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Notations

X Topological space

∂X Boundary of a topological space

M Manifold

Rd Euclidean space of dimension d

σ, τ d-simplex, face of a d-simplex

v, e, t, T Vertex, edge, triangle and tetrahedron

Lk(σ), St(σ) Link and star of a simplex

Lkd(σ), Std(σ) d-simplices of the link and the star of a simplex

K Simplicial complex

T Triangulation

M Piecewise linear manifold

βi i-th Betti number

χ Euler characteristic

αi ith barycentric coordinates of a point p relatively to a simplex σ

f : T → R Piecewise linear scalar field

∇ f Gradient of a PL scalar field f

Lk−(σ), Lk+(σ) Lower and upper link of σ relatively to f

o(v) Memory position offset of the vertex v

L−(i), L+(i) Sub- and sur-level set of the isovalue i relatively to f

D( f ) Persistence diagram of f

C( f ) Persistence curve of f

R( f ) Reeb graph of f

l(R( f )) Number of loops of R( f )

T ( f ) Contour tree of f

J ( f ), S( f ) Join and split trees of f

MS( f ) Morse-Smale complex of f
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This document introduces the key concepts and algorithms of Topologi-

cal Data Analysis in low dimensions. First, the input data representa-

tion is formalized. Second, some of the core concepts of Topological Data

Analysis are presented, including critical points, notions of Persistent Ho-

mology, Reeb graphs and Morse-Smale Complexes. Finally, a brief review

of the state-of-the-art algorithms is presented.

For the reader’s convenience, the most important definitions and prop-

erties are highlighted with boxes.

For further readings, I refer the reader to the excellent introduction to

Computational Topology by Edelsbrunner and Harer (EH09).
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1.1. Data representation 5

“The most applicable of all is a good theory.”

Herbert Edelsbrunner.

1.1 Data representation

In scientific visualization, scalar data is in general defined on an input

geometrical object (hereafter named “Domain”). It is represented by a finite

set of sample values, continuously extended in space to the entirety of

the domain thanks to an interpolant. In the following, I first formalize a

generic domain representation. Next, I formalize a representation of the

scalar data on this object (hereafter termed “Range”).

1.1.1 Domain representation

In the following, I formalize a generic domain representation. This notion

is introduced constructively. At the end of the subsection, I further de-

scribe topological notions relative to this domain representation that will

be used in the remainder of the manuscript.

Preliminary notions

Definition 1 (Topology) A topology on a set X is a collection T of subsets of X having the

following properties:

• The sets ∅ and X are in T;

• The union of any sub-collection of T is in T;

• The intersection of a finite sub-collection of T is in T.

Definition 2 (Topological space) A set X for which a topology T is defined is called a topo-

logical space.

For example, the space of real numbers R is a topological space.

Definition 3 (Open set) A subset A ⊂ X of the topological space X is an open set of X if it

belongs to T.

Definition 4 (Closed set) A subset B ⊂ X of the topological space X is a closed set of X if its

complement X−B is open.

Intuitively, open sets are subsets of topological spaces which do not

contain their boundaries. For example, considering the space of real num-

bers R, (−∞, 0) ∪ (1,+∞) and [0, 1] are complements and respectively

open and closed sets.
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Figure 1.1 – Example of 2-manifold: any point of the surface (left, black dot) has an open

neighborhood (textured chart) that is homeomorphic to an open Euclidean 2-ball (that can

be unfolded to the plane, right).

Property 1 (Open sets)

• The set ∅ is open;

• The union of any number of open sets is open;

• The intersection of a finite number of open sets is open.

These properties follow from the definition of topology.

Definition 5 (Covering) A collection of subsets of a topological space X is a covering of X if

the union of all its elements is equal to X.

Definition 6 (Compact topological space) A topological space X is compact if every open

covering of it contains a finite sub-collection that is also a covering of X.

Definition 7 (Function) A function f : A → B associates each element of the topological

space A with a unique element of the topological space B.

Definition 8 (Injection) A function f : A → B is an injection if for each pair a1, a2 ∈ A

such that a1 6= a2, f (a1) 6= f (a2). f is said to be one-to-one.

Definition 9 (Bijection) A function f : A→ B is a bijection if for each element b ∈ B there

is exactly one element a ∈ A such that f (a) = b. f is said to be bijective. It is

also said to be one-to-one (injective) and onto (surjective).

Definition 10 (Continuous function) A function f : A → B is continuous if for each open

subset C ∈ B, the set f−1(C) is an open subset of A.

Definition 11 (Homeomorphic spaces) Two topological spaces A and B are homeomorphic

if and only if there exists a continuous bijection f : A → B with a continuous

inverse f−1 : B→ A. f is a homeomorphism.
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Figure 1.2 – Examples of convex (left) and non-convex (right) 3-manifolds (volumes).

On the left, any two points (green and blue spheres) can be linked by a line segment that

belongs to the volume (white cylinder). This is not the case for the right volume.

Definition 12
(Manifold) A topological space M is a d-manifold if every element m ∈M has

an open neighborhood N homeomorphic to an open Euclidean d-ball.

An intuitive description of a d-manifold is that of a curved space,

which has locally the structure of an Euclidean space of dimension d,

but which has a more complicated global structure (Euclidean spaces are

therefore special cases of manifolds). Figure 1.1 illustrates this with the

example of a 2-manifold (surface).

Domain formalization

In the following we formally introduce our domain representation as well

as representations for connectivity information.

Definition 13 (Convex set) A set C of an Euclidean space Rn of dimension n is convex if for

any two points x and y of C and all t ∈ [0, 1] the point (1− t)x + ty also belongs

to C.

Intuitively, a convex set is a set such that any two points of the set

can be linked by a line segment that belongs to the set, as illustrated with

3-manifolds (volumes) in Figure 1.2.

Definition 14 (Convex hull) The convex hull of a set points P of an Euclidean space Rn is the

unique minimal convex set containing all points of P .

Definition 15 (Simplex) A d-simplex is the convex hull σ of d + 1 affinely independent points

of an Euclidean space Rn, with 0 ≤ d ≤ n. d is the dimension of σ.

Definition 16 (Vertex) A vertex v is a 0-simplex of R3.
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Figure 1.3 – Illustrations of 0 (green), 1 (blue), 2 (white) and 3-simplices (transparent),

from left to right, along with their faces.

Definition 17 (Edge) An edge e is a 1-simplex of R3.

Definition 18 (Triangle) A triangle t is a 2-simplex of R3.

Definition 19 (Tetrahedron) A tetrahedron T is a 3-simplex of R3.

Definition 20 (Face) A face τ of a d-simplex σ is the simplex defined by a non-empty subset of

the d + 1 points of σ, and is noted τ ≤ σ. We will note τi a face of dimension i.

In summary, a d-simplex is the smallest combinatorial construction

that can represent a neighborhood of a d-dimensional Euclidean space.

As illustrated in Figure 1.3, it is composed of faces, that are themselves

(d− 1), (d− 2), . . . , and 0-simplices.

Definition 21 (Simplicial complex) A simplicial complexK is a finite collection of non-empty

simplices {σi}, such that every face τ of a simplex σi is also in K, and any two

simplices σi and σj intersect in a common face or not at all.

Definition 22 (Star) The star of a simplex σ of a simplicial complex K is the set of simplices

of K that contain σ: St(σ) = {τ ∈ K, σ ≤ τ}. We will note Std(σ) the set of

d-simplices of St(σ).

Definition 23
(Link) The link of σ is the set of faces of the simplices of St(σ) that are disjoint

from σ: Lk(σ) = {τ ≤ Σ, Σ ∈ St(σ), τ ∩ σ = ∅}. We will note Lkd(σ) the set

of d-simplices of Lk(σ).

In other words, the star of a simplex σ is the set of simplices having σ

as a face, as illustrated Figure 1.4 (top). The notion of link is illustrated at

the bottom of Figure 1.4.

Definition 24 (Underlying space) The underlying space of a simplicial complex K is the

union of its simplices |K| = ∪σ∈Kσ.
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Figure 1.4 – Illustrations of stars (green, top) and links (blue, bottom) for 0, 1 and

2-simplices (white, from left to right) of a 3-dimensional simplicial complex.

Definition 25
(Triangulation) The triangulation T of a topological space X is a simplicial

complex K whose underlying space |K| is homeomorphic to X.

The notion of triangulation has been preferred here to other compet-

ing representations for its practical genericity: any mesh representation

(regular grid, unstructured grid, etc.) can be easily converted into a trian-

gulation by subdividing each of its d-cells into valid d-simplices (having

only (d + 1) linearly independent points), as illustrated in Figure 1.5 for

the case of a regular grid. Also, note that for regular grids, the resulting

triangulation can be implicitly encoded (i.e. adjacency relations can be re-

trieved on demand, without storage, thanks to the recurring subdivision

pattern of the regular grid). Moreover, as detailed in the next subsection,

triangulations can be accompanied with well-behaved interpolants, which

facilitate reasoning and computation with scalar data.

Figure 1.5 – A 3-dimensional regular grid (left) can be easily converted into a trian-

gulation by subdividing each of its voxels independently into 5 tetrahedra (center, right:

exploded view). This subdivision can be implicitly encoded.
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Figure 1.6 – Example of PL 3-manifold (left, right: clipped view).

As discussed further down this manuscript, for reasoning and robust-

ness purposes, the following, more restrictive, notion is often preferred

over triangulations.

Definition 26
(Piecewise Linear Manifold) The triangulation of a manifold M is called a

piecewise linear manifold and is notedM.

Therefore, a piecewise linear (PL) manifold is a combinatorial repre-

sentation of a manifold that derives from the notion of triangulation, as il-

lustrated in Figure 1.6. It can be efficiently represented in memory by stor-

ing for each dimension d, the list of d-simplices as well as their stars and

links. In the remainder of this manuscript, we will consider PL-manifolds

as our generic domain representations.

Topological invariants

In the following, I describe a few topological invariants: entities that do

not change under continuous transformations of the domain (variations

in point positions but no variation in connectivity). These notions are

instrumental in Topological Data Analysis.

Definition 27 (Path) A homeomorphism p : (a, b) → C from an open interval (a, b) ⊆ R to a

subset C of a topological space X is called a path on X between p(a) and p(b).

Definition 28 (Connected topological space) A topological space X is connected if for any

two points of X there exists a path between them on X. be

Definition 29 (Connected components) The maximally connected subsets of a topological

space X are called its connected components.

Definition 30 (Homotopy) A homotopy between two continuous functions f and g is a

continuous function H : X× [0, 1] → Y from the product of a topological space
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Figure 1.7 – Examples of disconnected, connected and simply connected domains (from

left to right).

X with the closed unit interval to a topological space Y such that for each point

x ∈ X, H(x, 0) = f (x) and H(x, 1) = g(x). If there exists a homotopy between

them, f and g are said to be homotopic.

While homeomorphism deals with the matching between neighbor-

hoods, homotopies additionally require that a continuous transformation

exist between them, by considering neighborhoods as images of functions

(the notion of homotopy is then refined to that of isotopy). Here, the sec-

ond parameter of an homotopy can be seen as time in this continuous

transformation process. For instance, a circle and a knot are homeomor-

phic but are not homotopic since the knot needs to be cut and stitched

back to be turned into a circle, which is not a continuous transformation.

Definition 31
(Simply connected topological space) A topological space X is simply con-

nected if it is connected and if for any two points of X, any two paths between

them on X are homotopic.

As illustrated in Figure 1.7, a domain is not simply connected if for

any two points, any pair of paths between them cannot be continuously

transformed into one another (black paths in Figure 1.7, right).

Definition 32 (Boundary) The boundary of a topological space X, noted ∂X, is the complement

in X of the subspace of X, called the interior of X, composed of all the elements

x ∈ X such that x has an open neighborhood N.

Definition 33 (Boundary component) A boundary component of a topological space X is a

connected component of its boundary ∂X.

Definition 34 (p-chain) A p-chain of a triangulation T of a topological space X is a formal

sum (with modulo 2 coefficients) of p-simplices of T .
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Definition 35 (p-cycle) A p-cycle of a triangulation T of a topological space X is a p-chain

with empty boundary.

Definition 36 (Group of p-cycles) The group of p-cycles of a triangulation T of a topological

space X is the group of all p-cycles of T , noted Zp(T ), which forms a sub-group

of all p-chains of T .

Definition 37 (p-boundary) A p-boundary of a triangulation T of a topological space X is the

boundary of a (p + 1)-chain.

Property 2 (p-boundary) A p-boundary is a p-cycle.

Definition 38 (Group of p-boundaries) The group of p-boundaries of a triangulation T of

a topological space X is the group of all p-boundaries of T , noted Bp(T ), which

forms a sub-group of all p-cycles of T .

Definition 39 (Homology group) The pth homology group of a triangulation T of a topo-

logical space X is its pth cycle group modulo its pth boundary group: Hp(T ) =
Zp(T )/Bp(T ).

Intuitively, two p-cycles are said to be equivalent, or homologous, if

they can be continuously transformed into each other (through formal

sums with modulo 2 coefficients) without being collapsible to a point.

Then, one can further group p-cycles into classes of equivalent p-cycles.

Each class can be represented by a unique representative p-cycle that is

called generator (and that is homologous to any other p-cycle of the class),

as illustrated in Figure 1.8 with a green 1-cycle (center) and a green 2-

cycle (right). Enumerating the number of generators of a homology group

enables to introduce intuitive topological invariants called Betti numbers.

Definition 40

(Betti number) The pth Betti number of a triangulation T of a topological space

X is the rank of its pth homology group: βp(T ) = rank(Hp(T )).

In low dimensions, Betti numbers have a very concrete interpretation.

For instance, for PL 3-manifolds, β0 corresponds to the number of con-

nected components, β1 to the number of handles and β2 to the number of

voids, as illustrated in Figure 1.8 (β3 is equal to 0 for PL 3-manifolds with

boundary, i.e. that can be embedded in R3).
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Figure 1.8 – Examples of PL 3-manifolds with varying Betti numbers. From left to right:

a 3-ball, a solid torus, a 3-ball with a void. From left to right, (β0, β1, β2) is equal to

(1, 0, 0), (1, 1, 0), and (1, 0, 1)). Generators are displayed in green, while examples of

non-generator p-cycles are displayed in blue.

Definition 41
(Euler characteristic) The Euler characteristic of a triangulation T of a topo-

logical space X of dimension d, noted χ(T ), is the alternating sum of its Betti

numbers: χ(T ) = ∑i=d
i=0(−1)iβi(T ).

Property 3 (Euler characteristic) The Euler characteristic of a triangulation T of a topo-

logical space X of dimension d is also equal to the alternating sum of the number

of its i-simplices: χ(T ) = ∑i=d
i=0(−1)i|σi|.

1.1.2 Range representation

In the following, I formalize a range representation based on the previ-

ously introduced domain representation. Additionally, I will introduce a

few related geometrical constructions that will be instrumental to Topo-

logical Data Analysis.

Piecewise linear scalar fields

Definition 42
(Barycentric coordinates) Let p be a point of Rn and σ a d-simplex. Let α0, α1,

. . . , αd be a set of real coefficients such that p = ∑i=d
i=0 αiτ

i
0 (where τi

0 is the ith

zero dimensional face of σ) and such that ∑i=d
i=0 αi = 1. Such coefficients are called

the barycentric coordinates of p relatively to σ.

Property 4 (Barycentric coordinates) The barycentric coordinates of p relative to σ are

unique.

Property 5 (Barycentric coordinates) If and only if there exists an i for which αi /∈ [0, 1],

then p does not belong to σ, otherwise it does.



14 Chapter 1. Introduction to Topological Data Analysis

Figure 1.9 – Example of PL scalar field f defined on a PL 3-manifold M. From left to

right: restriction f̂ of f on the 0-simplices of M, f (the color coding denotes the linear

interpolation within each simplex), clipped view of f .

Definition 43

(Piecewise Linear Scalar Field) Let f̂ be a function that maps the 0-simplices of

a triangulation T to R. Let f : T → R be the function linearly interpolated from

f̂ such that for any point p of a d-simplex σ of T , we have: f (p) = ∑i=d
i=0 αi f̂ (τi

0)

(where τi
0 is the ith zero dimensional face of σ). f is called a piecewise linear

(PL) scalar field.

Piecewise linear scalar fields will be our default representation for

scalar data. Typically, the input data will then be given in the form of

a triangulation with scalar values attached to its vertices ( f̂ ). The linear

interpolation provided by the barycentric coordinates can be efficiently

computed on demand (on the CPU or the GPU, as illustrated in Figure 1.9)

and has several nice properties that makes it well suited for combinatorial

reasonings.

Property 6 (Gradient of a Piecewise Linear Scalar Field) The gradient ∇ f of a PL scalar field

f : T → R is a curl free vector field that is piecewise constant (constant within

each d-simplex of T ).

This property has several implications that will be discussed in the

following subsections.

Definition 44 (Lower Link) The lower link Lk−(σ) (respectively the upper link Lk+(σ)) of

a d-simplex σ relatively to a PL scalar field f is the subset of the link Lk(σ) such

that each of its zero dimensional faces has a strictly lower (respectively higher) f

value than those of σ.

Given the above definition, it is often useful to disambiguate configura-

tions of equality in f values between vertices (thus equalitiy configurations

in f̂ ). Therefore, f̂ is often slightly perturbed with a mechanism inspired

by simulation of simplicity (EM90) to turn f̂ into an injective function. This

can be achieved in the following way, by adding to f̂ a second function ĝ
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Figure 1.10 – Example of level set (isosurface, left) of a PL scalar field defined on a PL

3-manifold. Right: restriction of the isosurface to a 3-simplex.

that is injective. Let o(v) denote the position integer offset of the vertex

v in memory. o(v) is injective. Then, to turn f̂ into an injective function,

one needs to add to it εo(v) where ε is an arbitrarily small real value. As

the original simulation of simplicity, this mechanism can be implemented

numerically (by choosing the smallest possible value for ε depending on

the machine precision) or preferably symbolically by re-implementing the

necessary predicates. For instance, to decide if a vertex v0 is lower than

a vertex v1, one needs to test f̂ (v0) < f̂ (v1) and, in case of equality, test

o(v0) < o(v1) to disambiguate. In the following, we will therefore con-

sider that f̂ is always injective in virtue of this mechanism. Therefore, no

d-simplex of T collapses to a point of R through f for any non-zero d.

Related geometrical constructions

Based on our representation for scalar data on geometrical domains, I will

now introduce a few geometrical constructions that will be instrumental

in Topological Data Analysis.

Definition 45 (Sub-level set) The sub-level set L−(i) (respectively the sur-level set L+(i))

of an isovalue i ∈ R relatively to a PL scalar field f :M→ R is the set of points:

{p ∈ M | f (p) ≤ i} (respectively {p ∈ M | f (p) ≥ i}).
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Definition 46

(Level set) The level-set f−1(i) of an isovalue i ∈ R relatively to a PL scalar

field f : M → R is the pre-image of i onto M through f : f−1(i) = {p ∈
M | f (p) = i}.

Property 7 (Level set) The level set f−1(i) of a regular isovalue i ∈ R relatively to a PL

scalar field f :M→ R defined on a PL d-manifoldM is a (d− 1)-manifold.

Property 8 (Level set) Let f : T → R be a PL scalar field and σ be a d-simplex of T . For

any isovalue i ∈ f (σ), the restriction of f−1(i) within σ belongs to an Euclidean

subspace of Rd of dimension (d− 1).

This latter property directly follows from the property 6 on the gra-

dient of PL scalar fields, which is piecewise constant (a level set is ev-

erywhere orthogonal to the gradient). It follows that the level sets of PL

scalar fields defined on PL manifolds can be encoded as PL manifolds, as

illustrated with the white PL 2-manifold in Figure 1.10 (right).

Property 9 (Level set) Let f : T → R be a PL scalar field and σ be a d-simplex of T . For any

two isovalues i 6= j belonging to f (σ), the restrictions of f−1(i) and of f−1(j)

within σ are parallel.

This property also follows from the property 6 on the gradient of PL

scalar fields and is illustrated in Figure 1.10 (right, dark gray isosurfaces),

which shows an isosurface restricted to a 3-simplex (i.e. a level set of a

PL scalar field defined on a PL 3-manifold). Such strong properties (pla-

narity and parallelism) enable to derive robust and easy-to-implement al-

gorithms for level set extraction (called “Marching Tetrahedra” for PL 3-

manifolds, and “Marching Triangles” for PL 2-manifolds).

Definition 47 (Contour) Let f−1(i) be the level set of an isovalue i relatively to a PL scalar field

f : T → R. Each connected component of f−1(i) is called a contour.

Definition 48
(Integral line) Let f : M → R be a PL scalar field defined on a PL manifold

M. An integral line is a path p : R→ C ⊂ M such that ∂
∂t p(t) = ∇ f (p(t)).

limt→−∞ p(t) and limt→∞ p(t) are called the origin and the destination of the

integral line respectively.

In other words, an integral line is a path which is everywhere tangen-

tial to the gradient. In virtue of property 6 on the gradient of PL scalar

fields, it follows that integral lines can be encoded as PL 1-manifolds, as

illustrated with the white PL 1-manifold in Figure 1.11 (right).
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Figure 1.11 – Examples of integral line (left) of a PL scalar field defined on a PL 3-

manifold. Right: restriction of the integral line to a 3-simplex.

1.2 Topological abstractions

Level sets (and especially contours) and integral lines are fundamental ge-

ometrical objects in Scientific Visualization for the segmentation of regions

of interests (burning flames in combustion, interaction pockets in chem-

istry, etc.) or the extraction of filament structures (galaxy backbones in

cosmology, covalent interactions in chemistry, etc.).

Intuitively, the key idea behind Topological Data Analysis is to seg-

ment the data into regions where these geometrical objects are homoge-

neous from a topological perspective, and to summarize these homogene-

ity relationships into a topological abstraction. Such a segmentation strategy

enables to access these features more efficiently and to classify them ac-

cording to application dependent metrics for further processing.

In the following, I introduce such topological abstractions for feature

extraction, segmentation and classification purposes.

1.2.1 Critical points

In the smooth setting, critical points are points of a manifold where the

gradient of a smooth scalar field vanishes. Unfortunately, this notion does

not directly translate into the PL setting since the gradient of a PL scalar

field is piecewise constant. This requires to use an alternate definition,

which interestingly involves topological and combinatorial reasonings.

Morse theory (Mil63) relates the study of the topology of manifolds

to the study of a specific group of smooth scalar fields defined on them
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(called Morse functions). One of the key results of Morse theory is the

following property: the Betti numbers of the sub-level sets of a Morse

function only change in the vicinity of a critical point. In other words, the

topology of the sub-level sets only evolves when crossing a critical point.

This observation is at the basis of a formalization of critical points in the

PL setting.

Definition 49
(Critical point) Let f : M→ R be a PL scalar field defined on a PL manifold

M. A vertex v ofM is a regular point if and only if both Lk−(v) and Lk+(v)

are simply connected. Otherwise, v is a critical point of f and f (v) is called a

critical isovalue (as opposed to regular isovalues).

Definition 50 (Critical contour) Let f :M→ R be a PL scalar field defined on a PL manifold

M. A contour of f which contains one of its critical points is called a critical

contour.

In virtue of these definitions and the property 6 on their gradient, PL

scalar fields have many nice properties regarding their critical points.

Property 10 (Critical points) Let f : M → R be a PL scalar field defined on a compact

PL manifold M. The set of critical points of f , noted C f , contains only isolated

critical points and its cardinality |C f | is finite.

These properties follow from the fact that the gradient of a PL scalar

field is piecewise constant: f̂ is assumed to be injective, thus any d-simplex

with d 6= 0 is mapped to a non null gradient vector. Therefore, criti-

cal points are isolated and can only occur on vertices. This makes their

number finite for compact PL manifolds. This property is essential for

a combinatorial reasoning on critical points. Also, note that the above

definitions are independent of the dimension ofM.

Definition 51 (Extremum) Let f :M→ R be a PL scalar field defined on a PL manifoldM.

A critical point v is a minimum (respectively a maximum) of f if and only if

Lk−(v) (respectively Lk+(v)) is empty.

Definition 52 (Saddle) Let f : M → R be a PL scalar field defined on a PL manifold M. A

critical point v is a saddle if and only if it is neither a minimum nor a maximum

of f .

Figure 1.12 illustrates the notion of critical points on a toy example.

The evolution in the topology of the level sets can be observed in the right

insets, which illustrate vertex stars (the smallest combinatorial neighbor-
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Figure 1.12 – Scalar field on a terrain (left). A level set is shown in blue, a contour is

shown in white. Vertices can be classified according to the the connectivity of their lower

(blue) and upper (green) links. From left to right: a minimum (a, blue spheres on the

left), a regular point (b), a simple saddle (c, white spheres on the left) and a maximum (d,

green spheres on the left).

hood of a vertex in a triangulation). For a minimum (respectively a max-

imum) β0( f−1(i)) increases (respectively decreases) by one in the vicinity

of the extremum. For a regular point, this number does not evolve when

crossing a regular point. When crossing a saddle, the number of con-

nected components of the restriction of f−1(i) to the star of the vertex first

decreases by one exactly at the saddle and then increases by one right

above it.

Critical points are usually classified according to their index. For PL

scalar fields defined on PL 2-manifolds, minima have index 0, saddles

index 1 and maxima index 2. As the dimension of the domain increases,

the number of types of critical points also increases. For PL scalar fields

defined on PL 3-manifolds, minima have index 0, 1-saddles (saddles that

locally merge level sets) have index 1, 2-saddles (saddles that locally split

level sets) have index 2 and maxima index 3. In the following, we will

note Ci
f the set of critical points of f of index i.

Definition 53 (Saddle multiplicity) Let f : M → R be a PL scalar field defined on a PL

manifold M and let v be a saddle of f . Let k be the maximum value between

β0(Lk−(v)) and β0(Lk+(v)). The multiplicity of a saddle is equal to (k− 1).

A saddle of multiplicity 1 is called a simple saddle. It is called a multi-saddle

otherwise, or (k− 1)-fold saddle, or alternatively a degenerate critical point.

Definition 54
(PL Morse scalar field) Let f : M → R be a PL scalar field defined on a PL

manifoldM. f is a PL Morse scalar field if and only if (i) all its critical points

have distinct f values and (ii) f has no degenerate critical point.

In practice, any PL scalar field can be easily perturbed into a PL Morse

scalar field. The first condition can be easily satisfied by forcing f̂ to be

injective as described in the previous subsection. The second condition

can be satisfied by a process called multi-saddle unfolding (EH09), that
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Figure 1.13 – Minima (blue) and maxima (green) of the orthogonal curl component of a

flow simulation of the von Kármán street (flow turbulence behind an obstacle, here at the

left of the domain). Right: persistence curve of the field. Selecting extrema involved in

pairs more persistent than an increasing threshold (vertical lines, right) yields a hierarchy

of critical point sets (left). Here, the light green vertical line (right) corresponds to the

middle level (left) while the dark green line (right) corresponds to the bottom level (left).

In practice, a flat plateau in the persistence curve (right) often indicates a separation

between noise and features.

locally re-triangulates the star of a (k− 1)-fold saddle into (k− 1) simple

saddles.

Interestingly, PL Morse scalar fields inherit from most of the properties

of their smooth counter-parts. In particular, the Morse-Euler relation, as

first shown by Banchoff (Ban70), still holds for PL Morse scalar fields.

Property 11
(Morse-Euler relation) Let f : M → R be a PL Morse scalar field defined on

a closed PL manifoldM of dimension d. Then the Morse-Euler relation holds:

χ(M) = ∑i=d
i=0(−1)i|Ci

f |

This property nicely summarizes the relation between the critical

points of a PL Morse scalar field and the topology of its domain. More-

over, it also illustrates the global consistency of the local critical point

classification definition (definition 49).

In practice, critical points often directly translate into points of interest

application wise. For instance, in 2D vector fields obtained in computa-

tional fluid dynamics, extrema of the curl of the field indicate the locations

of vortices, a high-level notion that has important implications in the effi-

ciency evaluation of a flow (Figure 1.13, bottom).

1.2.2 Notions of persistent homology

As described in the previous subsection, critical points of PL scalar fields

can be extracted with a robust, localized yet globally consistent, combina-
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torial and inexpensive classification (definition 49). However, in practice,

this classification strategy will identify, among others, critical points corre-

sponding to slight function undulations coming from the noise in the data

generation process (acquisition noise, numerical noise in simulations), as

illustrated in Figure 1.13 (top). Therefore, to make critical point extrac-

tion reliable and useful in practice, one needs to derive a mechanism to

further classify critical points into noise or signal, given some application

dependent metric. This is the purpose of Persistent Homology.

Definition 55 (Filtration) Let f : K → R be an injective scalar field defined on a simplicial

complex K such that f (τ) < f (σ) for each face τ of each simplex σ. Let n be

the number of simplices of K and let L−(i) be the sub-level set of f by the ith

value in the sorted set of simplex values. The nested sequence of subcomplexes

L−(0) ⊂ L−(1) ⊂ · · · ⊂ L−(n− 1) = K is called the filtration of f .

The general notion of filtration is preferred here to the more specific

notion of lower star filtration (specifically adapted to PL scalar fields) as

this general introduction will be useful in the next subsections.

Definition 56 (Homomorphism) A homomorphism is a map between groups that commutes

with the group operation.

For instance, the group operation for the group of p-chains is the for-

mal sum of p-simplices (see definition 34).

The filtration of a scalar field f induces a sequence of homomorphisms

between the homology groups of the subcomplexes of K:

Hp(L−(0))→ Hp(L−(1))→ · · · → Hp(L−(n− 1)) = Hp(K) (1.1)

Definition 57 (Persistent homology group) The pth persistent homology groups are the

images of the homomorphisms induced by inclusion, noted Hi,j
p , for 0 ≤ i ≤ j ≤

n− 1. The corresponding pth persistent Betti numbers are the ranks of these

groups, β
i,j
p = rank(Hi,j

p ).

Figure 1.14 provides a visual interpretation of the notion of 0th per-

sistent Betti number, which characterizes connected components. Given

two nested sub-complexes L−(i) and L−(j), with i < j, the sub-complex

induced by inclusion with regard to the 0th homology group is noted

L−(i, j): it is defined by the connected components of L−(j) which have

non empty intersections with these of L−(i) (which includes them). The

0th homology group of L−(i, j) is composed of the classes of the 0th ho-



22 Chapter 1. Introduction to Topological Data Analysis

Figure 1.14 – Sub-complexes induced by the filtration of a PL scalar field defined on a

PL 3-manifold (dark blue: L−(i), light blue: L−(j)). From left to right: β0(L−(i)) = 3,

β0(L−(j)) = 4, β0(L−(i, j)) = 2.

mology group that already existed at the ith isovalue and which still exist

at the jth isovalue.

In this example, only 2 of the 4 connected components of L−(j) in-

clude connected components of L−(i). Therefore, among the 3 connected

components of L−(i), only 2 of them are persistent in the interval [i, j].

Therefore, persistent homology provides a mechanism to characterize

the importance of topological features (here connected components) with

regard to a specific measure (here a PL scalar field), at multiple scales

(here the interval [i, j]). This interpretation can be generalized to other

topological features (for PL 3-manifolds cycles and voids) by extending it

to other Betti numbers.

The previous example illustrated the case where a class of the 0th ho-

mology group (representing a connected component) disappeared in be-

tween the ith and jth isovalues: β0(L−(i)) = 3, β0(L−(i, j)) = 2. One

can further track the precise isovalue where classes appear, disappear or

merge with others. Such events correspond to a change in the Betti num-

bers of the sub-level set of the scalar field. As discussed in the previous

subsection, these changes occur at critical points. Therefore, the notions of

birth and death of classes of persistent homology groups can be associated

with pairs of critical points of the input scalar field, and the absolute value

of their f value difference is called the persistence of the pair.

In particular, the merge of two classes represent a death event. In such

a case, the least persistent class (the youngest of the two) is chosen as the

dying class. This choice is often called the Elder’s rule (EH09). Once this

is established, one can pair without ambiguity all the critical points of a

scalar field. Note that this observation could already be foreseen with the
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Figure 1.15 – Critical points of a PL scalar field f defined on a PL 3-manifold (left)

and its persistence diagram D( f ) (right). In the diagram, each pair of critical points is

represented by a white bar and its persistence is given by the height of the bar.

Morse-Euler relation. For instance, the removal of an index 2 critical point

(a maximum) of a PL Morse scalar field defined a PL 2-manifold implies

the removal of a paired index 1 critical point (a saddle) in order to keep

the Euler characteristic constant (property 11).

Therefore, it is possible to enumerate all the classes of all pth homol-

ogy group by enumerating the critical point pairs identified with the above

strategy. This list of critical point pairs can be concisely encoded with a

topological abstraction called the Persistence Diagram (Figure 1.15), noted

D( f ). This diagram is a one-dimensional simplicial complex that embeds

each pair in R2 by using its birth value as a first component and its birth

and death values as second components. The persistence diagram comes

with several interesting properties. In particular, the stability theorem

(CSEH05) states that given two PL scalar fields f and g defined on a com-

mon domain, the bottleneck distance between their persistence diagrams

is bounded by the difference between the two functions with regard to

the infinity norm: dB(D( f ),D(g)) ≤ || f − g||∞. Intuitively, this means

that given a slight perturbation of a scalar field, its persistence diagram

will only slightly vary. This stability result further motivates the usage of

the persistence diagram as a stable topological abstraction of a scalar field

(used for instance in function comparison).
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In practice however, an alternate representation is often preferred to

isolate critical point pairs corresponding to important features from these

corresponding to noise. The Persistence Curve, noted C( f ), is a diagram

that plots the number of critical point pairs with persistence higher than a

threshold ε, as a function of this threshold ε. When displayed in logarith-

mic scale, such curves often exhibit a flat plateau separating features with

very low persistence from these of higher persistence (see Figure 1.13). In

practice, such a plateau is instrumental to manually identify a relevant

persistence threshold for the user-driven selection of the most important

critical points of the field, as illustrated in Figure 1.13 (bottom). Also, note

that extracting the critical point pairs more persistent than a threshold ε

for increasing values of ε yields a hierarchy of sets of critical points, that

enables to interactively explore them at multiple scales of importance, as

showcased throughout Figure 1.13.

1.2.3 Reeb graph

The persistence curve and the persistence diagrams provide concise rep-

resentations of the critical point pairs of a PL scalar field, along with their

persistence. However, they do not provide any information related to the

adjacency relations of these pairs on the domain. This is the purpose of

more advanced topological abstractions, such as the Reeb graph (Ree46).

Definition 58
(Reeb graph) Let f :M→ R be a PL Morse scalar field defined on a compact PL

manifoldM. Let f−1( f (p))p be the contour of f containing the point p ∈ M.

The Reeb graph R( f ) is a one-dimensional simplicial complex defined as the

quotient space onM×R by the equivalence relation (p1, f (p1)) ∼ (p2, f (p2)),

which holds if:  f (p1) = f (p2)

p2 ∈
(

f−1( f (p1))
)

p1

The Reeb graph can also be defined alternatively as the contour retract

of M under f (a continuous map that retracts each contour to a single

point, such that its image is a subset of its domain and its restriction to

its image is the identity). Note that f can be decomposed into f = ψ ◦ φ,

where φ : M → R( f ) is the contour retraction and ψ : R( f ) → R is a

continuous function that maps points of R( f ) to their f value in R.

Intuitively, as suggested by the previous definition, the Reeb graph
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Figure 1.16 – PL Morse scalar field defined on a PL 2-manifold (left and center) and its

Reeb graph (right).

continuously contracts each connected component of level sets to a point,

yielding a one-dimensional simplicial complex that can be optionally em-

bedded in R3, as illustrated in Figure 1.16.

Since the Betti numbers of the level sets change at critical points (in

particular β0 may change), the Reeb graph has a tight connection with

the critical points of the function. In particular, branching occurs when

β0( f−1(i)) changes as i evolves, as further detailed below:

Property 12 (Images through φ (Ree46)) Let R( f ) be the Reeb graph of a PL Morse scalar

field f = ψ ◦ φ defined on a PL d-manifold. Let the valence of a 0-simplex

v ∈ R( f ) be the number of 1-simplices in its star St(v).

• All regular points of f map through φ to a point in the interior of a 1-

simplex of R( f ). The inverse is true.

• All critical points of index 0 or d (all extrema of f ) map through φ to

0-simplices of R( f ) of valence 1. The inverse is true.

• If d = 2, all critical points of index 1 (all saddles of f ) map through φ to

0-simplices of R( f ) of valence 2, 3 or 4. The inverse is true.

• If d ≥ 3, all critical points of index 1 or (d− 1) (subsets of saddles of f )

map through φ to 0-simplices of R( f ) of valence 2 or 3. The inverse is not

necessarily true.

• If d > 3, all critical points of index different from 0, 1, (d− 1) or d map
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through φ to 0-simplices ofR( f ) of valence 2. The inverse is not necessarily

true.

The original description of the Reeb graph (Ree46) (including the above

properties) implies that all critical points of f map to 0-simplices of R( f ).

In more contemporary descriptions, two 1-simplices sharing a valence-2

0-simplex as a face are considered to form only one 1-simplex. Therefore,

in the contemporary vision of the Reeb graph, extrema map to valence-1

vertices while only the saddles where β0( f−1(i)) evolves map to vertices

of higher valence. In particular, saddles where β0( f−1(i)) decreases (re-

spectively increases) are called join (respectively split) saddles. For PL

3-manifolds, join (respectively split) saddles have index 1 (respectively 2).

In this vision, not all 1 and 2-saddles map to vertices of the Reeb graph.

Since the Reeb graph has a tight connection with the critical points of

its scalar field, some of the properties of PL Morse scalar fields translate

in the Reeb graph setting.

Definition 59 (Loops in a Reeb graph) Let R( f ) be the Reeb graph of a PL Morse scalar field

f defined on a PL d-manifold M. Each independent cycle of R( f ) is called a

loop. The number of loops of a Reeb graph is noted l(R( f )).

The two saddles of each loop with the highest and lowest ψ values are

usually called loop saddles.

Property 13 (Loops in a Reeb graph) Let R( f ) be the Reeb graph of a PL Morse scalar field

f defined on a compact PL d-manifoldM. l(R( f )) is bounded by β1(M):

l(R( f )) ≤ β1(M)

As discussed by Cole-McLaughlin et al. (CMEH∗03), this property

follows from the fact that the construction of the Reeb graph can lead to

the removal of 1-cycles of M, but not to the creation of new ones. In the

case of PL 2-manifolds, tighter bounds have be shown (CMEH∗03).

Property 14 (Loops in a Reeb graph on PL 2-manifolds) Let R( f ) be the Reeb graph of a

PL Morse scalar field f defined on a PL 2-manifoldM. Let b(M) be the number

of connected components of M and g(M) its genus. The number of loops of

R( f ) can be described as follows:

• IfM is orientable (admits a non-null and continuous normal vector field):

– if b(M) = 0, then l(R( f )) = g(M);

– otherwise g(M) ≤ l(R( f )) ≤ 2g(M) + b(M)− 1
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Figure 1.17 – Hierarchy of Reeb graphs obtained by repeated persistence-driven removal

of their 1-simplices (top) and hierarchy of data segmentations (bottom) obtained by con-

sidering the pre-image by φ of each 1-simplex of the Reeb graphs (matching colors).

• otherwise,

– if b(M) = 0, then 0 ≤ l(R( f )) ≤ g(M)/2

– otherwise 0 ≤ l(R( f )) ≤ g(M) + b(M)− 1

Figure 1.16 illustrates this property for a closed and orientable 2-

manifold of genus 2 (here χ(M) = 2− 2g(M)− b(M)) and a Reeb graph

having consequently two loops.

It follows from property 13 that the Reeb graph of a PL Morse

scalar field defined on a simply-connected PL d-manifold M is loop free

(β1(M) = 0). In this specific case, the Reeb graph is usually called a Con-

tour tree and is noted T ( f ). Variants of the Reeb graph, called the Join

(respectively Split) trees are defined similarly by contracting connected

components of sub (respectively sur) level sets to points (instead of level

sets) and are noted J ( f ) (respectively S( f )). Note that the join (respec-

tively split) tree of a PL Morse scalar field admitting only one maximum

(respectively minimum) is equal to its contour tree.

Since the Reeb graph is a one-dimensional simplicial complex, a filtra-

tion of ψ : R( f ) → R can be considered and therefore persistent homol-

ogy concepts (previous subsection) readily apply to the Reeb graph with-

out specialization. In particular, one can directly read the (0, 1) critical

point pairs of f (minima and join saddles) from the join tree by removing

its 1-simplices attached to a minimum, one by one in order of their persis-

tence, as illustrated in Figure 1.17 (top). A similar strategy applied to the
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split tree enumerates all (d− 1, d) critical point pairs ((d− 1)-saddles and

maxima). The time-efficient enumeration of these types of critical point

pairs is one of the primary applications of the Reeb graph in practice.

Note that simplifying in such a way the Reeb graph, similarly to the crit-

ical points in the previous subsection, yields a hierarchy of Reeb graphs

(for each of which a corresponding, simplified, PL Morse scalar field is

guaranteed to exist), that enables to interactively explore it at multiple

scales of importance, as showcased throughout Figure 1.17 (top).

Finally, note that the pre-image by φ of R( f ) induces a complete par-

tition ofM. In particular, the pre-image of a 1-simplex σ ∈ R( f ) is guar-

anteed by construction to be connected (φ−1 is implemented in practice by

marking during the construction of R( f ) each vertex with the identifier

of the 1-simplex where it maps to). This latter property is instrumental in

various tasks in scientific visualization, including the efficient indexing of

contours (for fast level set extraction) or the automatic and interactive data

segmentation into regions of interest (especially when feature boundaries

coincide with level sets). This latter capability of the Reeb graph can be

nicely combined with persistent homology concepts, yielding hierarchies

of data segmentations, as illustrated in Figure 1.17 (bottom).

1.2.4 Morse-Smale complex

As discussed in the previous subsection, in the modern interpretation of

the Reeb graph, not all critical points are captured as 0-simplices. There-

fore, the Reeb graph only describes the adjacency relations of a sub-set

of critical point pairs. To capture such exhaustive adjacency relations, one

needs to consider another topological abstractions, called the Morse-Smale

complex, that is constructed by considering equivalence classes on integral

lines instead of contours (see (Gyu08) for further details).

Property 15 (Integral lines) Let f : M → R be a PL Morse scalar field defined on a closed

PL d-manifoldM. Then, the following properties hold:

• Two integral lines are either disjoint or the same;

• Integral lines cover all ofM;

• The origin and the destination of an integral line are critical points of f .

The latter property is particularly interesting. It means that an integral

line can be characterized by its extremities, which are guaranteed to be

critical points of f . Then, one can introduce an equivalence relation that
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Figure 1.18 – Ascending (left) and descending (center) manifolds and Morse-Smale com-

plex (right) of a PL Morse scalar field f defined on a PL 2-manifold.

holds if two integral lines share the same extremities. This is the key idea

behind the Morse-Smale complex.

Definition 60 (Ascending manifold) Let f : M → R be a PL Morse scalar field defined on

a PL d-manifold M. The ascending (respectively descending) manifold of a

critical point p of f is the set of points belonging to integral lines whose origin

(respectively destination) is p.

Property 16 (Ascending manifolds) Let f : M → R be a PL Morse scalar field defined

on a PL d-manifold M. Let p be an index-i critical point of f . The ascending

(respectively descending) manifold of p is an open set ofM of dimension (d− i)

(respectively i).

Figure 1.18 illustrates these properties with a PL Morse scalar field

defined on a PL 2-manifold M. In particular, the ascending manifold of

a minimum is a subset of M of dimension 2 (shown in dark blue, left).

Similarly, the descending manifold of a maximum is also a subset of M
of dimension 2 (show in green, center). For PL 2-manifolds, in both cases,

ascending and descending manifolds of saddles have dimension 1 (grey

integral lines in both images).

Definition 61 (Morse complex) Let f : M → R be a PL Morse scalar field defined on a PL

d-manifoldM. The complex formed by all descending manifolds of f is called the

Morse complex.

Given this definition, the complex of all ascending manifolds shown

on the left of Figure 1.18 is the Morse complex of − f , while the complex

of all descending manifolds shown in the center is that of f .

Definition 62 (Morse-Smale function) Let f :M→ R be a PL Morse scalar field defined on a

PL d-manifoldM. f is a Morse-Smale function if the ascending and descending

manifolds only intersect transversally.

Intuitively, the transversal intersection condition implies that ascend-
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ing and descending manifolds are not parallel at their intersection (this

condition is enforced in practice through local remeshing). This implies

that when these intersect exactly at one point, such a point is critical. This

also implies that given an integral line, the index of its origin is smaller

than that of its destination.

Definition 63 (Morse-Smale complex) Let f :M→ R be a PL Morse scalar field defined on a

PL d-manifoldM. The complex formed by the intersection of the Morse complex

of f and that of − f is called the Morse-Smale complex and notedMS( f ).

Figure 1.18 (right) illustrates such an intersection. As shown with the

white region, all integral lines (black curves) of a given cell of the complex

(irrespectively of its dimension) share the same origin and destination.

Note that one can derive a simplicial decomposition of the Morse-Smale

complex by subdividing each d-dimensional cell into valid d simplices.

By construction, all the critical points of f will therefore map to distinct

0-simplices of such a decomposition, since the Morse-Smale complex cap-

tures all ascending and descending manifolds (and therefore all critical

points). Then, as for the Reeb graph (previous subsection), persistent ho-

mology concepts also readily apply to the simplicial decomposition of

the Morse-Smale complex and simplifying it for increasing values of per-

sistence also yields a hierarchy that enables to interactively explore the

Morse-Smale complex at multiple scales of importance.

Finally, by construction, the Morse-Smale complex provides a partition

of the domain that is instrumental in scientific visualization, especially

when features or their boundaries coincide with the gradient. Alike the

Reeb graph, this segmentation capability can be nicely combined with

persistent homology concepts, yielding hierarchies of data segmentations,

as detailed in the following subsection.

1.3 Algorithms and applications

In this section, I briefly discuss the state-of-the art algorithms for comput-

ing the topological abstractions described above, and I also briefly intro-

duce some of their applications. Reference open source implementations

of these algorithms can be found in the Topology ToolKit library (TFL∗17).
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Persistent homology

Critical points of PL scalar fields are usually extracted with a simple, ro-

bust, localized yet globally consistent, and easily parallelizable algorithm

that directly implements the definitions presented in Section 1.2.1, and

which derive from a seminal paper by Banchoff (Ban70).

Critical point pair extraction as well as their persistence evaluation

(Section 1.2.2) are usually implemented through sparse matrix reduction

(ELZ02) with an algorithm with O(n3) worst case time complexity (where

n is the number of simplices). Note however, that for the purpose of fea-

ture selection, only extrema-saddle pairs seem to have a practical interest

and these can be computed more efficiently with the Reeb graph as de-

scribed below.

Persistence diagrams (which encode all critical point pairs along with

their persistence) have been widely used for the purpose of function com-

parison, especially for high-dimensional domains where more advanced

topological abstractions are more difficult to compute and simplify (see

for instance (Ghr07), (CCSG∗09) and (RL15)).

Cohen-Steiner et al. (CSEH05) showed that the bottleneck distance be-

tween the persistence diagrams of two PL scalar fields f and g computed

on a common domain was bounded by the distance between the two func-

tions with regard to the infinity norm (|| f − g||∞). This result raises the

reciprocal question: given a persistence diagram D( f ) where all pairs less per-

sistent than a threshold ε have been removed (noted D(g)), can we compute a

function g sufficiently close from f that admits D(g) as persistence diagram?

This question has major practical implications since the time complexity

of the algorithms for the construction or processing of topological abstrac-

tions is often dictated by the number of critical points in the input scalar

field. Often in practice, it is possible to easily discriminate critical points

that are not relevant application-wise. Therefore, there exists an applica-

tive interest for an efficient pre-processing of an input scalar field, that

would minimally perturb it to remove a given set of critical points. This

question has first been addressed in the case of PL scalar fields defined on

PL 2-manifolds by Edelsbrunner et al. (EMP06), who showed that such a

function g existed and that its difference to the input was bounded by ε:

|| f − g||∞ ≤ ε. These authors also provided an algorithm to compute it.

However this algorithm is complicated and difficult to implement. More-

over, as persistence pairs are processed in order of their highest extremity,

the same vertices are swept several times when canceable persistence pairs
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are nested. Attali et al. (AGH∗09) and Bauer et al. (BLW12) presented in-

dependently a similar approach to this problem for filtrations and Discrete

Morse functions. However, converting the output of these algorithms to

PL scalar fields (which is the standard scalar field representation for many

applications) requires an important subdivision of the domain. Also, these

approaches only deal with closed surfaces. We introduced in 2012 a gen-

eral algorithm (TP12) for the topological simplification of PL scalar fields

on closed or open PL 2-manifolds, capable of removing arbitrary critical

point pairs (not necessarily the least persistent), which enables the us-

age of application-dependent metrics for feature selection. Thanks to its

speed, ease of implementation, robustness and generality, we consider this

algorithm as the reference for the problem of topological simplification of

scalar data on surfaces.

A survey on the concepts of Persistent homology and their applications

can be found in (EH08).

Reeb graph

Reeb graphs have been introduced in Computer Science independently by

Boyell and Ruston (BR63) (for simply connected surfaces) and by Shina-

gawa et al. (SKK91).

Efficient algorithms for their computation have first been investigated

in the simpler cases of simply connected domains (for which the Reeb

graph is called the contour tree). Time-efficient algorithms have first been

introduced for 2D domains (vKvOB∗97), then 3D domains (TV98) and last

for domains of arbitrary dimension, with an algorithm (CSA00) with opti-

mal time complexity: O(|σ0|log(|σ0|) + (∑i=1
i=0 |σi|)α(∑i=1

i=0 |σi|)), where |σi|
is the number of i-simplices in the domain and α() is an extremely slowly

growing function (i.e. the inverse of the Ackermann function). In partic-

ular, the latter algorithm is considered by the community as the reference

for the problem of contour tree computation thanks to its optimal time

complexity, its ease of implementation, its robustness, and its practical

performances. Sequential (Dil07) and multi-threaded (GFJT16, GFJT17)

implementations are also available. This algorithm first computes the join

and split trees by tracking the merge events of a union-find data-structure

processing the vertices in ascending (respectively descending) order. Last,

the two trees are combined to form the contour tree in a linear pass.

Regarding more general domains, an algorithm (CMEH∗03) has been

introduced for PL scalar fields defined on PL 2-manifolds, with optimal
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time complexity: O(|σ1|log(|σ1|). A more recent, non-optimal algorithm

(PSF08) would be recommend instead however, due to its ease of imple-

mentation and acceptable performances in practice. This algorithm explic-

itly constructs the partition induced by the pre-image of φ to retrieve the

1-simplices of R( f ), by computing the critical contours of all saddles of f

as boundaries. This makes the algorithm output-sensitive but leads to a

worst-case complexity of O(|σ0| × |σ2|).
Regarding higher dimensional (non simply-connected) domains, sev-

eral attempts have been proposed, especially with the more practical

target of PL 3-manifolds in mind. However, many properties of the 2-

dimensional domains exploited by the above algorithms do not hold for

3-dimensional domains, making the problem more challenging. Pascucci

et al. (PSBM07) introduced the first algorithm for the computation of

the Reeb graph on domains of arbitrary dimension. Its streaming na-

ture however, while appealing in specific applications, makes it imple-

mentation difficult. An open-source implementation, which I wrote in

2009 based on Giorgio Scorzelli’s original implementation, is available

in the official release of the open-source library the Visualization ToolKit

(Tie09). Doraiswamy and Natarajan (DN08) extended the quadratic com-

plexity algorithm by Patane et al (PSF08) from PL 2-manifolds to PL

3-manifolds. We introduced the first practical algorithm (TGSP09) for

the efficient computation of the Reeb graph of PL scalar fields defined

on PL 3-manifolds in 2009. Thanks to its speed, it enabled in prac-

tice to transfer all of the contour tree based interactive applications to

more general non-simply connected domains. We considered this algo-

rithm as the reference for the problem of Reeb graph computation on

PL 3-manifolds, until a dimension-independent, optimal time complexity

(O((∑i=2
i=0 |σi|)log(∑i=2

i=0 |σi|))) algorithm was introduced three years later

(Par12). Algorithms for the practical computation of the bivariate analog

of the Reeb graph, called the Reeb space (EHP08), have only been investi-

gated recently (CGT∗15, KTCG16, TC16).

The contour tree and the Reeb graph have been massively applied in

scientific visualization, in particular because of the property that the pre-

image by φ of a 1-simplex σ ∈ R( f ) is guaranteed by construction to

be connected. This enables for instance to extract an optimal number of

vertex seeds for optimal time level set extraction: each vertex seed initi-

ates the construction of a contour by breadth-first search traversal of the

domain (limiting the traversal to the exact set of simplices projecting on

the queried isovalue). This seed extraction process requires to store each
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Figure 1.19 – Topological simplification of isosurfaces (white surface, middle). The 1-

simplices of R( f ) that are less persistent than an increasing threshold (transparent, from

left to right) are not considered for contour seed extraction, yielding a progressive removal

of the least prominent contours from the isosurface.

1-simplex of R( f ) in a balanced interval tree (CLRS09). At query time,

given an isovalue i, all 1-simplices of R( f ) projecting on i can be effi-

ciently retrieved in O(|σ1|log(|σ1|)) steps, where |σ1| is here the number

of 1-simplices in R( f ). Further, given a 1-simplex σ ∈ R( f ) that projects

on i, a seed vertex can be efficiently extracted if the vertices of the domain

projecting to σ through φ (let |σ′0| be their number) are stored in a bal-

anced search tree in O(|σ′0|log(|σ′0|)) steps. This mechanism can be nicely

combined with persistent homology concepts to interactively simplify iso-

contours, as illustrated in Figure 1.19, by only considering the 1-simplices

of R( f ) that are more persistent than a threshold ε. Variants of this strat-

egy have been presented in the case of the contour tree by van Kreveld

et al. (vKvOB∗97) and Carr et al. (CSvdP04). In particular, the latter

approach introduced, as an alternative to persistence, several geometri-

cal measures enabling to filter the 1-simplices of T ( f ) according to more

application-relevant metrics, which reveals to be of major importance in

practice.

The partitioning capabilities of the Reeb graph have also been instru-

mental in scientific visualization for data segmentation tasks, especially in

cases where the boundaries of regions of interest coincide with level sets.

In that context, the Reeb graph enables (with the fast isosurface extrac-

tion algorithm presented above) to rapidly extract and distinguish each of

these boundaries, at multiple scales of importance when combined with

persistent homology mechanisms. These segmentation capabilities also

serve as the basis of more advanced techniques, for feature segmentation

(for example in molecular chemistry (GABCG∗14)), for the tracking of fea-
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tures over time (SB06) for example in combustion data analysis (BWT∗11),

for the design of transfer functions in volume rendering (WDC∗07) or the

similarity estimation between data features (TN14).

Apart from scientific visualization, the Reeb graph has also been used

as a core data-structure in computer graphics, as discussed in (BGSF08,

Tie08, VDL∗17).

Morse-Smale complex

The computation of Morse-Smale complexes was first investigated in the

case of PL 2-manifolds. An initial algorithm was introduced by Edels-

brunner et al. (EHZ03). This algorithm constructs for each saddle of f

the integral lines originating and terminating at the saddle, yielding the

set of ascending and descending 1-manifolds. Ascending and descend-

ing 2-manifolds are then retrieved through breadth-first search, by grow-

ing 2-dimensional regions until ascending or descending 1-manifolds are

attained. Further, the authors apply persistent homology concepts to re-

move the least persistent critical point pairs and describe a mechanism

to update the Morse-Smale complex accordingly (by removing ascending

and descending 1-manifolds attached to removed critical points, merg-

ing the adjacent 2-manifolds and re-routing their 1-manifold boundaries).

Since the number of saddles of f can be proportional to the number of ver-

tices in the domain and since the integral lines can intersect an number of

triangles which is proportional to that of the domain, the construction al-

gorithm has a worst case time complexity of O(|σ0| × |σ2|). This algorithm

was latter improved and applied for the first time to scientific visualization

by Bremer et al. (BEHP03).

The problem of computing the Morse-Smale complex in higher dimen-

sions is far more challenging. First, as the dimension increases, new types

of critical points appear (of increasing index), which translates into the

apparition of ascending and descending manifolds of higher and higher

dimensions. The construction of each of these types of manifolds im-

plies a quadratic term in the runtime complexity. Second, degenerate

cases become more challenging to resolve. This is in particular the case

of the resolution of the degenerate critical points and the enforcement of

the transversal intersection condition. A complicated algorithm has been

proposed for PL scalar fields defined on PL 3-manifolds (EHNP03) but

seems highly challenging to implement and no implementation has been

reported.
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Figure 1.20 – Simple synthetic function (left) and its discrete gradient field (center). Blue

glyphs illustrate the pairing of 0-cells (vertices) with 1-cells (edges) while green glyphs

show the pairing of 1-cells (edges) with 2-cells (faces). The i-cells that are left unpaired by

the discrete gradient field correspond to the critical points of the discrete Morse function,

shown with blue (d = 0), white (d = 1) and green (d = 2) spheres (right). V-paths

(discrete analogs of integral lines) between these critical points represent the separatrices

of the Morse-Smale complex (grey cylinders, right).

Recently, efficient algorithms have been introduced by walking around

the degeneracies of the PL setting and considering a competing formalism,

Discrete Morse Theory (For01), which comes with many nice combinato-

rial properties. In this setting for example, critical points occur on sim-

plices of arbitrary dimension and the index of a critical point coincides

with the dimension of its simplex. Moreover, degenerate critical points

cannot occur by construction. This formalism considers as Discrete Morse

Functions scalar fields that map each simplex of the domain to a single

scalar value, in such a way that for each simplex σ, there exists at most

one simplex for which σ is a face with lower function value, and that there

exists at most one simplex that is a face of σ with a higher function value.

Then a simplex is critical if no such face and no such coface exist. This

formalism additionally introduces the notion of V-path, used as an analog

to PL integral lines, which is a sequence of pairs of simplices of alternat-

ing dimensions (d and (d + 1)) with ascending function values. Then, the

notion of discrete gradient can be introduced as a pairing of simplices that

induces V-paths that are all monotonic and loop-free (Figure 1.20). Given a

discrete gradient, critical points correspond to simplices that belong to no

simplex pair. As mentioned before, degenerate critical points cannot oc-

cur by construction in this setting. Moreover, ascending and descending

manifolds are guaranteed to intersect transversally (Gyu08). Therefore,

by construction, this formalism avoids all the degeneracies found in the

PL setting which make Morse-Smale complex computation challenging.

Thus, several efficient algorithms have been proposed for the computation

of a discrete gradient from a PL scalar field as well as the construction and
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simplification of the Morse-Smale complex (GBHP08, RWS11), including

a shared-memory parallel algorithm (SN12) whose implementation has

been released in open-source (Shi12). Note that this discrete formalism

has been described here in the context of PL manifolds for consistency,

but it readily applies to arbitrary cellular complexes. This is another factor

that motivates its popularity, as regular grids no longer need to undergo

simplicial subdivisions in this framework.

The combinatorial consistency of the Discrete Morse Theory setting

comes however with a price in terms of geometrical accuracy: in particu-

lar, locally, V-paths have to follow simplices of the domain and therefore

do not match the integral lines induced by any interpolant. Gyulassy

et al. (GBP12) addressed this issue by introducing a novel, probabilis-

tic, discrete gradient construction algorithm whose V-paths are shown

to converge to integral lines as the domain sampling increases. We re-

cently improved this approach to avoid the need for domain re-sampling

by introducing a discrete gradient construction algorithm that conforms

to input constraints (GGL∗14). When used with integral lines computed

through numerical approximation, this gradient construction algorithm

yields Morse-Smale complexes whose manifolds better align with the gra-

dient induced by the domain interpolant.

Morse-Smale complexes have been a popular topological abstraction

for data analysis and visualization, especially for data segmentation tasks

in applications where features of interest (or their boundaries) coincide

with the gradient. Then such features can be efficiently captured at

multiple scales of importance (thanks to persistent homology mecha-

nisms) by considering the cells of the Morse-Smale complex. This over-

all strategy has been applied with tailored analysis algorithms to vari-

ous applications, including the analysis of the Rayleigh-Taylor instabil-

ity (LBM∗06), vortical structures (KRHH11), porous media (GND∗07),

cosmology (Sou11), combustion (GBG∗14), computational fluid dynam-

ics (COH∗13, FGT16, LAS∗17) chemistry (GABCG∗14), etc. A recent sur-

vey (DFFIM15) provides further details regarding the construction, sim-

plification and application of the Morse-Smale complex.
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