and Eg = 1d.
(i1) For all Borelian set S, Eq is an orthogonal projection.

(iii) For all Borelian sets )y and Qs, Fq, Eq, = Eq,nq,-

(iv) Let Q) = U]EN (); be a Borelian partition. Then, for all u € H,
N
]:

Proposition 8.26. — For all bounded Borelian functions, we have (i)—({v), and

1A < M1 f oo -

Proof. — Let us check (i) and (ii). Let v € Dom (.¢) and ¢ > 0. Then, we have, with
the multiplication property and Proposition [8.21]
s s
e —1d e —1d
— (D= L) ———u

The conclusion follows by taking the limit ¢ — 0.
The last inequality comes from the fact that, for all u© € H,

I (LYull* = (F(L) F(L)u,u) = (F(L)[(L)u,w) = {(F))(L)u,u)

= |f’2dNU,u .

R

1. it is stable under taking finite intersections
2. it is stable under taking non-decreasing unions and by proper differences
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Proposition 8.27. — Let ) be a bounded Borelian set. Then, for all u € H, we have
1o(Z)u € Dom (Z).
Proof. — For all ¢ > 0 and u € H, we have, by Propositions and [8.26]

¢=? —1d 2_/ ¢ ?
Q

€
8.3.2. Extension to unbounded functions. —

i€>\_1

3

Aty < / A2 dpt < +00.
Q

Definition 8.28. — Let f : R — C be a Borelian function. We let

Dom (f(£)) ={ueH: / ]f]Qd,uu,u < +o0}.
R
For all uw € Dom (.Z), we let
f(Lu= lm fu(Z)u,
with f,(A) = f(A)1}1<n ().
Note that this definition is consistent since, for all v € Dom (%), and all m > n,

1(Fal2) = Funl D))l = / o= Fol? At = /{ P

Lemma 8.29. — Let f : R — C be a Borelian function. Then Dom (f(.£)) is dense.

Proof. — For all ¢ € H, we let ¢, = 1<, (-Z)p. The sequence (©y,)nen converges to

®.
For all £k € N, we have

1 fe(L)enll? = /R | el dptg, o = /R | felP L fj<n dptgp = /R F120) j<r Ly pien Aptg
Thus, for k£ > n, we have
/R ol gt < 2]

By the Fatou lemma, it follows

/ P At < n2llg]l? < +o0.
R

The density follows.
Let us explain why f(2)p, = fo(L)¢. Wehave /(L) = (FLi71ciL 1) (L)p =
fn(Z)pr. We can take the limit &k — +oo and we find f(.ZL)p, = f.(L)e. N

Proposition 8.30. — Let us consider f = Idg. We have f(£) = Z.
Proof. — We must check that

Dom (Z)={uecH: / IM? Aty < +00}.
Thanks to Proposition we have, for all uRE H,

eis,?_Id 2_/ eie)\_l
R

2

U Aty -

€ €
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ecZ _1d
€

If w € Dom (.Z), we have lim._,o
that

u = Zu. Thus, by the Fatou lemma, it follows

|2l > / AP it

Conversely, if fR |A]> dfty . < +00, and noticing that

2

eis)\ -1
<A,

3

. 2
we get that ‘EE‘ZT’MUH is bounded for ¢ € (0,1]. Thus, u € Dom (). Note that this

implies that
2l = [ AP g

Then, we consider f,(\) = A1L|y<,(\) and we write, for all u € H,

(fu(L)u,u) :/R)\]l|,\|<n()\) Afty -

By the Cauchy-Schwarz inequality, we have

[ Wi < ( / |A|2duu,u) Jull
R R

and thus, we can use the dominated convergence theorem to get, for all w € Dom (&),

Ly = [ My = (L),
R
where we used the derivative of (8.8.2.2)) for the last equality. The conclusion follows. [

Proposition 8.31. — If Q) is a bounded Borelian, we have, for all v € Dom (.Z),
[1o(L)Lull < sup [Al[u] -
AEQ

In particular, 1o(£).ZL can be extended as a bounded operator on H.

Proof. — For alln € N*, we let f,(\) = Ax(n~'\). For all u € Dom (%), we have, for
allm > n,

1l ) = ful @)l = / a0 = VP At < 4 / o

Thus, (fu(-Z)u)nen- is a Cauchy sequence and its converges. By considering
(fo(ZL)u,u), we deduce that

Vu € Dom (%), lim f,(L)u=ZLu.

n—-+o0o

Now, for all n € N* and u € H,
1o (Z) fu(-L)ull < sup [Af[[ul]
AeQ
Taking the limit for v € Dom (&), we get the result. O

Proposition 8.32. — In the class of Borelian functions, we have (iii)—(v). Moreover, the
operator f(£) is closed with dense domain.
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Proof. — The density comes from Lemma For all u,v € Dom (f(¥)) =
Dom (f(.Z)), we have

(f(L)u,v) = hm (fn( Ju,v) = lim (u, f,(L)) = (u, f(L)v).

n—-+o0o

This shows that f(.%) C f(.£)*. Let us now take v € Dom (f(.£)*). We have, for all
u € Dom (f(.%)),

(f(L)u,v) = (u, f(L) ),
so that
[(f(L)w, )| < |[F(L) 0| ||ull-

Forall n € N, we take u = u,, = 1<, With ¢ € H (see the proof of Lemma [8.29). We
get, foralln € Nand ¢ € H,

[(fa(L)e, )| < (L) vlllell,
and thus

(o, Fu(ZL)0)| < IF(L) 0]l ]l
We deduce that, for all n € N,

/R Ll Ay = [T L)) < 1 £(2)02.

By the Fatou lemma, we get that v € Dom (f(.£)). This proves that f(£)* = f(£). In
particular, this establishes that f(.%) is closed as the adjoint of f(.Z).
It remains to prove (iv). We have, for all u € H,

fm(L)gn (L) = (fingn)(L)u
Then,

(DLl = [ 1Pl s
so that, for all u € {v € Dom (¢(.%)) : g(-Z)v € Dom (f(.£))},

m—+o00 n—+

lim inf lim inf / nP19al? dptue < 1 F(L)9(L ).

By the Fatou lemma, it follows that u € Dom ((fg)(-Z)). We have
f(L)gn(L)u = (frngn)(L)u

and it remains to take the limits. O]

8.3.3. Characterization of the spectra. —

Proposition 8.33. — \ € sp(Z) if and only if, for all ¢ > 0, 1\_c 45 (Z) # 0. In
particular, for all uw € H, the support of i, is contained in sp(ZL).

Proof. — Assume that, for all ¢ > 0, we have 1\ ) (L) # 0. Since 1\ x+0) (L)
is a non-zero projector, we can consider u. € H such that ||u.|| = 1 and

]l()\—s,)\+s) (iﬂ)ue = u. € Dom ($> .
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We write
1(Z = Nucll*= [T pte) (D)L — Nue|)?
= (Lpn—ep+e) (D) (L = Nue, Lo pgo) (D) (L — MNue)
= (Loepia) (D)L — N ue, ue)

Ate
— [N a6 < (B <
A

—
Thus, A € sp(.Z). Conversely, assume that there exists ¢ > 0 such that 1 (y_.;, x4-,)(-Z) =
0. Let us consider the bounded operator R, defined via

VueH, (Rywu,u)= / (p—A)"" dftu -

|u—A|=e0
Remark that, for all ¢ € (0, 1] and all u € H, we have

et —1d 2 B
R = [ e
lp—Al>e0

t
< N (= N) "2y < +o0o0.
lu—AlZe0
Applying the criterion (7.7.3.4), we get that Ryu € Dom (.¢). With Lemma and
Proposition [8.32] we write, for all u € H,

(L~ MRy, u) = / Qs = pru(R) = [[ul]”.

ln—A|>e0
This shows that (.2 — A\)R, = Id. In the same way, we can get that R\(.Z — \)
Idpom (#)- Thus, we have A € p(.Z).

2
dfty

6it/\ -1

Ryu
A /

I

Exercise 8.34. — For z ¢ sp(.¥), we introduce the Borelian function f,(z) = (z—2z)~'.
Show that f,(£) = (£ — 2)~ .

Lemma 8.35. — Let f be a Borelian function. If u € Dom (.Z) satisfies £u = \u, then
f( L) = f(Mu.

Proof. — We have, for all t € R, e*“u = ¢ u. Thus, for all f € .%(R), by the inverse
Fourier transform, we have f(.Z)u = f(\)u. This can be extended to f € €°,(R) by

density and then to all Borelian function. Note that the formula holds for all functions f
coinciding outside sets which are of zero measure for the spectral measure. [

Proposition 8.36. — An element )\ belongs to the point spectrum if and only if
10 (&) # 0. Moreover, 14,,(ZL) is the orthogonal projection on ker(H — ).

Proof. — Assume that there exists u € Dom (.£) with u # 0 such that Hu = Au. By
Lemmal[8.33] we have
]l{,\}(f)u = ]l{)\}()\)u =Uu 7§ 0.
Conversely, assume that 15} (.Z) # 0. Then, take u # 0 such that 15} (-Z)u = u. We
get
L1y (L) = ZLu = g(Mu, g(t) == tlpy (1),
and thus \u = Zu. ]

Proposition 8.37. — We have \ € sp (L) if and only if, for all € > 0, we have
dimran 1(y_. y1¢) (L) = +o0.
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Proof. — If A ¢ sp.(-£), it is isolated with finite multiplicity. Then, for some ¢ > 0,
we have 1. )1+ (Z) = 11, (Z). By Proposition|8.36, we have

ran Ly_c o) (L) = ran 1 (L) = ker(Z — N),

which is of finite dimension. Conversely, assume that \ is not isolated with finite multi-
plicity. By replacing .Z by . — ), we can always assume that A = 0. Then, we have

Vn € N, I\, €] —1/n,0[U]0, 1/n], An € sp(Z).
By Proposition [8.33] we can assert that
Vn e N - paal/2an+al/2) () # 0.
Since we have a projection, we can find u,, € H such that
Vn € N*, Lo nl/20m 40 l/2) (L) U, = U, |lun|| = 1.

Up to extracting a subsequence (i.e., an increasing function ¢ : N — N), we can assume
that the intervals

()‘30(71) - ’)‘@(n)|/2a )‘w(n) + |/\<p(n)|/2)
are disjoint. Fix any € > 0. For m # n, we find

L0y =Py 122 )+ Ay 1/2) (<€) Uip(m)

= IL()Np(n)_I)‘ga(n)|/27/\<p(n)+|)‘ga(n)|/2) (X)H(Aw(m)_I/\ga(m)|/27/\<p(m)+|>‘ga(m)|/2) (g)uW(m)
= l@($)u¢(m) = 0,

which shows that

Up(m) € KO T (x_ ()~ 12)/2 00 () oy 172) L TR L0010 1720 ) HA () 1/2) D Uip(m) -
The family (u¢(n))n is therefore an infinite orthonormal family. For n > n. with n. large
enough, it is in the range of the projector 1(_. .y (.Z). U
8.3.4. Decomposition of the spectral measure. —

8.3.4.1. Lebesgue decomposition theorem. —

Definition 8.38. — Let ;1 be a Borel measure on R. We say that
1. 4 1s a pure point measure when, for all Borelian set X,
u(X) =" u({z}).
zeX
ii. p is continuous when, for all z € R, p({z}) = 0.

iii. p is absolutely continous with respect to the Lebesgue measure when all Borelian set
X with Lebesgue measure zero satisfies (X ) = 0.

iv. p is singular with respect to the Lebesgue measure when there exists a Borelian set
So such that 1(Sp) = 0and A(R\ Sp) = 0.

Lemma 8.39. — Consider two Borelian measures | and v on a topological space X.
Then, 1 and v are singular if and only if inf (p, v) = 0.

Theorem 8.40 (Lebesgue decomposition). — All finite Borelian measure y. can be writ-
ten in a unique way as

W= lqc + Msing »
where [iq. is absolutely continuous with respect to X and [isnq is singular with respect to
A
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Proof. — Let us consider .4 the vector space spanned by the characteristic functions of
the Borelian sets of Lebesgue measure 0. If A is a Borelian set, we let

_ —ah|2
Mac(A)_wlgjfv/Rl]lA Y dp.

Notice that
fac(A) < pu(A),
and that, if A\(A) = 0, then p,.(A) = 0 since 14 € N. It remains to show that ji,, is a
measure.
Let us first prove that

A) = inf 14— 1402 du.
Hac(A) I;QN/R‘A AY|*dp

Since, for all 1) € N, we have 1 42 € N/, we get

< i — 2dp.
fac(A) \@;g/fv/Rl]lA Layp|"dp

Moreover, for all ) € N, we have

/fﬂA—¢|2d/ﬁ:/\]lA—]lA?ﬂ—]lEAWZdM
R R
:/‘IA_1A¢|2dN+/|]lEA1/)|2dH
R R

> / 14— 10 dp.
R

Now, consider two disjoint Borelian sets A and B. We have, for all ¢ € N,

/ Maos — Laopo dp — / La— Loyt / 15— 1502 dp > fae(A) +10e(B)
R R R

Thus,
ftac(AU B) = fiae(A) + pac(B) -
Then, consider 1,1, € N and let ¢ = 1 42, + 1)y € N. We have

/ [Taup — Laup|? du = / 14 — 140 du +/ 1 — 1py|*du
R R R

= / 14 — Lath]? dps +/ 1 — Lpys*du.
R R
Taking the infimum in ¢/, and 1), gives

fac(AU B) < piae(A) + Hae(B) -

The extension of this argument to a countable disjoint union is easy. Now, let us show
that ;o — pu4 18 singular with respect to .

Let us now notice that, if # is another measure such that § < p and 6 is absolutely
continuous with respect to A, then 6 < p,.. Indeed, for all Borelian set A, we have, for

all € NV,
G(A):/\]IAFdQ:/\]IA—wIQng/\]lA—deu.
R R R

Consider another Borelian measure v such that

V<= fge, V<A



8.3. SPECTRAL PROJECTIONS 137

Then, p,. + v is absolutely continuous with respect to A and smaller than p. Therefore,
n = 0 and we apply Lemma [8.39]

For the uniqueness, let us write ;. = 11 + 2 With p; absolutely continuous with respect
to A and po singular. Then, 1y < fige SO that g, — g is still a (finite) measure and is
absolutely continuous. Since jiqc — 11 = ftae — pt+ 12, We see that this measure is singular.
Thus, H1 = Hac-

O

Theorem 8.41. — All Borelian measure [ can be written in a unique way as

M:Mpp+MC7

where [i,, is a pure point measure and [i. is continuous.
This allows to write all measure (i, in a unique way,
M= Hpp + fac T+ Hsc
where i, 1s singular and continuous.

8.3.4.2. Remarkable subspaces. — For all 1) € H, we can therefore apply the Lebesgue
decomposition theorem to fi,, ;. This suggests the following definitions.

Definition 8.42. —
Hoe = {¢ € H: p1y4 is absolutely continuous} ,
H,, = {¢ € H: iy, is pure point} ,
He = {¥ € H: p1y 4 is continuous},
Hs = {¢ € H: iy, is singular},
Hse = {¢ € H : iy is singular continuous} .
Proposition 8.43. — The subsets H,,, H,., H. Hs and Hy. are closed vector spaces

invariant under £ .

Proof. — Let us consider H,,,. Consider u,v € H,, and A € C. Let (2 be a Borelian set

avoiding the supports of ji,,,, and i, ,. Then, 1o(Z)u = 1o(-Z)v = 0. Then,
Nu+)\v,u+)\v<Q) = <]lQ($)(U + )\U), u + /\U> =0.

Thus, © + Av € H,,. Let us now consider a sequence (u,,) such that s, ,,, is pure point
and lim,,_, | - u,, = u. Let S be the (countable) union of the supports of the i, ., . If
is a Borelian set avoiding S, we have 1(-%)u,, = 0 and then 1o(%)u = 0.

Let us consider H,.. Consider u,v € H,. and A € C. Let 2 be a Borelian set with
Lebesgue measure 0. We have

Mu+>\v,u+/\v(9) = 2Re <1Q($)U, >\U> .
By the Cauchy-Schwarz inequality,
1 1
|Nu+)\v,u+/\v(Q)| < 2|/\|Mu,u(Q)2/Lv7v(Q)2 =0.

Thus, u + Av € H,.. Let (u,) be a sequence in H,. and such that lim,, , - u,, = u. Let
(2 be a Borelian set of Lebesgue measure 0. We have

0= () = [Ta(L)en]* — 1,u().
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Finally, let us consider H,.. Consider u,v € H,. and A € C. There exist Borelian sets
S, and S, such that g, ,(S,) = p(Sy) = 0and A(R\ S,) = A(R\ S,) = 0. We let
S =S,NS,. Wehave A(R \ S) = 0. Moreover,

fac oo (S) = 2Re (15(L)u, ) < 2 A pun(S)? o0 (S) = 0.

We also see that (1,4 1y 412 1S continuous. Let (u,) be a sequence in H,. and such that
lim,, o u, = u. We may consider (S,,) a countable family of Borelian sets such that
[y (Sn) = 0and A(R\ S,,) = 0. We let S = (=% S,,. We have A(R\ S) = 0. Then,

0=ty (8) = [Ls(LYunll” —2 prun(S).

We also see that y,, ,, is continuous.

The same arguments also show that Hg and H.. are closed vector spaces. O
Proposition 8.44. — We have the decomposition
1
H=H, ®H,.

Proof. — Since these spaces are closed, it is enough to prove that H- = H,.. Letu € HL.
Notice that, for all v € H, and all Borelian set S with Lebesgue measure 0, we have
w = 1g5(ZL)v € H;. Indeed,
pwwR\ S) = [|Lrs(L)w|* = 0.
Thus, we have
tua(S) = (0, L5(L)u) = 0.
This shows that . € H,.. Thus, H: C H,..
Then, consider u € H,. There exists a Borelian set Sy with Lebesgue measure 0 such
that z4, (R \ Sp) = 0. This implies that u = 1,(.Z)u since
[ Tr\soull® = puu(R\ So) = 0.
For all v € H,., we have
1156 (L)0[* = p10,0(So) = 0.
Thus, (u,v) = 0 and u € HZ.. O

Proposition 8.45. — We have the decompositions
1L
H=H, ®H.,

L
Hs = Hpp @ Hye.

Proof. — It is enough to prove that H[fp = H..

Letu € H,.. Forall v € H,,, we have (u,v) = 0. We have v = 1(,3(-Z)u € H,,. This
shows that y,, ., ({z}) = 0 for all x € H. Thus, u € H...

Then, take ©v € H. and v € H,,. Let P be the (countable) support of n,,. We have
v = 1p(ZL)v so that (u,v) = (u,1p(L)v) = (1p(L)u,v). Since u € H., we have
1p(Z)u = 0. Thus, H,, C HL.

The second decomposition follows from the same kind of arguments. [

We deduce the following general decomposition.

Theorem 8.46. — We have
1 1
H=H, ®H,, ®Hs.
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Definition 8.47. — The zx-spectrum of . is the spectrum of Ly, .

8.3.4.3. Absolutely continuous spectrum. — Let us provide the reader with some criteria
to ensure that a part of the spectrum of . is absolutely continuous.
Proposition 8.48. — Let a < b. Assume that Ranl ,)(.Z) C Hqc. Then,
(a,0) Nsp(L) C sp,e(L) .

Proof. — Note that . is isomorphic to the direct sum

"%Ranﬂ(a,w(iﬂ) 57 %Ran]lm\(a,w (£) -
If z € (a,b) Nsp(Z), then z ¢ Sp(ﬁRannR\(a,w(z)) and thus z € sp(OZjRan]l(ayb)(g)). Due
to our assumption, this implies that z € sp,.(-Z). O

Proposition 8.49. — Let a < b. Assume that, for all 1 is a dense set of H, there exists
C(v)) > 0 such that, for all Borelian set Q2 C (a,b), we have

(Io(L)Y,¥) < C()|Q].
Then,
(a,b) Nsp(Z) C spye(L),

and there is no eigenvalue in (a, b).

Proof. — Let us consider a Borelian set €2 with Lebesgue measure 0. For all ¢ € H, we
let v =144 (-Z)1). We have

MUW(Q) = <HQ($)07U> = <19ﬂ(a,b)($)¢7w> :
Let us consider a sequence (¢,,) converging to ¢» and such that
<]lQﬁ(a,b) ($)¢7u 77Z}n> =0.

Taking the limit, it follows that f,,(2) = 0. Thus, v € H,. We deduce that
RanT (4)() C Hac, and we can apply Proposition [8.48] O

8.4. Notes

1. One can consult [26, Vol. I, Chapter VII] or [28, Chapter 13, p. 360] for an alternative
presentation of the spectral measure or the older references [32, [12]. The Reader is
also warmly invited to discover the excellent book [34] where the spectral measure is
defined by means of the Nevanlinna—Herglotz functions.

ii. The statement and proof of Urysohn’s lemma (used in the proof of Proposition 8.23)
can be found in [27, Lemma 2.12].

iii. The version of the monotone class theorem that we use in the proof of Proposition
[8.24]is proved in [17, Theorem 1.1].

iv. The fundamental fact that all bounded Borelian functions are uniformly approximated
by sequences of step functions is established, for instance, in [27, Theorem 1.17].

v. The proof of Theorem [8.12|can be found in [27, Theorem 2.14].

vi. The elegant proof of Theorem [8.40|is taken from [35]. Some insights of our presen-
tation are due to R. Garbit.

vii. The Reader can find an alternative proof of Proposition (8.44{in [18, Section X.2].






CHAPTER 9

TRACE-CLASS AND HILBERT-SCHMIDT
OPERATORS

We complete here our study of unbounded, bounded and compact operators by two new
classes: trace-class and Hilbert-Schmidt operators. The general picture is the following:

unbounded D bounded D compact D trace-class O Hilbert-Schmidkt.

The trace of an operator extends to the infinite-dimensional setting the notion of the trace
of a matrix. Basically, trace-class operators are compact operators for which a trace may
be defined. In Quantum Physics, the trace may represent the energy of a system. We
will give explicit examples, involving the Laplace operator, for which the trace can be
explicitely computed or estimated.

9.1. Trace-class operators

Definition 9.1. — Let T € L(H). We say that T is in £;(H), the set of trace-class
operators, when there exists a Hilbert basis (¢, ),en such that

“+o00
(9.9.1.1) > (T n, ) < 400,  0<|T|=VT"T =|T|".
n=0

Remark 9.2. — The summability condition (9.9.1.1)) does not depend on the Hilbert ba-
sis. Indeed, consider another Hilbert basis (¢, ).cn. We have, via the Bessel-Parseval
formula and Fubini’s theorem,

400 +o0 400
> (Tl ) ZIHT! Gl =D T2, i)
n=0 n 0 k=0

+oo

—ZIIIT! pull* = Z(Ilek,m-

It follows that the notion of trace-class operator does not depend on the choice of the
Hilbert basis allowing to test (9.9.1.1).

Remark 9.3. — When H is of finite dimension, any 7" € L£(H) is trace-class. If more-
over, T is self-adjoint, the basis (1, )1<,<y may be adjusted in such a way that 1, is an
eigenvector of norm 1 of |T], so that

N
(9.9.1.2) D AT, vn) = ZM I
n=0

where the )\, are the eigenvalues.
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Lemma 9.4. — Let S > 0 and V' be a partial isometry, that is an isometry on the orthog-
onal complement of ker V. For all Hilbert basis, we have

+oo +oo +o0o
D VISV, thn) =D SV, Viby) <Y (Sthn,thn) -
n=0 n=0 n=0
Proof. — First, we notice that both sides are independent of the chosen Hilbert basis.

Thus, we may choose a basis adapted to the decomposition H = ker V @ ker VL. If (¢,,)
is a Hilbert basis of ker V4, we get

~+00 +o0
D SV, Vb)) = > (SVipn, Vign) .
n=0 n=0

Since (V,,) is an orthonormal family, we can complete it into a Hilbert basis (1, )nen.
Then, we have

“+oo “+o00 —+00

D ASVen, Veon) < (STn,thn) = > (Stn, thn) -

Definition 9.5. — Forall T' € L1(H), we let

+o0o
1T =D (T, ) -
n=0
Proposition 9.6. — (L1(H), | - ||1) is a normed vector space.

Proof. — The invariance by multiplication by a scalar is straightforward. Consider
T1,T, € L£1(H). We write the polar decompositions

T‘J:UJ|T‘]|, T1+T2:V|T1—|—T2|

We have
N N
Z(‘Tl + T2|¢n7 7#n> = Z<V*(T1 + TZ)wrw ¢n>
n=0 n];() .
= (V*Tithn, tn) + > (V* Tathn, )
n];O n=0 N
= (V' UTi|n, ) + >V Ua| Talthn, )
n=0 n=0
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By Cauchy-Schwarz, we have

N
Zl (VAU T, o)) =Y [Ty 20, [T 12U V)|
n=0

n=0

N
< Tl T2 U5 Vg
n=0

2

(Z 11752 ¢nll2> (ZIIITI U*V@DnIIQ)
1 N 1 2
= 175113 (Z \IIC’}\QU;V%\P)
n=0

Using two times Lemma 9.4}

N N
S NTRUVE* =D (UITU; Vb, Vi) < T2 -
n=0 n=0

We deduce that

N
D AT+ Talton, ) < ITilly + 1 T2]ls -
n=0

Proposition 9.7. — L1(H) is a bilateral ideal of L(H).

Proof. — Let T € £1(H) and T’ € L(H). By Propositions [9.6|and 2.83] we can assume
that 7" is unitary. Then, |T"T| = |T| and T'T € L,(H). Moreover, |TT'| = |[T"'TT'| =
T'~YT|T" and T" sends any Hilbert basis onto a Hilbert basis, thus 77" € £;(H). O

Proposition 9.8. — T is trace-class iff T™ is trace-class.

Proof. — Let T be a trace-class operator. It follows that |T'| is a trace-class operator. The
polar decomposition 7" = U|T| gives rise to T = |T'|U*, which is trace-class by the ideal
property. Conversely, just note that 7" = (7)*. O

Proposition 9.9. — We have £,(H) C K(H).

Proof. — Consider T € £1(H). By Proposition 9.7, we have T*T = |T*T| € L;(H).
Then, if (1,,)nen is a Hilbert basis, we have

+00 400 +00
M = (T T, tn) = Y (T, Ton) = Y [ T0ha]]* < +o00.
n=0 n=0 n=0
Then, for N € N, we let
N

Ty =Y (0Tt

n=0
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For M > N, we write, for all v € H,

(T = Tan)ll < Y [, ) | T4 < < > |<¢,¢n>l2> ( > ||T¢n||2>

n=N-+1 n=N-+1 n=N-+1

< [l ( > ||Twn||2> :

n=N+1

D=

It follows that

~ 3
_ < 2 -
1 Tn — T < ( > 1T ) Nt

n=N+1

By the Cauchy criterion, this indicates that the sequence of finite rank operators (7;,)
converges to some bounded operator S, which is therefore compact. This limit coincides
with 7" on a Hilbert basis and thus 7" = S is compact. [l

Lemma 9.10. — For all T € L1(H), we have ||T|| < ||T||1.

Proof. — The compact and self-adjoint operator | 7’| has a spectral decomposition like
T| = an<'awn>¢m 0< s, <|[[T]]-
n=1

We can complete the orthonormal family (¢,,),>1 into a Hilbert basis (by using a Hilbert
basis of ker |7'|). In this adapted basis, we have

+00 +00 400
I = AT n, n) = D Y {550, )85, 0n) = D s
n=1 n=1 j=1 n=1

We can see in this formula a generalization of (9.9.1.2).

Now, recall that ||T'|| = || |7'| ||. But, since |T'| is self-adjoint, || |T'| || coincides with its
spectral radius, which is

TN = [T} = sup sn < <D s =1l

n=1

Proposition 9.11. — (L,(H), || - ||1) is a Banach space.

Proof. — Consider a Cauchy sequence (7),) for the || - ||;-norm. In particular, this se-
quence is bounded by some finite M/. In view of Lemma [9.10] this sequence is also a
Cauchy sequence for the norm the || - ||. Therefore, (7},) converges to 7" in £(H). Note
that

Ve >0,IN e NVl n> N |1, —Ti <e
If (1) is a Hilbert basis, and using the proof of the triangle inequality,

m m

ST = T+ Tl i) < AT = Tl + [Tl o, )

k=0 k=0
Sm|T =Tl + | Tolly < ml|T =Tl + M.
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For all m, we can find n such that m||T" — T,,|| < 1. It follows that

m

Vm e N, Y (T, ) <1+ M.
k=0

This implies that 7" € £;(H). Then, we write

Ve>0,iIN e N, V{,n> N, f(\Tn—Tgwk,wk}ga
k=

With the same arguments, we get :

S (T = Tuli ) < mlIT = Till+ 175 = Tl

k=0
so that, for all m, taking ¢ and then n large enough, we get

ST - T < — T - Tl <e

k=0
The Cauchy sequence (7;,) does converge to T' € L1(H). O

9.2. Hilbert-Schmidt operators
9.2.1. Definition and first properties. —

Definition 9.12. — We say that T' € £(H) is an Hilbert-Schmidt operator if |T'|? = T*T
is in £1(H). In this case, we write T' € Lo(H).

Remark 9.13. — By Proposition[9.7, we have £;(H) C L2(H).
Proposition 9.14. — L4(H) is a vector space.

Proof. — If Ty, Ty € L5(H), then for any Hilbert basis (¢, )nens

+o0 400
1T Tl = 2 (T Titbn ) = D 1 Tibnll” < 4o,
n=0 n=0

and thus

ZH (T4 Tl <2375 [Tl < oo,

7j=1 n=0

Proposition 9.15. — L4(H) is a bilateral ideal of L(H).
Proof. — LetT € L5(H) and U be a unitary operator. If (¢,,) is a Hilbert basis, we have

S NUT > =D 1T < +o00.

n=0 n=0

Thus, UT € Ly(H).
Moreover, (U, )nen is a Hilbert basis so that

S NT@E” =D I Tehnl® < +00.

n=0 n=0
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Proposition 9.16. — T € Ly(H) if and only if T* € Lo(H).

Proof. — The polar decomposition 7" = U|T| gives rise to T* = |T'|U*, as well as
(T*)'T* = (|T|U")|T|U* = U|T]*U",

which is trace-class by the ideal property. Conversely, just note that 7' = (7%)*. [

Proposition 9.17. — We have L5(H) C K(H).

Proof. — This fact has been established in the proof of Proposition which was only
based on the information 7*7T" € £;(H). O

Proposition 9.18. — Let T\, 1> € L5(H). Consider a Hilbert basis (1) nen. Then,
> {T3Tithn, thn)| < +00.
n=0

The sum of the series

n=0

is independent of the chosen Hilbert basis. More precisely, if (¢n)nen is another Hilbert
basis, we have

Z<T2*T1wn, V) = Z<TIT2*907L7 On) = Z<T2*T1§0m ©n) -

n=0 n=0 n=0

Proof. — Because T and T are in £5(H), we have

N N N +o00
> UL Tithn, ud| =Y WTin, Tovbn)| = Y [(Titbn, Y (0, Totbn)
n=0 Kf oo n=0 k=0
= UTutbn, @il [(or, Tatbn)|
n=0 k=0

SO T (UT 1, ei? + [(or, Tovon) )

Now, consider another Hilbert ba51s ((pn)neN and write again the Bessel-Parseval formula
> (T T, n) = > Y (Tithn, k) (pi Tothn).
n=0 n=0 k>0

The obtained double series is absolutely convergent (due to the above summation argu-
ment). Moreover, by the Fubini theorem, we get

S AT Tatbn, o) =D > (Tithn, o) (0r: Taton) = > > (T3 0n ) (Vo T ipk)

n>0 k>0 n>0 k>0 n>0
= Z(Tz*%%, TV or) = Z<T1T2*<Pk, O -
k>0 k>0

This shows the independence. [
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Proposition 9.19. — Let T1, T, € Lo(H). Then, TY\'T» € L1(H).

Proof. — We start with the polar decomposition |7} 75| = U*TyT,. By Proposition
we know that U*T} € Ly(H). Then, by Proposition [9.16] we get that 77U € Lo(H).
Proposition 9.18|implies that

S ATTUY oty ) = 3 (T ol ) < oo,

n=0 n=0
which guarantees that 77> € £1(H). O
9.2.2. Trace of a trace-class operator. —

Proposition 9.20 (Trace of a trace-class operator). — Ler T € L1(H) and (¢,,)nen be
a Hilbert basis. Then, the series

“+oo
TeT = (T, n)
n=0

is absolutely convergent and independent of the chosen Hilbert basis.
Proof. — We write T' = U|T| = (U|T)|2)|T)z and apply Propositionm O

Proposition 9.21. — The application L,(H) > T — TrT € C is a linear form. More-
over, forall T € Ly(H), TrT* =Tr T.

Proposition 9.22. — The application Lo(H) X L2(H) 5 (A,B) — Tr(AB*) € Cisa
scalar product on Lo(H). The associated norm, called Hilbert-Schmidt norm, is denoted
by || - ||a. Moreover; the application Lo(H) > T — T* € Lo(H) is unitary.

Proposition 9.23. — Forall T € L,(H),
1T <

T2 < (171 -
Proof. — Consider first the case when 7' = 7™ > 0 and write

T =Y su(tn)tn,  0<sn.

n=0

17 =" s

n=0

Tl = sn.

n=0

We have already seen that
In the same way, we get

The inequality is then proved since

1

bl
max s, < E Si <§ Sp -
n=0

n=0

In the general case, we have
1T = [T < 1Tl = T[l2 < (T[] = T -

Proposition 9.24. — (Ly(H), || - ||l2) is a Hilbert space.
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Proposition 9.25. — For all Ty, T» € L5(H),
W Tall2 < [[T3[[| T2l < | Thll2l|Z2l2 -

Proposition 9.26. — Let T,,T, € L1(H). Then, 15T, and T\T5 are in L,(H), and we
have Tr (T,T)) = Tr (T1Ts). Moreover,

T Ty < |02 -

Proof. — This is a consequence of Propositions and The inequality follows
from the polar decomposition 75 = U|T5| and
ITTolh = | TUITel2 (Tl
S ITUIT o1 T2l 2
< TUNNT:I2 13 < 1Tl T2 13
0

Proposition 9.27. — Forall Ty € L1(H) and Ty € L(H), we have Tr (ToT1) = Tr (T1T3)
and |Tr (IWT5)| < [Ty |1 [[T2]-

Proof. — For the cyclicity of the trace, by Propositions [2.83| and [9.21} it is enough to
establish the formula when 75 is unitary. In this case, we have

“+o00

TI'(Tng) = Z(lem T;wn> .

n=0
Using the new Hilbert basis ¢,, = T51),,, we get

“+o00

To(TyTh) = Y (T Totbn, ) = Tr(ThTh)

n=0
For the inequality, assume first that 77 = 77 > 0, and write its spectral decomposition
Tl - Z 3n<'7 I/Jan .
n=0

Recall that ), s, = ||T1]|:. By using an adapted Hilbert basis, we have

+00 +oo
T (Ty1)) = Y (TiTatn, n) = > (O 55(Tothn, )05, 0n) = Y su(Tothn, thn)
n=0 n=0 5>0 n=0

and thus
Tr (ToTh)| < | T[T 1 -

If 7} is not non-negative, we write 73 = U|T}| and get

Tr (1) = [Te (TO)| T )] < ITRUNTll < T2l
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9.3. A fundamental example

Let us consider a non-empty open set 2 C R? We consider the classical separable
Hilbert space H = L*(Q). For K € L?(Q2 x ), and all ¢ € L?(2), we let

e /K:Ey

The application T is clearly a bounded operator from H to H. By Cauchy-Schwarz
inequality, we have

1Tkl = sup [[Tetllz@) < [1K]lz@xq):

¢l 20y <1
Its adjoint satisfies T = T with K (z,y) = K (y, z).
Proposition 9.28. — We have T € Lo(H) and ||Tk ||z = [ K||2@x0)-
Proof. — Consider (v,,),>0 a Hilbert basis of L?(2). Letting

Pmn (T, Y) = b (2)n(y) ,

we see that (©y,.) (m,n)enz is a Hilbert basis of L*(Q x ). Thus, we can write

K = Z kmn@mn Z ‘km,n|2 = ”K”EQ(QXQ)7
(m,n)eN? (m,n)eN?
In fact,
km,n = <K Pm n>L2(Q><Q (Tmbm, ¢n>L2
where we used the Fubini theorem. Since

1 TectbmlP2) = D NI ktm, Yudizl

n=0

we get that T is Hilbert-Schmidt and || Tk ||3 = HKHL2 (xQ)" O
Proposition 9.29. — The application L*>(Q x Q) > K +— Tk € Lo(H) is unitary.

Proof. — The application K — Tk is an isometry. In particular, it is injective with
closed range. So is its adjoint T, with K(z,y) = K(y,z). Therefore, K +— Tk is
bijective. [

Proposition 9.30. — Consider T' € L£1(H). Let us write T = AB with A, B € L5(H).
Writing A =T, and B = T,, with a,b € L*>(Q x Q), we have

TrT:/t(x,a:)dx,
Q
where

toy) = [ ale2)b(z.y) d.
Q
Proof. — We have, with Proposition 9.29|
TrT = Tr (AB) = (A, B*)s = (a,b) 12(0xq) = / a(z,y)b(y, z)dx dy.
QxQ

From Fubini’s theorem, we deduce that

TrT:/Q(/Qa(x,y)b(y,x) dy) da.
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Let us give a simple, but non completely trivial, example.

Proposition 9.31. — Let £ be the Dirichlet Laplacian on I = (0,1). Consider the
compact self-adjoint operator T = £ ~1. Then, T is actually trace-class and

1

1
TY]jIZ_? HIWb
6 9"

In particular,
2 4
T 7
n_2 = — n_4 = — .
Z 6 Z 90
n>1 n=1

Proof. — Consider the Hilbert basis (¢,,),>1 of eigenfunctions of T, associated with the
eigenvalues (\,),>1. Explicitly (see Lemma[1.7), we have

on(x) = V/nsin(nrz), A, = (nm)72.
From the explicit expression of the eigenvalues, we see that T € Ly(H) with H = L2(1).

Let us find the kernel K of T'. Consider f € L*(I). Let us try to find u € H}(I) N H?(I)
such that

u'=—f.

We can write this equation in the form

, (0 1 0 [(u
7= (o o)o () =)
Consider the following independent solutions of the homogeneous equation
T r—1
a=fi) e ()
Letting u; (x) = x and uy(z) = x — 1, we notice that u;(0) = us(1) = 0. Then, we look

for u is in the form
u(z) = a(r)ui(z) + B(r)us(z),

(U1, Us) (g:) - (_Of) ,

o(x)=(x—-1f(x), Flz)=—-zf(z).
Since u(0) = u(1) = 0, we get (1) = 5(0) = 0 so that

o) = / e Df)dy,  Ble)=— / "yt () dy

with

or, equivalently,

Thus, )
o) = [ (Lot = )+ Lot - 2)) Fo) dy.
The kernel is given by '
K(z,y) = Ty (y)x(l —y) + Tpa(y)y(1 — ).
We can check that K € ([0, 1]?, R). A computation gives

1
IT)2 = / K (2, y)]? dedy = — |
[0’1]2 90
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Note that, in L*(I x 1),

K(z,y) = Z kmnm(2)on(y),  Kmn = K(2,y)om(7)en(y) dedy.

(m,n)EeN* X N* [0,
By the Fubini theorem,
Fmn = (T0m, Pn) = AmOmn ,
so that

K(z,y) = Z)‘ngpn(‘r)‘pn(y) .

n>1

In fact, for all fixed y € [0, 1], this series is convergent in L?(7,). Let us explain why the
convergence is also true in the L>(/,,) sense.

Notice that T2 € L5(H) so that it has a kernel K in L2(I x ), and, for almost all fixed

yel,inl2(1,),
K(y) = vV nea)en() .

n>1
In particular,
1
JRLCRIREED S
0 n>1

and also, for almost all x € I,

JRLCYIRTED SPRNE

n=1

Now, consider

N =
NI

> Vo)V Aupn()

< (Z Anson(yf) < Anwn(x)2>
< (/0 Iff(x,y)IQdy)Q (Z Anwn(yf) i 0

Therefore, by continuity of K and of the eigenfunctions, we have, for all (z,y) € [0,1]?,

n=>1
We take z = y and integrate to get
1
/ K(z,z)dx = Z/\n =Tr\,.
0 n=>1

We have
1 1

/K(m,:c)d:c:/ z(l—z)de = =.

0 0 6
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9.4. Local traces of the Laplacian
9.4.1. The case of R%. — Let h € R’ be a small parameter. We consider here the
semi-classical operator ZX* = —h2A — 1 acting on L2(R%).

Definition 9.32. — We define the (unitary) Fourier transform by
—d —ix
Fo©) = @0 [ e do.
R

Given some operator .7, the notion of positive and negative parts .2, of .Z is explained
in Subsection [10.11

Lemma 9.33. — In the sense of quadratic forms, we have
(ZEY_ <, =g (L)
Consider ¢ € 65°(R?). Then,
d
P(L ) < omp.
Lemma 9.34. — We have
FL.F =0 1.

In particular,

Yh = ﬁ_l]lR7 (h2§2 — 1)@,
and

wp(w) = (2m) 7 / ' g (hP€? — 1)yp(y) dy €

=t [y T (e (02~ D) ).

Proposition 9.35. — Consider ¢ € 63 (R?). Then,
(1) The bounded operator oy, is Hilbert-Schmidt and

Wq

(i) The bounded self-adjoint operator oy, is trace-class and

(9.9.4.3) Tr(pynep) = WH@HZ-

Proof. — For the first item, we notice that the kernel K of ¢y, is given by
d _
K(z,y) = (2m) 2 ¢(2).7 " (1a_(h*¢* = 1)) (z —y).
From the Parseval formula, we see that K € L?(R??) and
K e = (2) P [ | dete_ (26" = 1),
For the second item, it is sufficient to notice that

©Ye = PV Re = () (@),

Wq
h

and
Tr(eme) = ol -
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Corollary 9.36. — For all ¢ € €, (R?), the operator o(LF")_¢ is trace-class. More-
over, (0L o) _ is also trace-class and
d d
Te(p 2 p)- < Tr((L)-¢).-
Moreover;

T L) 0) = ) 0ol [ (€= 1)-de.

Proof. — The first part of the statement follows from Lemma |9.33|and Proposition 9.3
For the second part, we consider a Hilbert basis (¢;);>1 such that (¢;);c; is a Hilbert

basis of the negative (Hilbert) subspace of goci”,lego. Then, forall j € J,
d d d
(g, (0L 0)-g) = =Wy, (0 L7 0)5) < (W, (P(L)-0)5)

and, forall j € N*\ J, (1);, (0 Z%"©)_1;) = 0. This shows that PRFECE (0LF 0)_1);)
is convergent, that the non-negative operator (gothdgo)_ is trace-class, and the inequality
follows. Then, we write

AL o = o L2 (P(ZE)2)
The kernel of gp(f)}gd)% is

(2m) E ()7 (R = 1)2) (@ — y).
Therefore, it is Hilbert-Schmidt and

(A = my -l [ (6= 1)- .
]

d
9.4.2. The case of R%. — Let us consider here (Z}]LR * = —h?A — 1 acting on L*(R%)
with Dirichlet boundary condition on x4 = 0.

9.4.2.1. Computation of the local trace. —
Proposition 9.37. — For all p € 63 (R?),

d
Tr(gp(ff*)_go) = 2(27r)_dh_d/ ch(x)/ (€2 —1)_sin®(h 'ag&y) déda .
R% R¢
d
Proof. — Let us diagonalize .,2”5 *. For that purpose, let us consider the application
T : LA(R1) — L*(R?) defined by

1
T =—7=FoS,

V2
where S is defined by St (z) = ¢(z) when x4 > 0 and S¢(z) = —(x) when z4 < 0.
The operator .7 is an isometry and 7 : L*(R%) — L2,,(R?) is bijective and .7~ =
V2.7 7! where we have used .Z : L2,,(R?) — L%,,(R?). We have
Rd

Z, " = 971(h2|§|2 -1)7.
In fact, 7 can be related to the < sine Fourier transform :

TY(x) = %(2#)5 /]Rd e Sy (z) dr = —i\/§(27r)’% /Rd e~ sin (24640 () dz .
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Notice that o )
(L )2 =T (WP -1)2T .

In particular,

R 1 27 i 1 —i e .
A ) =~ [ esier =0t [ e sinGuaviy) dy dg
(2m)¢ Jpa R
2

(27)d /Ri dyy(y) /Rd e~ sin(ydfd)(h2|§|2 —1)2 d¢.

d 1
Thus, the kernel of (.Z,lR 2pis

21

1
ixé —iy'& - 21 ¢12 3
) [ e sin(y) (1216 — 1) g
The squared L2-norm of this kernel is

4

o [, e [ ae
B <272r>d/R

d
+

2

/ e W' sin(y.€,) (h2)€)? — 1)? d¢
Rd

dy|%0(y)|2 /Rd dz /]Rd et (@=y)€ piyaa Sin(ydﬁd)(h2|§|2 B 1>% de
2
2y /R dyley) /R ¢ sin® (ya) (W76 — 1)

d 1
This shows that (.i”}]LR *)2 ¢ is a Hilbert-Schmidt operator, that ¢(.Z},
and

2

d

*)_¢ is trace-class,

(272T)d /Rd dy!w(y)P/Rd dé sin?(ya&q) (h2|€]2 — 1)

Tr(p(L 1) _¢) =

0
d
In fact, one can estimate the asymptotic behavior of Tlr(cp((,f,]lR ).

Lemma 9.38. — Let us consider the function defined fort > 0 by

J(t) = / (€ — 1) cos(2tEs) de
Rd
Then, forallt > 0,

1
K(t):/ e2t(1 — y2) % du,

Co = / (1—|v|*)dv.
1 Bd-1
Moreover, J(t) = ﬁ(t_%_l).

J(t) = O[)Re K(t) 5

t—+o00

Proof. — We have

J(t) = /_ 11 dé, cos(264t) /

(1-& — €1 ag.
€ [2<1—[€al?
By using a rescaling,

/ (-2 |¢P)de = (1 —52)‘?/ (1~ of?) dv.
[€712<1—[&4]? Bd-1
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Let us now consider K. We let 6 = d%l. By integrating by parts [ ] times, we can write

1
K(t) =t~ / 2 o (u) (1 — u?)°~ ) du,

1
where k is a polynomial.
If § € N, another integration by parts yields

K(t) =0t

which is the desired estimate.
If not, we have 0 — |J] > 0 and we can integrate by parts:
1

K(t) = =it [ k()1 - a1 du,

-1
where we used that (1 —u?)°~ %=1 € L'((—1,1)) since =1 < § — 4] —1 < 0. Now, we
can write, for some smooth function k,

/1 Xtk (u) (1 — u?)o~ = dy = /1 2 o (u) (1 — u)? =1 du
0 0
and also, for some smooth function l;:,

/1 eQiutuk(u)(l . u2)6—L6J—1 du = e2it /1 e—ZiUtk(v)Ué—Léj—l dv .
Note that : :

1
/ 6_2wt7€(1})1)5_ [6]—1 dv
0

1 1
= I%(O)/ e 2ty = 10=1 gy +/ e_%”t(/%(v) — l%(()))v(s_w_l dv .
0 0
We have
1 t
/ o2t 5161 g, — tms/ 2= 11-1 gy — @ (¢l9-9)
0 0

where we used that the last integral is convergent (by using integration by parts). We can
write, for some smooth function 7,

k(v) — k(0) = vr(v),
so that

1 1
/ e_%”t(k(v) — E(O))vd_L‘SJ_l dv = / 6_2"1”%"(11)2}5_“SJ dv=0@t1) = ﬁ(tw_‘s) )
0 0
We deduce that .
/ X huk(u) (1 — u?)o~ = du = o (t1179) .
0

In the same way,

0
[ kw1 = w0 du = (),

—1
Thus,

K(t) = o197 10-9),
and the conclusion follows. O]
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Proposition 9.39. — Consider p € €} (R?). Then, with Ly as in , we have

]Rd

Laq
T (p(L, T )—p) = Ld”90|’ﬁ2(Ri) -

S [ e O Ao+ 0T ).
Rd—-1

Proof. — Let us write

(20h) " Tr(p(Z ) —0) = / & (x) / (€ = 1) (1 = cos(@h ) dE d

d
+

Let us now consider the (absolutely convergent) integral

= [

g / (€2 —1)_ cos(2h " wg) dE dz .
Rd

We have
(9.9.4.4) I(h)=nh / ©* (', ht) / (€% — 1)_ cos(2t&,) dE da’ dt
R% R¢
and thus
+o0
(9.9.4.5) I(h)=nh / ( / ©* (2!, ht) J (1) dt) da’,
Q 0

where (@ is a compact subset of R9~!. We write, uniformly with respect to 2’ € Q,
|0*(', ht) — @*(2', 0)| < [[Ve?|lcht .

Therefore,

+o0 +oo Foo
/ ©* (', ht)J(t) dt —/ ©*(2',0)J(t) dt‘ < ||V502||ooh/ tJ(t)dt.
0 0 0

This shows that
+00 —+00
‘](h)—h/ dx’/ A(,0) (1) dt‘ < |th2|yw2||oo/ £I(t) dt
Q 0 0
We notice that

/ (€% — 1)_ cos(2t&,;) A&y = Re / (€2 —1)_e*aqdg,.
R

R

Then, by using the inverse Fourier transform,

[ [1€ - e dgaae = Semaer - 1.
RJR

Thus,
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9.5. Notes

Proposition [9.37] is part of a rather long story. It started with Weyl in [36] and the
asympopttic expansion of the counting function
Wq
(2m)¢
Here, No(h) = |[{k > 1 : h®)\; < 1}|. Under the geometric assumption that 2 has no

< periodic point > and when €2 is smooth, V. Ivrii proved the second term asymptotics in
[16] (see also its translation):

No(h) = Q=5 +o(h™), Ca=

1
(9.9.5.6) Na(h) = |Q|Cyh™ — Z‘amcdflh*dﬂ +o(h~1).

In general, Weyl’s asymptotic expansions can be obtained by means of microlocal tech-
nics. The reader can consult [7] where it is proved, for instance, that

Hk(h) < 1} = (27h) @ /( oo dz dé + o(h™%hY

where the (A;(h))g>1 are the eigenvalues of an elliptic pseudo-differential operator de-
fined by

Op (a)uta) = (2am)* [ et (S22, uio) ayan

A very good introduction to semiclassical/microlocal analysis is the book by Zworski
[38].

Sometimes (especially in old references), the Weyl asymptotics is written in terms of a
large parameter A = h~2. The expansion can be rewritten as

1

a 1 —1 _
{k>1: M < A} = N()) = |QCyA7 — ch_lmw% +o(AT).

Note that,

2 12 1 1
/ N(u)du = |Q|dfd2 Astl Cd 1|89|A”i +o(AT),

and also, by definition, of the counting funct10n

A NN N(\)
/ N(u)du = —T(X) +AN(A) =Y (A — A)- Z Ak -
0 k=1

Coming back to h, we deduce the following theorem, under Ivrii’s assumptlons.

Theorem 9.40. —
1
Tr(Ho)- = La|QJh™" = 5 Laa[0Q[h™ + o(h=1),

where
_ —d 2 _ —d 2wq
9.9.5.7) La= (27) /R (@ -1 de = ()L

Proposition can be used as a step in a (direct) proof of Theorem (see [8]).







CHAPTER 10

SELECTED APPLICATIONS OF THE FUNCTIONAL
CALCULUS

The aim of this chapter is to illustrate how useful the functional calculus can be. In
particular, we prove a version of the Lieb’s Variational Principle (to estimate traces of
operators by means of density matrices). Then, we prove the Stone’s formula that relates
the spectral projections to the resolvent. We use it to provide a sufficient condition for the
spectrum to be absolutely continuous in a convenient spectral interval. Finally, we give
a concise presentation of the celebrated Mourre estimates: how a positive commutator
may be used to prove absolute continuity? During the analysis, we establish a version
of the Limit Absorption Principle. The core of the investigation will rely on elementary
coercivity estimates for non-self-adjoint operators. It is somehow in the spirit of the Lax-
Milgram theorem.

10.1. Positive and negative parts of a self-adjoint operator

In this section, we consider a self-adjoint operator .. We assume that .Z is bounded
from below i.e., £ > —C. From the min-max theorem, this implies in particular that
sp(Z) C [-C, +0).

Let us consider the following operators defined through the functional calculus:

Ly =[(2), Z =[f(2L),

(where f1(A) = Al 4o0y(A) and f_(A) = —AL(_w0)(A)) acting on their respective
domains:

Dom(%,) = {u €H: / !)\|2d,uu,u}
[0

7+Oo)

Dom (%) = {u €H: / ])\|2d,uu7u} :
(_0070)

Lemma 10.1. — We have Dom(.Z_) = H, and £ is a bounded operator on H.

Proof. — From Proposition [8.33] we know that the support of f,, is contained in
[—C, +00) for all u € H. Thus, for all u € H,

/ﬁ 1M2mmﬂzi/ IM? dpty < C? < +00.
(—0,0) (=C,0)

Thus,
Dom(Z_) =H.
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Moreover,
f—(g)u:nggloofn(g)uv fn()\) = f—()‘)]l|f—\<n~
Therefore,
(L u,u) = nl_l)rfoo(fn(,?)u, u)y = — nl_lgloo o 1 (0,0 (M)A dft
=400 Jf1<n,—C<A<0
This shows that .Z_ is bounded by C. O]

Lemma 10.2. — We have Dom(.%,) = Dom(.Z). Moreover,
L= -2 .
Proof. — We recall that
Dom(.Z) = / IM? dpt < +00.
R

This shows that Dom(.%#) C Dom(Z;). Then, for all u € Dom(.Z}),

/|/\|2duw:/ |A|2duu,u:/ \A|2duu,u+/ A2 o < +00.
R [—C,+0o0) (0,400) (—C,0]

Then, it remains to notice that f, — f_ = Id. [

1

Exercise 10.3. — Prove that, for all u € Dom(.%, ), we have v € Dom(.Z?) and

125 = [ s i = (Lo

10.2. Lieb’s Variational Principle
10.2.1. Statement. —

Definition 10.4 (Density matrix). — A density matrix on a Hilbert space H is a trace-
class self-adjoint operator v such that

0<y<1.

Let us consider a self-adjoint operator . bounded from below. We can write
=% -2,
where %, = 1g, (£).Z. Since .Z is bounded from below, the operator .Z_ is bounded.

In particular, if 7 is trace-class, 7.Z_ is trace-class.

Lemma 10.5. — Consider a trace-class operator -y valued in Dom (£2). We may con-
sider a Hilbert basis (1;) such that (1;) C Dom 2. The quantity

D LE, L) = Y (1L, L)
j=0 j=0

is well-defined (possibly +o00) and independent of the choice of ({;). We denote it by
Tr(v2).
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Proof. — Let us write[]

7= Z’Yk |on) (rl

k>0
and notice that, by the properties of trace-class operators,

Z(viﬂf%, L2;) = Zwiﬂ?%‘a ZL2p;) .
j=0 Jj=0

Then, by the Bessel-Parseval formula and Fubini,

Z(viﬁé%, L) = > Zﬁiﬂé%a o) (on, L25)

Jj=0 720 k=0

= ZZ%\(XE%A%W

J20 k=0

1
=D Lol

k>0

]

Proposition 10.6 (Variational Principle). — Assume that the Hilbert space Ranlg_(.Z)
has a Hilbert basis made of eigenfunctions of £. We have

Jnf Tr(7.2) = ~Te(£)),

where the infimum is taken over the density matrices valued in Dom (2). Here, Tr(£_)
can be infinite.

Proof. — Let us consider (¢,);>1 a Hilbert basis of Ranlr (.Z) associated with (nega-
tive) eigenvalues (£}),>; of .Z. For all N > 1, consider

N
v = les) (wsl -
j=1
The projection - is trace-class and valued in Dom (.£’). Moreover,
N
7=1
Thus,

N
PR o)
j:
so that
Oglil Tr(v.Z) < ZE -Tr(Z-),

Conversely, consider a trace-class operator 7 Valued in the form domain. We may consider
a Hilbert basis (¢;) valued in the form domain as in the proof of Lemma We have

+oo 1 +oo 1 +o0
L) = uILEIP =) ullLz 1P =) 2
j=1 j=1 Jj=1

1. The notation |y ) (¢r| is the physical notation for the projection on ¢y.
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where the series converges in R U {+o00}. We have

+00 1 +oo 1 “+o0o
T(v.L) > =) ulL2lP = =Y I1L20]P == 2-(¢) = -Ta(£).
j=1 j=1

=1

10.2.2. Illustration. —

Proposition 10.7. — There exist C,hy > 0 such that, for all h € (0, ho), and for all
function ¢ € € (RY), we have

Te(p L ) — Tr(p(LE) )| < CR*4| V.

Proof. — Consider x € %;°(R?) such that ox = ¢. Since X7 is trace-class and
0 < x7x < 1, the Variational Principle provides us with

(10.10.2.1) — Tr(0 L 0)- < Tr((0 L2 ) (xmX)) -
We write
XX = Y g [bs) (]
i>1
so that
XV XYj = Hi; -
Note that, if ¢ € €°(R?),
Wy, (0L W) = (W, (L0 + [0, LEV)s) = (g, (PPLF + ol LE o)y
so that
205, (0 LE o)) = (b, (@23561 + Z” — [, [%%Fd]]) V5,

and thus
(05, (0L o)y) = Re (. (wWF -3l [so,o%?dn) i)

since
d
o, [0, L1 = =217Vl
Thus, if ¢ € G°(R?),
d d
2i(o5) = (U5, (04" 0)05) = Re (U5, 0L, ;) + h* (0, [V Pyy) .

This formula can be extended to ¢ € 6, (R?). We have

1 (W5, (0L 0)5) = Re (¥, 02 L5 (xmx)s) + B2 (@5, [Vl Oemmx)y)
Since ,i”,]le is a local operator, we have

1505, (0L P)) = —Re (1), @ (BE) X)) + 17y, [Vl xmxady) -
Now, we observe that ©2x(ZF")_x) and |V|®xv,x are trace-class. In particular, the
series D pi (¥, (0ZLF ©)1;) is convergent and

S Wy, (0L o)) = —Tr(@*X (L) -x) + R Tr(IVel*xmx)

j=z1
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By using the cyclicity of the trace, we also get

> iy, (0L o)) = —Tr(o(LR) ) + B2 Tr (| Vel | V) -

=1
This shows that the left-hand side does not depend on the choice of the diagonalizing

Hilbert basis (1););>1. By definition, the left-hand side is Tr(go.,iﬂ,f@d@(xﬁyhx)), and we
have proved that

Te(. 25 o(x X)) = —Tr((L) ) + B Tr(|Veply| Vo) -
By (10.10.2.1), this implies that
Te(p. 25 0)- = Te(p(L5) ) — B Tr(|Vep|ya| Vo))
With Proposition [9.35] we get
d d _
Tr(p2," ¢)- = Tr(p(L")-9) — CR* || Vel?.

10.3. Stone’s formula

10.3.1. Statement. — Let .Z be a self-adjoint operator.

Proposition 10.8 (Stone’s formula). — Consider a,b € R such that a < b. We have, for
all w € H,

. 1 o o 1
Slir(l]qr %/[ ) (L —=A+ie)' = ((Z - (A—ie)) ) udr = 5 (Lio)(L) + Lo (D)) u.
Proof. — For € > 0, we introduce, for all = € [a, b],
1 N o
flw) = - /W)] (2= (A +i2)~ = (& = (A —ie))) da,

and we notice that, for all x € [a, D],

1 b—x a—x
fa(x):;(arctan( . )—arctan< . )),

lim f.(z) = g(x) ==

1
e—0t 2
and | f.(z)| < 1. Since, for all u € H,

||(f£($)—g($))UI|2Z/Ilea(A)—g(A)IQduu,u,

we get, by dominated convergence,

so that
(Lay () + Liapy(2))

) 1
51—1>I(I)1+ f(L)u= = (Ljay)(L) + Ly (L)) u.

2
By using Riemannian sums and Exercise |8.34] we get, for all € > 0,
1
L) =5 [ (Z=0+i) = (£ - (=) 7) dh,
[a.b]

and the conclusion follows. O]
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10.3.2. A criterion for absolute continuity. — The Stone formula may be used as fol-
lows.

Proposition 10.9. — We let R(2) = (£ — 2)7! for = € C \ sp(&). Assume that, for all
Y in a dense set D of H, there exists C(1)) > 0 such that

sup sup (Im R(j +ie)ib, ) < ().

€€(0,1) pe(a,b)
Then, the spectrum of £ in (a,b) is absolutely continuous. In particular, there is no

eigenvalue in (a,b).

Proof. — Consider a Borelian set €2 such that 2 C (a,b). We have, by construction of
the Lebesgue measure,

Q| = inf {Z |I;|, with, for all j € N, I; C (a,b) open bounded interval , C | JJ} .

jEN jEN

Let us consider such a family (/;). We write I; = (c;, d;). The Stone formula gives

N | —

e—0 297

1 .
(Le;.0,(-L) + 1,0, (&) = lim — / 2iIm (R(p + i€)) dp.
Then, for all ¢ € D,

I
(i (2)0,0) < Bl sup sup (I Rl + )06, 0) < C)IL].

T e€(0,1) pe(a,b)

Since 1o <)o 11, we get

(Lo(L),¥) < C@) Y11

JEN

J€EN

Taking the infinmum, we get

(La(L), ) < C(¥)|€ .
The conclusion follows by using Proposition[8.49 O

10.4. Elementary Mourre’s theory and Limit Absorption Principle
10.4.1. Mourre estimates. —

10.4.1.1. Assumptions. — We select two intervals [ and J with / CC J and J bounded.
We consider two self-adjoint operators .# and <. We assume that

1,(L)PB1 (L) = col (L), B :=[Z,idd], >0,
as well as
() &, Z](ZL + i)~ is bounded.
(ii) (&L +1i)7 L, o], o] is bounded.
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10.4.1.2. Coercivity estimates. — Consider € > 0, Rez € I, Imz > 0. We define, on
Dom %,

Lo =L —2—1cB.

Proposition 10.10 (Mourre estimates). — There exist ¢y, Cy, Cy, ¢y, ¢y, ¢, ¢ > 0 such
that, for all € € (0,&¢) and z € I x [0,400), we have the following coercivity estimates

()
Vu € Dom (%), |[Z.cull = c|[(ZL +i)1e(L)u| — Cie||1,(L)ull,
where J¢ =(0J =R\ J.
(b)
Vu € Dom(&), ||-Z.cull = cell(Z +i)1,(L)ull .
()
Vu € Dom(Z), [[Z.ecul 2 (L + i)l (L)ull.
(d) In particular Z, . is bijective and
(L +0) L) < Coe™
Moreover, for e = 0, Z, . is also bijective as soon as Im z > 0.

©)
Vu € Dom(Z), | Lou,u)|+ ||L.cull® = c)ellul®.

Proof. — (a) The first step is to reduce the discussion to the case |Im z| < C for some
constant C' depending only on the bounds available on £, «7](.Z +i)~! and J. To
this end, observe that (for £ small enough and [Im z| > C):

|2, cul| (L —2Du+ell, (L +i) (L + i)
(£ = 2)ull — Cel|(Z + i)ull
(& — Rez)ul| + |Im z|||u]| — Ce||(ZL + i)ul]
(1 = Ce)|[(Z + t)ul| + (Tm z[ — C) |[ul]
c|[(Z + i)y (L)ull.
The second step deals with the case when z is bounded. By (i),
[1:(ZL) 2 cull Z [[1:(ZL)ZL = 2)ul| — el| Bull
2 |1 (ZL)NZL = 2)ull — Cel|(Z + )ul| .
By using the orthogonal decomposition of the last term, and since J is bounded, we
have

VIVIV VI

(& +d)ull S (L + D)L (L)ul| + [[(ZL + )1 (L)ull
S I(Z +)1e(L)ull + [[1,(L)ul-

Then, since z lies in a bounded set, we have
[1e(L) L cull 2 [1e(LNL = 2)ull = Ce|[1,(L)ull — Cel (£ + i)y (L)ull
Z (1= Co)|[Lye (L)L = 2)ull = Cel[1y(L)ull = Cel[Le(ZL)ul
Since |\ — z| is bounded below when A € J¢and z € I x [0, +oc[, we have
1Le(L)ull S 15e (L)L = 2)ull,

and thus, we can deduce ().



166 CHAPTER 10. SELECTED APPLICATIONS OF THE FUNCTIONAL CALCULUS

(b) By (i) and (a),
(10.10.4.2)
—Im (2, .u,1,;,(L)u)
= Im 2||1;(L)u|]® + (1 ,(L) B ;(L)u, u) + eRe (B 5o (L), 1 ;(L)u)
Im 2|15 (L)ull* + coe || 15 (L)ull* — Cel[ 1, (L)ul|[(£ + i) Lye(L)u]
Im 2[[1;(L)ull* + (cos — C*)[[15(L)ull* — Cel[ 15 (L)ul [ Z..cu] -
By Cauchy-Schwarz, this gives (for € small enough)
(1 + Ce)|| 2. cull = (Im 2 + éoe) [15(L)ul| = o1, (ZL)u] -
Since J is bounded, we deduce (b).
(c) It is sufficient to combine (&) and (b).

(d) From (b) and (c)), since the operator .Z + i is injective, we see that ||.Z, .ul| = 0
only if ||1;(:Z)ul| = 0 and |1 (£ )u|| = 0 so that u = 0. More precisely, we can
infer that .7, , is injective with closed range (and so is the adjoint). Therefore, .Z, . is
bijective and ||(.£ + 1), || < Ce™". The case ¢ = 0 can be obtained by improving
the estimates (as indicated above) when Im z > 0.

(e) Notice that, with (10.10.4.2)),
—Im (&, cu,u) + Im (L. cu, 1 je(L)u) = —Im (&, cu, 1 ,(L)u)

> el L(L)ul® — Cel|1(L)ull| Z: cull.

>
2

By Cauchy-Schwarz,
(L. cu, w)| + | Zecull| e (L)ull = el l(L)ull? = Cel|1,(L)ull | Zecull,
so that, by (b)) and (c]), the conclusion follows.

O]
10.4.2. Limit Absorption Principle and consequence. —
Lemma 10.11. — For all bounded self-adjoint operator €,
|22 el < Ce2(1+ |62
Proof. — Insert u = £, €'y in (g), and the estimate follows. ]

Proposition 10.12 (Limit Absorption Principle). — For all bounded self-adjoint oper-
ator € such that € .o/ and /'€ are bounded, we have

3C, g0 > 0,Ve € (0,0), sup ||€(L —2—-icB) €| <C,

Im2>0,RezeJ

and

sup |16(Z —2)7'¢|| < C.

Im z>0,RezeJ

Proof. — We set ' = %fzj‘f and we have, taking the derivative w.r.t. &,
d
de
On the other hand, by construction, we have

B=L,idd) = |Loet 2+ icB,idd) = [L...idl] — | B, ).

iF = z%gzj;( gz,g),aﬂzj;% — 6L BL)E.
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There remains

iF' =CL Lo id| L€ —ie€ (L + )L (L +i) L o), 2L )C .
Since &7 ¢ and € </ are bounded, we have

€L Lo, A LCN < NCALLC| + €L AN < | LC| + |62,
Thanks to (ii) and (d)), we have
|FIl < CIZ2EN S 21+ [ FII%).

We have || F|| < Ce™! and thus, by integrating, || F'|| < C|Ine¢|. Therefore, F is bounded
by using again the differential inequality. [

Choosing 4 = /1, using the density of Dom (%), and applying Proposition

we deduce that the spectrum of . in J is a.c. and that there is no eigenvalue in J.

10.4.3. Example of Mourre estimates. — We want to provide here the Reader with a
paradigmatic example of the Mourre method. In the literature, this example is sometimes
called the Virial Theorem. Consider

L =-0:+V(z),
where V' is (real) non-negative, and smooth. We assume that V (z), zV'(x), and 2*V" (z)
are bounded. The natural domain of . is H?(R¢). We let
o = —%(m@x + 0,7) = —izd, — %

Let us now inspect the Mourre assumptions. A computation gives
(L, ] = —i(—202 — 2V'(2)) = —i(2ZL — 2V — 2V'(2)).
In particular,
B=|Lid]=2(L-V)—aV'(z)=2L4+W(x), W()=-=2V(x)—aV'(z).
Then
L, o), | = =2iL, )+ 2]V, 20, + [2V'(x), 20,]
=2(2% -2V —2V'(z)) — 22V (x) — x(-V'(-)) (x)
= 4L — 4V — 5V (z) — 2*V"(x) .

From the assumptions on V, we deduce that the assumptions on the commutators are
satisfied. Let us now turn to the < positive commutator assumption >. Consider £y > 0
and n > 0. We let J = [Ey — 1, Eo + n]. Let us notice that

(BLIL), L(L)Y) = ((2(Eo —n) + W)1,(L), 1,(L)Y)
Therefore, we see that the positivity of
2(Ey — V(x)) —2V'(x)
is a key of the positive commutator assumption. Thus, we assume that V' satisfies
(10.10.4.3) 2(Ey —V(z)) —a2V'(x) 2 ¢ >0.

Up to shrinking 7, we get the positive commutator.

This shows that the spectrum of . lying in (Ey — 1, Ey + 1) is absolutely continuous
and that there is no eigenvalue in this window. The inequality (10.10.4.3) is satisfied for
all E € (||V||o0, +00) as soon as xV’(x) < 0 (which is satisfied for all even V' having a
maximum at 0 and being non-increasing on (0, +00)). When V' = 0, we recover that the
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(positive) spectrum of —d? is absolutely continuous. This fact can be directly proved by
noticing that, for all f € 60 (R),

(L) = (i) = [ FENate) de.,
where 4 denotes the unitary Fourier transform of . By using a change of variable, we get
)2 o WAV a(= VAP
f §I"d¢ = f) dA.
0 2v/A

This shows that, for all u € L*(R),
[a(VA)” +a(=VA)P
2V/A

which implies that dy,,,, is absolutely continuous with respect to dA.

),

dﬂ'u,u =1 [0,4-00) (/\)

10.5. Notes
1. Section has been inspired by the Ph. D. dissertation of S. Gottwald [10, Ap-
pendix C], and many discussions with S. Fournais and T. stergaard-Sgrensen.

ii. Section [10.4|is inspired by the original paper [23] and also [4, Section 4.3], but pro-
vides a different presentation centered around coercivity estimates. This section has
benefited of discussions with E. Soccorsi.



APPENDIX A

REMINDERS OF FUNCTIONAL ANALYSIS

This appendix contains various prerequisites of functional analysis that are needed in
this book.

A.1. Hahn-Banach theorem

Let £ and F' be two normed vector spaces on K = R or K = C, equipped respectively
with the norms ||- || g and ||-|| ». We recall that the space of bounded operators 7" : £ — F
is denoted by L(F, F'). Recall that the topological dual £’ of E is L(F, K).

Theorem A.1 (Analytic Hahn-Banach Theorem). — Let G C FE be a subspace of
E, and S : G — K be a bounded operator. Then, there exists a bounded operator
T : E — K such that:

Vr € G, T(x) = S(x),
and

1T = sup [[T(2)] = [IS][= sup [S(2)].

|z]|g<1,2z€FE |z||E<1,2€CG

The following corollary is used several times in this book.

Corollary A.2. — Let E be a normed vector space. Then,

Ve e E, lz||p = max |
ITl<1, Tem

T(z)|-

Proof. — For x = 0, this is obvious. Now, fix any = € E'\ {0}, and consider the subspace
G, = {tx;t € K} C F, as well as the application S, : G, — K given by

Se(tx) =t||z]| g -
We have S, € G’ and ||S,|| = 1. Since
7)< l=l=lT1,

it is clear that

sup || T(2)[ < ||zl
IT<1,TeE

By the Hahn-Banach theorem, we can find T;, € E’ such that T3, ;, = S, and || T[] = 1.
It follows that

ITe(@)[| = 1Se ()| = llzlle < sup | T(x)]].

ITI<1,Tek

Therefore, the supremum equals ||z|| g, and it is a maximum achieved for 7" = T},. O
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A.2. Baire theorem and its consequences
In this section, we recall the various important consequences of the Baire theorem.

Theorem A.3 (Baire Theorem). — Let (X, d) be a complete metric space. Consider a

sequence (Uy)nen of dense open sets in X. Then, the intersection ﬂ U, is dense in X.
neN

Proof. — Fix any a = x¢p € X and any € = ¢; > 0. Since the set U; is dense, we know
that Uy N B(xo, £0/2[# 0. In particular, we can find 1 and 0 < &1 < £y/2 such that

X € Ul, d(l’o,.??l) < 60/2, B(L’El,z’:‘ﬂ c U;.
We can repeat this operation with the couple (z1,e1) € X x R, and so on. This yields a
sequence ((zn,&,)), with (z,,€,) € X x R} satisfying
x, € U,, d(Tp_1,2,) <2 "1, B(xy, e, C Uy, 0<en<en1/2.
Notice that
q
Vip.q) eN’, p<q,  dayay) < Y dwa,m,) <277,
n=p+1

which implies that (z,,),, is a Cauchy sequence. Since X is complete, it converges to some
x € X. Passing to the limit (¢ — +00) in the above inequality, we get

+oo
Vp € N*, d(zp,x) < Z d(Tp, Tny1) <27, < g,
=p

Thus, we have © € B(z,,¢,] C U, and :
d(z,a) < d(z,z1) + d(z1,20) < &1+ (80/2) <eg=¢.

As stated, some z € m U, can be selected at any distance ¢ > 0 from a € X. O]
neN

A rather straightforward consequence of the Baire theorem is the following.

Theorem A.4 (Uniform Boundedness Principle). — Let E and F' be Banach spaces.
Consider a family (T}) e of bounded operators T; : E — F such that

Ve e E, sup || T;(z)]] < +o0.
jeJ

Then,

sup || 75| < +o0.
jed

With a little work, we can show that the Baire theorem implies the Open Mapping
Theorem.

Theorem A.5 (Open Mapping Theorem). — Let I and F' be Banach spaces. Consider
a surjective bounded operator T' : E — F. Then, T' transforms open sets into open sets.

A straightforward consequence is the following.

Theorem A.6 (Banach Isomorphism Theorem). — Let E and F' be Banach spaces.
Consider a bijective bounded operator T : E — F. Then, T~ is bounded.

The previous theorem implies the Closed Graph Theorem.
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Theorem A.7 (Closed Graph Theorem). — Let E and F be Banach spaces. Consider
a bounded operator T : EE — F'. Then, the operator T is bounded if and only if its graph

I(T) :={(z,Tx) ,x € E}

is closed for the canonical topology on E x F.

A.3. Ascoli Theorem

According to the Bolzano-Weierstrass theorem, any bounded sequence of real numbers
has a convergent subsequence. This theorem can easily be extended to finite dimensional
K-vector spaces. In infinite dimension, especially in functional spaces, we have first to
introduce a reasonable notion of boundedness.

Consider a compact topological space (X, 7)) and a complete metric space (E, d). Let
F C ¢°(X,E) . Typically, the Reader can imagine that X = [0, 1], that .7 is the
topology induced by the absolute value, and that (£, d) = (C, | - |).

Remark A.8. — Remember the following definitions and facts:

(a) A part of a metric space is precompact when, for all ¢ > 0, it may be covered by a
finite number of balls of radius € > 0.

(b) In a complete metric space, being precompact is equivalent to having a compact
closure (sometimes called relative compactness).

(c) In finite dimension, precompact is equivalent to bounded.

Definition A.9 (Pointwise precompactness). — The set .# is pointwise precompact
when, for all z € X, the set .% (x) is precompact in (£, d).

When dealing with sequences of functions and uniform convergence, there is no direct
extension of the Bolzano-Weierstrass theorem. Just consider f,(x) = sin(nx) on [0, 27]
with n € N to obtain a counter-example. Some additional conditions are imposed.

Definition A.10 (Equicontinuity). — The set .# is equicontinuous when for all z € X
and all ¢ > 0, there exists O, € .7 such that

yeO, = VfeZ, d(f(y),f(x))<e.

Theorem A.11 (Ascoli Theorem). — The set .% is equicontinuous and pointwise pre-
compact if and only if F has a compact closure in €°(X, E) (this means that, from any
sequence in ¥, we can extract a uniformly convergent sequence).

Remark A.12. — Assume that % = (f,,),en is equicontinuous and pointwise bounded.
Then, Ascoli Theorem implies that we can find f € €°(X, E) such that, for all ¢ > 0,
there exists N € N such that

VreX, YnzN, d(fu(z), f(z) <e.

Proof. — (i) Necessary condition. Let .# be a precompact subset of €°(X, F). Let
¢ > 0. There exist fi,--- , fy such that

N
F | JBa.(fire).
=1
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The finite part { f1,--- , fx} is equicontinuous. Let x € X. Consider O, being the
open set given by the continuity of the f;. If f € .#, there exists i € {1,--- N}
such that d(f, f;) < e. Forally € O,,

d(f(x), f(y)) < d(f(z), fi(x)) + d(fi(z), fi(y)) + d(fi(y), f(y)) < 3e.

The application .# > f ~ f(x) € E is continuous. It sends .% onto a compact set
of E. Thus, .# () is included in a compact and is precompact.

(i1) Sufficient condition. We assume that

Ve>0,Ve e X, 30, € T,Vfe A Vye O, = d(f(x), f(y)) <e.

We have X = |J, .y O,. From the compactness of X, we can find finitely many x;
such that
N
x=Jo.,.
i=1
Consider

CZUme

The set C' C E is precompact. Let ¢ > 0. We can find finitely many ¢; € E such
that

C C | Balej.2).

=1
Ifo:{1,---n}—{1,--- ,m},wejset
L,={f¢€ € X,E):Vie{l,--- n},Vy€O,,: d(f(y), cow)) < 2e}.
Let f € #.Foralli € {1,---,n}, there exists O,, such that
Vy € Oy, d(f(y), f(xi)) <e.

Since f(x;) € C, there exists j; € {1, ---m} such that d(f(x;), c;,) < e. Therefore
- is covered by the finite union of the L. The diameter of each L, is less than 4¢.
O

A.4. Sobolev spaces

In this book, we often use, in the examples, a rough notion of distribution. The aim of
this section is just to define weak derivatives in LP({2), without entering into the general
theory of distributions.

Definition A.13. — Let Q) be an open set of R? and p € [1, +oc]. We denote

mﬂ%@):{uelfGD:Vje{L“wd}ﬁﬂ}EL%Q%VUE%?%Q%

/uajvda::—/fjvdx}.
Q Q

Remark A.14. — By using standard density arguments, we can show that the f; are
unique and, when u € W'P(Q2), we let ;u := f;, forall j € {1,...,d}.
When p = 2, we use the classical notation H'(Q2) = W2(Q).
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Definition A.15. — Let € be an open set of R? and p € [1, +oc]. We denote

WP () = {u € LP(Q) : Yo € N with [a| < m, 3fa € LP(Q), Yo € €°(Q)

/u@avdx— |a/f vdx
)

Remark A.16. — The f, are unique, and we let f, = 0“u. When p = 2, we use the
classical notation H™ () = W™2(Q).

We can check that W™?(QQ) C 2'(£2). In this book, we only meet functions in Sobolev
spaces, but we can use the convenient language of the distributions.

Definition A.17. — We say that a sequence (7,,) C W™P(Q2) converges to 7' € W™P((QQ)
in the sense of distributions when

Vo e 2(Q) =€), (Tn,9)o )20 ;:/ Twpdr — (T,0)o@),2() -
Q

n—-+0o00

A.5. Notes
i. A proof of the Hahn-Banach theorem can be found in [28, Chapter 3].

ii. Various consequences of the Baire Theorem are proved in [28, Chapter 2].

iii. Our version and proof of the Ascoli Theorem are adaptations of [6, Chapter VII,
Section 5].
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