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Preface

This text is the support for the course of Continuum Mechanics - Solids, of the Master
of Mechanics of the University Paris-Saclay - Curriculum MMM: Mathematical Methods
for Mechanics, held at Versailles.

The course is an introduction, for graduate students, to the classical mechanics of con-
tinuum solids, with an emphasis on beam theories (Saint-Venant problem and rod theo-
ries).

The first part is a short, essential introduction to the continuum mechanics of bodies in
the framework of the small strain assumption: the strain and stress analysis are briefly
introduced, especially with regards to their use in the following of the course. Then, the
fundamental elements of classical elasticity are briefly recalled, namely for the case of
isotropic hyper elastic bodies.

The second part of the course concerns beams: a classical presentation of the Saint-Venant
theory for beams is given, with also the approximate theories of Bredt and Jourawski for
torsion and shear. The last part of the text is devoted to the classical rod theories of
Euler-Bernoulli and Timoshenko.

The manuscript is accompanied by 90 exercises; some of them are rather emblematic and
complete the theoretical part.

It is self evident that this course is far from being exhaustive: it just constitutes a hopefully
effective introduction in the matter, that is completed in other courses of the same MMM.

Versailles, August 24, 2015
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Chapter 1

Strain analysis

1.1 Introduction

We are concerned here with deformable bodies, i.e. with continuum1 bodies that can be
strained: the relative positions of the material points are altered by some agents (forces,
temperature etc.).

We will call deformation a change of position of the material points when this change is
accompanied also by a mutual change of the relative positions. The description of the
deformation (strain analysis) is based upon the introduction of some geometric quantities
and algebraic operators, able to account for some properties of the deformation. All these
points need to be specified mathematically.

1.2 Deformation gradient

We consider a solid continuum body which occupy the region Ω of the Euclidean space E
(in short, we identify the body with Ω). Some agents strain Ω and deform it to the final
configuration Ωt. We use capital letters for denoting any quantity in Ω and small letters
for Ωt. The general situation is that sketched in Fig. 1.1.

Any point P ∈ Ω is transformed by the deformation into a unique point p ∈ Ωt:

p = f(P ); (1.1)

p is hence a function of point in Ω. Function f is said to be a deformation whenever it is
a continuous and bijective function on Ω2. Bijectivity is essential to state a fundamental
property of classical continuum mechanics: mass conservation.

1The notion of continuum body is primary here and it is left to the basic idea of a body whose
fundamental property is that of occupying some space, i.e. a region Ω ⊂ E , the ordinary Euclidean space.
We will denote by V the vector space associated with E , called the space of translations u, and by Lin(V)
the linear space of second rank tensors over V, i.e. of all the linear transformations L : V → V.

2f is continuous in P ∈ Ω if, ∀ sequence {Pn ∈ Ω, n ∈ N} that converges to P , the sequence
{pn = f(Pn), n ∈ N} converges to f(P ); f is continuous on Ω if it is continuous ∀P ∈ Ω.

1
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Figure 1.1: General sketch for the strain analysis

Ω is said to be the reference configuration and Ωt the actual configuration. The vector

u(P ) = p− P = f(P )− P (1.2)

is the displacement vector, a vector field on Ω; R = P − o and r = p− o are the position
vectors respectively of P and p with respect to a fixed Cartesian frame.

The purpose of strain analysis is not only to study the displacement field u, but, mainly,
to analyse how matter deforms everywhere in Ω. For this, we try to study what happens
in a material set close to any point P ∈ Ω and in particular how elementary geometric
quantities defined on this set evolve during deformation.

To this purpose, let us introduce the concept of fiber: a fiber dX in the vicinity of P ∈ Ω
is a vector composed by material points such that

dX = αe, |e| = 1, α→ 0, α ∈ R+. (1.3)

A fiber
dX = Q− P (1.4)

is hence a small material vector from P ∈ Ω to Q ∈ Ω, with Q close to P . We are
concerned with the following question: in which fiber dx is transformed by f the fiber
dX? It is

dx = q−p = Q+u(Q)− (P +u(P )) = Q−P +u(Q)−u(P ) = dX+u(Q)−u(P ), (1.5)

but
u(Q) = u(P ) +∇u(P )(Q− P ) + o(Q− P )2, (1.6)

because Q is close to P . So, neglecting higher order terms, we get

u(Q) = u(P ) +∇u(P )dX (1.7)

and finally
dx = [I +∇u(P )]dX. (1.8)

2



∇u(P ) is the displacement gradient; as a linear operator, ∇u is a second-rank tensor3:

∇u = ui,j ei ⊗ ej. (1.9)

We pose

F = I +∇u, (1.10)

the deformation gradient. We thus obtain the formula

dx = FdX → Fij = δij + ui,j =
dxi
dXj

, (1.11)

with δij the Kronecker’s symbol.

Generally speaking F 6= F>, so, though completely describing the deformation, F has not
a good algebraic structure.

1.3 Geometric changes

We are interested in knowing how basic geometric quantities in the neighborhood of any
point P ∈ Ω change during the deformation. This will allow to introduce other tensors
that, though not able to completely describe the deformation, nonetheless have a better
algebraic structure than F.

1.3.1 Change in length

First, we investigate the changes of length of any fiber dX in P during the deformation:
knowing |dX|, how long is |dx|? Putting

dX = |dX| e, |e| = 1, (1.12)

we have

|dx| =
√

F dX · F dX = |dX|
√

e · F>F e. (1.13)

The change in length δ`(e) of a fiber in P parallel to e is defined as

δ`(e) :=
|dx| − |dX|
|dX|

=
√

e · F>F e− 1; (1.14)

the stretch λ(e) of the same fiber is

λ(e) :=
|dx|
|dX|

= 1 + δ`(e) =
√

e · F>F e. (1.15)

3The dyad a⊗ b of two vectors a and b is the tensor such that ∀v ∈ V, (a⊗ b)v = b · v a. Given a
orthonormal basis e = {e1, e2, e3}, any second-rank tensor L can be decomposed as a sum of nine dyads:
L = Lijei ⊗ ej , where the Cartesian components are given by Lij = ei · Lej .

3



1.3.2 Change in angle

Be Θ the angle formed by two fibers dXi = |dXi|ei, |ei| = 1, i = 1, 2, in P ; we are
interested in knowing the angular change from Θ to θ, the angle formed by the deformed
fibers dx1 and dx2.

We define the change in angle δθ(e1, e2) between the directions e1 and e2 the difference

δθ(e1, e2) := Θ − θ; (1.16)

remembering that

cos Θ =
dX1 · dX2

|dX1||dX2|
= e1 · e2, cos θ =

dx1 · dx2

|dx1||dx2|
=

F dX1 · F dX2

λ1|dX1|λ2|dX2|
, (1.17)

we finally get

δθ(e1, e2) = arccos(e1 · e2)− arccos(
e1 · F>F e2

λ1λ2

). (1.18)

1.3.3 Change in volume

To study the volume changes around a point P ∈ Ω, we consider the volume of the prism
determined by three non coplanar fibers dXi = |dXi|ei, |ei| = 1, i = 1, 2, 3, in P . The
volume of the prism in Ω is

dV = dX1 · dX2 × dX3, (1.19)

while in Ωt it is4

dv = dx1 · dx2 × dx3 = FdX1 · FdX2 × FdX3 = det F dX1 · dX2 × dX3, (1.20)

i.e.
dv = det F dV. (1.21)

We define change in volume in P the quantity

δv :=
dv − dV
dV

= det F− 1. (1.22)

To remark that because

det F =
dv

dV
(1.23)

is a ratio of intrinsically positive quantities, it is necessarily

det F > 0. (1.24)

We also remark that a deformation is locally isochoric ⇐⇒ det F = 1.

4 It can be proved that ∀u,v,w ∈ V and ∀L ∈ Lin(V), Lu · Lv × Lw = detL (u · v ×w). Because
u ·v×w is the volume of the prism determined by u,v and w, if detL = 0 then L annihilates the volume
of the deformed prism, i.e. the original prism is changed into a flat figure.
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1.3.4 Deformations

We can now precise mathematically the definition of deformation: a function f(P ) : Ω→
E is a deformation if it is a continuous and bijective function of P on Ω and if det F > 0
everywhere in Ω.

The inequality is strict: det F = 0 is not admissible because this should mean to transform
a finite volume into a flat figure, with vanishing volume. Such a fact should not preserve
bijectivity and conservation of the matter.

1.4 Pure deformations and rigid body motions

A deformation can be seen as a superposition of a pure deformation and of a rigid body
motion, and these two parts can be split easily.

To this end, we use a classical decomposition of any second-rank tensor, splitting ∇u in
its symmetric and skew parts:

∇u = ε+ ω, (1.25)

with

ε =
∇u +∇>u

2
, ω =

∇u−∇>u

2
, (1.26)

being evidently
ε = ε>, ω = −ω>. (1.27)

Then,
F = I + ε+ ω (1.28)

and
dx = (I + ε+ ω) dX = dX + ε dX + ω dX. (1.29)

So, any deformed fiber dx is equal to the originally undeformed one, dX, plus two modi-
fying vectors; let us analyse them, starting with ω:

ω = −ω> ⇒ ∃ vω ∈ V : ω dX = vω × dX, (1.30)

vω being the axial vector of ω. By the same definition of curl of a vector,

2ω dX = (∇u−∇>u) dX = (curl u)× dX, (1.31)

which gives also the relation

vω =
1

2
curl u. (1.32)

Let us now consider a particularly important case, that of small displacements; generally
speaking, a rigid rotation is characterized by an amplitude, say ϕ, and by an axis of
rotation, say w, |w| = 1. A general result, is that any rigid rotation can be represented
by a tensor R which in terms of ϕ and w is given by

R = I + sinϕW + (1− cosϕ)W2, (1.33)

5



with W = −W> the axial tensor of w5.

For small displacements, ϕ→ 0 so that

R ' I + ϕW; (1.34)

so, comparing this result with eq. (1.29), we see that the term ω dX represents a rigid
motion in the assumption of small displacements. Hence, the term ε represents a pure
deformation. For small displacement transformations, pure deformations are hence de-
scribed by a symmetric tensor.

1.5 Small strain deformations

We now develop λ, δ`, δθ and δv for the case of small strain: a deformation is said to be
a small strain deformation if and only if

|ui,j| � 1 ∀i, j = 1, 2, 3. (1.35)

We remark hence that the small displacement hypothesis concerns the smallness of vector
u, while the assumption of small strain that of ∇u. Nevertheless, whenever the above
condition is satisfied, then all the components of ω are small too, so also in this assumption
ϕ→ 0, i.e. the small strain assumption is sufficient for interpreting the part ω as a rigid
motion.

Let us start developing λ(e):

λ(e) =
√

e · F>Fe =
√

e · (I + ε+ ω)>(I + ε+ ω)e

=
√

e · (I + 2ε+ ε2 − ωε+ εω − ω2)e.
(1.36)

Terms like e · εωe are of second order with respect to 2e · εe to within the assumption of
small strain:

2e · εe = 2εijeiej = (ui,j + uj,i)eiej, (1.37)

while

e · εωe = εikωkjeiej =
1

4
(ui,k + uk,i)(uk,j − uj,k)eiej. (1.38)

As a consequence, for small strain deformations the terms εω,ωε, ε2 and ω2 can be
discarded in front of ε.

5To any w = (w1, w2, w3) ∈ V can be associated its axial tensor W = −W> defined as

W =

 0 −w3 w2

w3 0 −w1

−w2 w1 0

 ,
such that w × v = Wv ∀v ∈ V. It is easily checked that the only eigenvector of W is w, relative to the
unique real eigenvalue, 0. For this reason, W is called the axial tensor of w and reciprocally, w is said
to be the axial vector or axis of W.

6



So, still thanks to the smallness of ∇u, we get:

λ(e) '
√

e · (I + 2ε)e =
√

1 + 2e · εe
'
√

1 + 2e · εe + (e · εe)2 =
√

(1 + e · εe)2,
(1.39)

and finally
λ(e) = 1 + e · εe. (1.40)

It follows immediately that

δ`(e) = λ(e)− 1 = e · εe. (1.41)

Let us now consider the change in angle in the assumption of small strain:

e1 · F>Fe2 = e1 · (I + 2ε+ ε2 − ωε+ εω + ω2)e2 ' e1 · (I + 2ε)e2, (1.42)

so

δθ(e1, e2) = arccos(e1 · e2)− arccos
e1 · (I + 2ε)e2

λ1λ2

= Θ − arccos
e1 · e2 + 2e1 · εe2

λ1λ2

.

(1.43)

Finally, the change in volume:

δv = det F− 1 = det(I + ε+ ω)− 1; (1.44)

we use now the following general result of tensor algebra6:

∀L ∈ Lin(V), det(I + L) = 1 + trL +
tr2L− trL2

2
+ det L. (1.45)

Applying this result to the sum I + ε+ ω, gives:

δv = tr(ε+ ω) +
tr2(ε+ ω)− tr(ε+ ω)2

2
+ det(ε+ ω), (1.46)

and in the small strain assumption, one easily recognizes that the second and third term
on the right hand side are negligible compared to the first one; hence

δv ' tr(ε+ ω) = trε+ trω, (1.47)

and because ω = −ω>, trω = 0, so finally

δv = trε. (1.48)

We remark hence that the change in volume is a linear function of the εij and that

δv = trε = tr
∇u +∇>u

2
= tr∇u = divu, (1.49)

6The proof of this result is rather long and tedious, but not difficult: it is sufficient to develop by
components the terms on the left and right side of eq. (1.45) and remark, at the end, that they give the
same global quantity
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so a deformation is isochoric if and only if the displacement field is solenoidal.

In the end, we can notice that in the assumption of small strain, the rigid body part of
the deformation, ω, does not take any part. ε is called the infinitesimal strain tensor or
tensor of small strains; unlike F, ε = ε> and, though it does not completely describe the
deformation, it is sufficient to give us the relevant information about it in the assumption
of small strain.

In the following of this text, we will assume always small perturbations, i.e. both the
hypotheses of small displacements and small strain. Besides the possibility of completely
describing the strain by tensor ε, so discarding the part due to ω, this assumption let
us consider as coincident the two configurations Ω and Ωt, the reference and the actual
one, because separated by a small displacement, in the sense that |u(P )| � dΩ ∀P ∈ Ω,
where dΩ is a characteristic dimension of Ω. Hence, p = f(P ) ' P ∀P ∈ Ω, so p can
be approximated by P ; this is the reason why in the following we will no more make
the distinction between them and use always lower case letters for indicating points in
Ω.

The possibility of approximating the actual configuration with the reference one has ex-
tremely important consequences in mechanics. In fact, in doing so, we tacitly postulate
that the forces acting on Ω do not change their point of application and that the equilib-
rium equations are written in the reference configuration, which is known, and not in the
actual, unknown one. This is false in principale, but in doing so, we eliminate one of the
principal sources of nonlinearity: the dependence of the equilibrium equations from the
unknown equilibrium configuration.

Of course, this can have some dramatical consequences, as it has. In particular, if on one
side, along with the assumption of a linear behavior of the material, see Chapt. 3, this
gives the nice property of linearity to the equilibrium problem of deformable bodies, on
the other side it makes disappear some important phenomena of nonlinear equilibrium,
like buckling and stability.

Nonetheless, several cases of practical interest are not affected by such phenomena and
they satisfy with a high degree of approximation the small perturbations assumption; that
is why we will use it in the following of this text for analyzing some important problems
of the linear mechanics of deformable bodies.

1.6 Geometrical meaning of the εij

We can now examine the geometrical meaning of the components εij of ε: let ei and ej
be two vectors of a base for V :

ei · ej = δij, i, j = 1, 2, 3. (1.50)

Then (no summation over i in the following equation):

δ`(ei) = ei · εei = ei · εhk(eh ⊗ ek)ei

= δikei · εhkeh = δihδikεhk = εii.
(1.51)
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So, the diagonal terms εii represent the change in length of the fibers aligned with the
axis ei; moreover (no summation over i and j in the following equation)

δθ(ei, ej) =
π

2
− arccos

2ei · εej
λiλj

= arcsin
2εij

(1 + εii)(1 + εjj)
, (1.52)

and because |εij| � 1 ∀i, j, then

δθ(ei, ej) ' 2εij : (1.53)

the components of ε with distinct indices are half the shear deformation of the axes with
corresponding indices.

1.7 Principal strains

An important consequence of the symmetry of ε is the existence of the principal strains,
ensured by the spectral theorem7: there is a basis v = {v1,v2,v3} composed of eigenvec-
tors of L, called the principal directions of strain, where

ε = εivi ⊗ vi → ε =

 ε1 0 0
0 ε2 0
0 0 ε3

 . (1.54)

The terms on the diagonal are the principal strains and they coincide with the eigenvalues
of ε. Considering the results of the previous Section, it is then seen that in the basis of
the principal directions the fibers aligned with the axes are simply stretched, not sheared:
the principal directions of strain preserve their directions in the deformation and hence
their mutual angles do not change.

We remark also that the change in volume is just the sum of the three eigenvectors of ε:

δv = ε1 + ε2 + ε3. (1.55)

1.8 Spherical and deviatoric parts of ε

An important decomposition of ε, as of any other second-rank tensor, is into its spherical,
εs, and deviatoric, εd, parts:

ε = εs + εd, (1.56)

with

εs :=
1

3
trε I, εd := ε− εs. (1.57)

7Spectral theorem: if a tensor L is symmetric, then it exists a basis of V composed by eigenvectors of L
(for a demonstration, see the classical book of Halmos: Finite-Dimensional Vector Spaces, Springer 1987,
p. 155). A consequence of this theorem is that L is diagonal in such a basis: in fact, be v = {v1,v2,v3}
a basis of eigenvectors of L, vi ·vj = δij ∀i, j, and λk the eigenvalue corresponding to the eigenvector vk;
then, Lij = vi · Lvj = λjvi · vj = δijλj ⇒ L = λivi ⊗ vi.
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By the same definition, we obtain immediately that

trεs =
1

3
trε trI = trε, trεd = 0, (1.58)

i.e. all the change in volume are concentrated in the spherical part εs, while εd describes an
isochoric deformation giving hence only changes of shape that preserve the volume.

This decomposition is of some importance in different problems, namely for introducing
one of the most used yielding criterion for isotropic elastic materials, see Sect. 4.11.

1.9 Compatibility equations

Once a displacement field u known, it is always possible, differentiating it, to get the
strain field ε: a displacement field always defines uniquely a strain field (the field u is
here assumed to be at least of class C1).

The converse is not true: given a field ε, it is not always possible to find a displacement
field u(p) to which it corresponds through

ε =
∇u +∇>u

2
. (1.59)

In fact, we have 3 unknown scalar fields ui(p) and 6 equations: the problem is over-
determined. The question is hence: given the εij(p), which are the conditions that they
must fulfill for being possible to find a compatible displacement field u(p), i.e. satisfying
to the above equation?

To this purpose, we apply the definition of strain components and operate some differen-
tiations; for instance:

ε11 = u1,1, ε22 = u2,2, 2ε12 = u1,2 + u2,1, (1.60)

that differentiated twice as

ε11,22 = u1,122, ε22,11 = u2,211, 2ε12,12 = u1,212 + u2,112 (1.61)

and summed up give the condition

ε11,22 + ε22,11 = 2ε12,12. (1.62)

In a similar way, we get also

ε11,33 + ε33,11 = 2ε13,13,

ε22,33 + ε33,22 = 2ε23,23.
(1.63)

Again,

ε11 = u1,1, 2ε12 = u1,2 + u2,1, 2ε13 = u1,3 + u3,1, 2ε23 = u2,3 + u3,2, (1.64)
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differentiated twice as

ε11,23 = u1,123, 2ε12,13 = u1,213 + u2,113,

2ε13,12 = u1,312 + u3,112, 2ε23,11 = u2,311 + u3,211,
(1.65)

and summed up give
ε12,13 + ε13,12 = ε23,11 + ε11,23, (1.66)

and similarly, permutating the indices,

ε12,23 + ε23,12 = ε13,22 + ε22,13,

ε13,23 + ε23,13 = ε12,33 + ε33,12.
(1.67)

The 6 equations (1.62), (1.63), (1.66) and (1.67) are the Saint Venant-Beltrami compati-
bility equations; they must be satisfied by any strain field ε for it is a real strain field, in
the sense of deriving by a displacement field through eq. (1.59).

The Saint Venant-Beltrami equations can be written in a compact form:

εij,kl + εkl,ij − εik,jl − εjl,ik = 0; (1.68)

these are 81 equations, but only the 6 Saint Venant-Beltrami equations are not identities,
as it can be checked with some work but without difficulty.

1.10 Exercises

1. Study the following simple (i.e. such that ∇u = ∇>u) deformations:

a) extension of amount α in the direction e, |e| = 1:

u(p) = α (e⊗ e)(p− p0);

b) shear of amount β with respect to the orthogonal directions e1, e2, |e1| = |e2| =
1:

u(p) = β(e1 ⊗ e2 + e2 ⊗ e1)(p− p0);

c) dilatation of amount γ:
u(p) = γ(p− p0),

with α, β, γ ∈ R, |α|, |β|, |γ| � 1. For each case:

i. write ε;

ii. determine δv;

iii. determine the change of volume of a cube with the sides parallel to the axes;

iv. determine δ` and λ for the sides of such a cube;

v. determine δθ for each couple of sides of the same cube;

vi. calculate the principal strains;
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vii. calculate the principal directions of strain.

2. Show that it is always possible to decompose ε into a dilatation and an isochoric
combination of 3 extensions plus 3 shears (such a decomposition has important
applications in the theory of strength of isotropic elastic materials).

3. For the displacement field

u(p) = α(X2 +X3)e1 + α(X1 +X3)e2 + β(X1 +X2)e3, α, β ∈ R,

i. determine the conditions on α, β for this field describe an infinitesimal strain;

ii. find ε;

iii. find the change in length and angle of the 3 vectors of the base;

iv. decompose the deformation into a dilatation plus 3 extensions and 3 shears.

4. The deformation described in cylindrical coordinates by

r = R, θ = Θ + αZ, z = Z, α ∈ R,

is called a torsion;

i. justify why it is called so, studying the displacement field of a circular cylinder
of axis Z;

ii. calculate F and ∇u;

iii. show that the transformation is isochoric;

iv. determine the condition to be satisfied by α for the deformation to be infinites-
imal;

v. find ε;

vi. calculate the displacement field in the case of small strain;

vii. calculate the change in length and angle of the vectors of the cylindrical base;

viii. calculate the displacement field u in Cartesian coordinates and deduce from it
∇u and ε.

5. For the deformation described in spherical coordinates by

r = R(1− α|φ2 − πφ|),
ϕ = φ,

θ = Θ ,

α ∈ R,

i. represent graphically a sphere after deformation, for both the cases of α < 0
and α > 0;

ii. find the displacement field u;

iii. calculate ∇u and F;
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iv. determine the conditions on α for the transformation be really a deformation;

v. determine the conditions on α for the transformation be an infinitesimal defor-
mation;

vi. determine ε;

vii. calculate the change in length and angle for the vectors of the spherical base;

viii. calculate the change in length and angle for a point on the polar axis and on
the equatorial plane;

ix. calculate the global change of volume for a sphere of radius ρ for both the cases
of finite and infinitesimal strain.

6. Show that, just for any other second-rank symmetric tensor, among the eigenvalues
of ε there are the highest value, the lowest one and a value which is a stationary
point, with respect to the direction, of the change in length of a fiber.

7. Show that

i.
|ε|2 + |ω|2 = |∇u|2;

ii.
|ε|2 − |ω|2 = ∇u · ∇>u.

8. Be u of class at least C2 and assume that u = o on ∂Ω. Then, show the Korn’s
inequality: ∫

Ω

|∇u|2dω ≤ 2

∫
Ω

|ε|2dω.

9. A plane strain is a situation where

u = ui(x1, x2)ei, i = 1, 2;

i. write ε for such a case;

ii. show that the six equations of Saint Venant-Beltrami reduce to only one and
write it.

10. Consider the change in length of a fiber x = αe, |e| = 1,

δ` =
1

α2
x · εx,

and the quadratic form
x · εx = ±k2, k ∈ R.

This defines a quadric, the strain quadric of Cauchy. Then,

δ` = ±k
2

α2
,
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so the change in length of any fiber is inversely proportional to its square norm, i.e.
to the square of the distance of the origin of the fiber from the quadric itself. Find
the strain quadric for the cases of extension, shear and dilatation studied in exercise
1, and for a plane strain as defined in the previous exercise.
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Chapter 2

Stress analysis

2.1 Forces

We are now concerned with forces as possible, though not unique, agents of deformation.
About forces, we admit they are intuitively understood (we do not care here of their real,
ultimate physical nature, of no importance for our context; it is sufficient for us to know
that forces produce displacements and hence deformations) and that they are represented
by vectors. There are different types of forces and it is important to understand that the
interior parts of a body Ω exchange forces between them.

The general situation that we examine is that of a body Ω of which we consider a material
part β ⊂ Ω, with frontier ∂β and outward unit normal n, see Fig. 2.1. A material part is
a subset of Ω composed by a set of material points, i.e., during deformation, the points
remain exactly the same and their quantity is preserved.

Generally speaking, some forces act upon β and they can be of two types:

i. volume or body forces: these forces are directly applied to the material points in β
for the simple reason that they exist. They are remote forces, result of the presence
of one or more force fields: gravitational, electrostatic, magnetic etc. As such, these
forces normally depend upon the position and they admit a density:

• a volume density b=b(p), or

• a mass density r=r(p) → b=ρ r,

with ρ the volume mass (density of the matter). These forces are extensive quantities,
so the total remote force acting upon β is

Fβ =

∫
β

b dv =

∫
β

ρ r dv; (2.1)

ii. surface forces: these are the forces that Ω exchange with the environment, by contact
through its boundary ∂Ω, like pressure or thrusts exerted by some devices or other
bodies, or the forces that β exchange with the rest of Ω still by contact through its
frontier ∂β, called also interior forces; these last are the direct consequence of the
same idea of continuum.
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Figure 2.1: Material part.

The surface forces too admit a density, in this case of course a surface density, t:

fβ =

∫
∂β

t ds. (2.2)

The density of surface forces t is called traction or stress vector. About t, we admit
the Cauchy’s postulate: t is a function of the actual position and of the outward
normal to ∂β:

t = t(p,n). (2.3)

The above statements deserve some remarks:

• there exist also attractive body forces that interior parts of a same body mutually
exchange; such forces are neglected in the classical theory, but can be of course of
an extreme importance in other fields, like astronomy and geophysics;

• the volume forces and the surface forces acting upon the boundary ∂Ω are external
forces; they are considered to be known;

• the interior forces are unknown and to determine these last once the external forces
known is the major problem of continuum mechanics;

• the Cauchy’s postulate is a strong assumption: two different surfaces ∂β1 and ∂β2

sharing in p the same normal n, share also the same traction t; in particular, t does
not depend upon the curvature of the surfaces in p;

• considering that through any point p ∈ ∂β the matter exchanges only interior forces
and not also interior couples is an implicit assumption that defines a class of materi-
als, the so-called classical continuum bodies à la Cauchy; several classical materials
can be well represented by this model, e.g. metallic alloys, wood, concrete etc, but
not other ones, called polar bodies, like some polymers, for which the introduction of
surface couples exchanged by interior parts of the body is necessary for a satisfac-
tory description of its behavior; in this text, we will refer only to classical Cauchy
bodies.

2.2 The Cauchy’s theorem

The Cauchy’s postulate does not specify in which way t is a function of n. This is done
by the
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Theorem (Cauchy’s theorem on stress). Traction t is a linear function of n, i.e. it exists
a second-rank tensor σ, the Cauchy’s stress tensor, such that

t = σn. (2.4)

Proof. Let us see the classical proof based on the use of the so-called tetrahedron of
Cauchy. We consider at a point p ∈ Ω a tetrahedron like in Fig. 2.2, where p is the
axes origin and the fourth face, whose normal is n, is inclined with respect to the three
faces passing by the axes. Be δ the distance of p from the inclined face. For δ sufficientlyPd
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Figure 2.2: The tetrahedron of Cauchy.

small, all the tetrahedron is in Ω; be dA the area of the inclined face, with outward unit
normal n, while dAi is the area of the face orthogonal to axis xi, of outward unit normal
ni = −ei. Be t = (t1, t2, t3) the traction on the inclined surface and b the body force.

About the area of the surfaces of the tetrahedron, we know that1

dAi = dA n · ei ∀i = 1, 2, 3, (2.5)

1The result in eq. (2.5) is known as theorem of the cosine for the surfaces. To prove it, we name ci
the length of the side of the tetrahedron along the axis xi; then

dAi =
1

2
cjck, i, j, k = 1, 2, 3, i 6= j 6= k,

and

dA =
1

2
|(−c1, c2, 0)× (−c1, 0, c3)| = 1

2

√
c21c

2
2 + c22c

2
3 + c23c

2
1.

The normal n to dA is given by

n =
(−c1, c2, 0)× (−c1, 0, c3)

|(−c1, c2, 0)× (−c1, 0, c3)|
=

1√
c21c

2
2 + c22c

2
3 + c23c

2
1

(c2c3, c1c3, c1c2)

so we get

n · ei =
dAi

dA
,

i.e. eq. (2.5).
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while the volume of the tetrahedron is

dV =
1

3
δ dA. (2.6)

We write now the balance of the forces acting upon the tetrahedron, using the Euler’s
axiom: when a body Ω is in equilibrium, then all of its material parts β are in equilibrium.
Then, imaging the tetrahedron as a separated part of Ω, it will be in equilibrium under
the action of the body forces and of the surface (contact) forces that it exchanges with
the rest of Ω through its four surfaces. This gives the balance equation:

t dA+ tidAi + b dV = o, (2.7)

and, for the above formulae for the areas and volume we get, after dividing by dA,

t + ti n · ei +
1

3
b δ = o. (2.8)

Hence, when δ → 0, the point p tends to the surface dA whose normal is n and the body
forces vanish; because ni = −ei, we obtain

t = −ti n · ei = −(ti ⊗ ei)n = (ti ⊗ ni)n. (2.9)

We put

σ = ti ⊗ ni, (2.10)

the Cauchy’s stress tensor in p, and finally

t = σ n. (2.11)

From eq. (2.9) we have also

σij = ei · (tk ⊗ nk)ej = tk · ei nk · ej = (tk)i(nk)j. (2.12)

Of course, if we take n = ei, then t = ti, as it must be. Just as for any other second rank
tensor, given a base e = {e1, e2, e3}, we can write

σ = σij ei ⊗ ej, (2.13)

with

σij = ei · σ ej. (2.14)

It is important to remark that σ is a function of the place and time, not of n:

σ = σ(p, t). (2.15)

As already done, the dependence upon time, always existing, is left tacitly understood in
the equations.
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Figure 2.3: The components σij.

2.3 Stress components

Let us apply the Cauchy’s theorem to surface elements whose normal is parallel to one of
the axes, n = ek:

t(k) = σij(ei ⊗ ej)ek = σij δjk ei = σik ei, (2.16)

so
t(k) = σik ei = (σ1k, σ2k, σ3k); (2.17)

this result shows that the k-th column of the matrix representing σ in the base e =
{e1, e2, e3} is composed by the Cartesian components of the traction acting upon the
surface whose normal is ek. Graphically, the situation is depicted in Fig. 2.3. We remark
the position of the indexes: the first one gives the direction of the component of the
traction acting upon a surface whose normal is the axis indicated by the second index
(e.g. σ13 is the component along x1 of the traction acting upon a surface whose normal
is e3).

To remark that the above nomenclature comes directly from the mere application of the
equations; some authors chose to swap the indexes: in σij, i is the direction of the normal
to the surface upon which the traction acts, while j is the direction of the component σij
of the traction. This is not so important, because σ = σ>, as we will see below.

Looking at Fig. 2.3, it is clear why:

• the components with equal indexes σii are called normal stresses: they give the
component of the traction upon a surface that is normal, i.e. perpendicular, to the
same surface; because in eq. (2.4) n is the outward unit normal, a normal stress
σii is positive if it is a tension, negative if a compression; normal stresses form the
diagonal of the matrix representing σ;

• the components with different indexes σij, i 6= j are called shear stresses: they give a
component of the traction upon a surface orthogonal to an axis that is tangential to
the same surface; they are the out-of-diagonal components of the matrix representing
σ.

More generally, for each element of surface of unit normal n, the traction t = σ n can be
decomposed into two mutually orthogonal vectors, see Fig. 2.4:
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Figure 2.4: Normal, ν, and tangential, τ , stresses.

• the normal stress ν:

ν = (t · n)n = (n⊗ n)t = (n⊗ n)σ n; (2.18)

• the tangential stress τ :

τ = t− ν = (I− n⊗ n)t = (I− n⊗ n)σ n. (2.19)

2.4 Balance equations

We can now write the balance equations for any part β of Ω. The Euler’s axioms stipulate
that ∀β ⊂ Ω, the force resultant and the moment resultant are null. Let us start examining
first the force resultant: ∫

β

b dv +

∫
∂β

t ds =

∫
β

ρ p̈ dv ∀β ⊂ Ω. (2.20)

Applying the Cauchy’s theorem we get∫
β

b− ρ p̈ dv +

∫
∂β

σ n ds = o ∀β ⊂ Ω, (2.21)

and for the tensor form of the Gauss theorem∫
β

(b− ρ p̈+ divσ) dv = o ∀β ⊂ Ω. (2.22)

The only possibility for this integral to be null ∀β ⊂ Ω is the integrand to be identically
null:

b + divσ = ρ p̈ ∀p ∈ Ω. (2.23)

These are the Cauchy-Poisson equations of motion for classical continuum bodies. They
generalize to each point of a deformable body the second principle of dynamics of Newton.
In case of equilibrium, p̈ = o and we obtain the equilibrium equations

b + divσ = o ∀p ∈ Ω. (2.24)
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In terms of components, the above equations read like

bi + σij,j = ρ p̈i, i, j = 1, 2, 3. (2.25)

Let us now turn the attention on the moment resultant on β:∫
β

(p− o)× b dv +

∫
∂β

(p− o)× t ds =

∫
β

ρ(p− o)× p̈ dv ∀β ⊂ Ω. (2.26)

Still using the Cauchy’s theorem we get∫
β

(p− o)× (b− ρ p̈) dv +

∫
∂β

(p− o)× (σn) ds = o ∀β ⊂ Ω (2.27)

and introducing, first, the axial tensor W of (p− o)∫
β

W(b− ρ p̈) dv +

∫
∂β

W(σn) ds = o ∀β ⊂ Ω, (2.28)

then the motion equation and the Gauss theorem, we obtain∫
β

div(Wσ)−Wdivσ dv = o ∀β ⊂ Ω, (2.29)

that, for being true ∀β ⊂ Ω, gives the condition

div(Wσ) = Wdivσ ∀p ∈ Ω. (2.30)

We now develop:

div(Wσ) = (Wσ)ij,j ei = (Wik σkj),j ei

= Wik,j σkj ei +Wik σkj,j ei = Wik,j σkj ei + W divσ,
(2.31)

and injecting this result into eq. (2.30) gives

Wik,jσkj = 0 ∀i = 1, 2, 3. (2.32)

For a generic point p = (p1, p2, p3) ∈ Ω,

W =

 0 −p3 p2

p3 0 −p1

−p2 p1 0

 , (2.33)

so that W12,3 = −1,W13,2 = 1 etc. Injecting these results into eq. (2.32) for i = 1, 2, 3
gives

i = 1 → σ23 = σ32,

i = 2 → σ13 = σ31,

i = 3 → σ12 = σ21,

⇒ σ = σ>. (2.34)

So, for classical continuum bodies, the balance of the couples corresponds to the symmetry
of σ.
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Figure 2.5: Reciprocity of the shear stresses.

There are at least two other ways to prove the reciprocity of the shear stresses, i.e. the
symmetry of σ, both of them more mechanical then the previous one. In the first one,
we consider a parallelepiped with the faces parallel to the axes, like in Fig. 2.5. If, e.g.,
we focus on the balance of the torque around axis x3, body forces and tractions on the
horizontal faces give higher order contributions and can be discarded, so we have

(σ21 +
∂σ21

∂x1

dx1)dx1dx2dx3 = (σ12 +
∂σ12

∂x2

dx2)dx1dx2dx3, (2.35)

and neglecting higher order terms we get σ12 = σ21; in a similar way we obtain also
σ13 = σ31 and σ23 = σ32.

The other method to prove the symmetry of σ is based upon the use of the Principle
of Virtual Displacements: for each possible infinitesimal rigid displacement field w, the
balance equations are satisfied if and only if∫

∂β

t ·w ds+

∫
β

(b− ρ p̈) ·w dv = 0. (2.36)

In fact, using the Cauchy’s and Gauss’s theorems we have∫
∂β

t ·w ds =

∫
∂β

σ n ·w ds =

∫
∂β

σ>w · n ds

=

∫
β

div(σ>w)dv =

∫
β

(w · divσ + σ · ∇w)dv.

(2.37)

Using the equation of mouvement (2.23) for expressing divσ, we have∫
∂β

t ·w ds+

∫
β

(b− ρ p̈) ·w dv =

∫
β

σ · ∇w dv ∀β ⊂ Ω. (2.38)

The left-hand member is null for a body at equilibrium, for the Principle of Virtual
Displacements; so, because the above equation must be satisfied ∀β ⊂ Ω, we obtain the
condition

σ · ∇w = 0 ∀p ∈ Ω, (2.39)

to be satisfied ∀w rigid and infinitesimal ⇒ ∇w = −∇>w 2, so that σ is necessarily
symmetric3.

2For any rigid displacement, ε = O, which implies ∇w = −∇>w.
3This is a consequence of the following
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Figure 2.6: Scheme of the boundary conditions.

2.5 Boundary conditions

The balance equations (2.23) must be completed by adequate boundary conditions. To
this purpose, we consider the general situation depicted in Fig. (2.6):

• the whole boundary ∂Ω is composed of two complementary parts, ∂Ωu and ∂Ωt,
such that

∂Ω = ∂Ωu ∪ ∂Ωt, ∂Ωu ∩ ∂Ωt = ∅; (2.40)

• on ∂Ωu the displacement vector is known:

u = u0, (2.41)

typically u0 = o; these are the kinematical boundary conditions;

• on ∂Ωt the traction vector is known:

t = σ n = t0; (2.42)

these are the natural boundary conditions.

Theorem. A tensor L is orthogonal to any skew tensor W ⇐⇒ L = L>.

Proof. We prove first that if L is symmetric and W skew, then they are necessarily orthogonal:

W · L = tr(W>L) = −tr(WL) = −tr(LW) = −tr(L>W) = −L ·W = −W · L ⇐⇒ W · L = 0.

To complete the proof, we must prove that if L ·W = 0 ∀W : W = −W>, then L = L>; to this end,
let us suppose that L 6= L> and decompose L in its symmetric and skew parts:

L = L1 + L2, L1 =
L + L>

2
, L1 = L>1 , L2 =

L− L>

2
, L2 = −L>2 .

So,

L ·W = L1 ·W + L2 ·W = 0;

the first term on the right-hand side is null, as we have just proved, because L1 is symmetric and W is
skew; so, it must be L2 ·W = 0 ∀W = −W>. Because L2 is skew, we can chose W = L2; then, for the
same definition of scalar product, we get L2 · L2 = 0 ⇐⇒ L2 = O, which proves the theorem.
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2.6 Principal stresses

The symmetry of σ, just as for ε, brings, through the spectral theorem, the existence of
three real eigenvalues, say σ1 ≥ σ2 ≥ σ3: the principal stresses. The eigenvectors of σ
form a base, say v = {v1,v2,v3}, the base of the principal directions of stress; in the base
v,σ is diagonal:

σ = σi vi ⊗ vi, i = 1, 2, 3, → σ =

 σ1 0 0
0 σ2 0
0 0 σ3

 . (2.43)

It is then clear, using the Cauchy’s theorem, that the traction on surfaces orthogonal to
the principal directions of stress vi is composed uniquely by a normal stress: the principal
directions are normal to surfaces where the shear stress is null.

The envelop, throughout Ω, of the principal directions of the stress form a family of lines
called the isostatic lines, that have the following property: along an isostatic line, the
matter is simply subjected to tension or compression, not to shear too. The isostatic lines
are hence the lines of best use of the matter: an effective structure is a structure where
the matter follows as much as possible the isostatic lines. In Nature, the selection has
produced a great amount of exemples where the matter tends to be distributed along the
isostatic lines, e.g. in the bones, trees etc.

For the property of maximality of the eigenvalues, see Exercise 6, Chapt. 1, σ1 is the
highest value of the normal stress, σ3 the minimal value and σ2 an intermediate value (a
local extremal).

2.7 Energy balance

Let us consider a small virtual displacement δu of Ω. The virtual work done by the
forces acting upon any part β ⊂ Ω at the equilibrium is, through the Cauchy and Gauss
theorems,

δW =

∫
∂β

t · δu ds =

∫
∂β

σ n · δu ds =

∫
∂β

σ>δu · n ds

=

∫
β

div(σ>δu) dv =

∫
β

(δu · divσ + σ · ∇δu)dv,

(2.44)

and using the equilibrium equations and the symmetry of σ we get

δW =

∫
β

(
−b · δu + σ · ∇δu +∇>δu

2
+ σ · ∇δu−∇

>δu

2

)
dv. (2.45)

The last term in the integrand is null because it is the scalar product of a symmetric and
a skew tensor; the term

δV =

∫
β

−b · δu dv (2.46)
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is the variation of the potential energy of the remote forces, i.e. the variation of the
opposite of their work, due to the variation δu. The term

δε =
∇δu +∇>δu

2
(2.47)

is the variation of strain caused by the variation δu, so that the term

δUΩ =

∫
β

σ · δε dv (2.48)

is the variation of the elastic energy, i.e. the energy stored in the body associated with
the deformation of Ω. Finally, we have the balance

δW = δV + δUΩ. (2.49)

The volume density of the variation of the elastic energy is4

δU = σ · δε = σ · ∇δu. (2.50)

2.8 Exercises

1. Consider the plane stress state

σ =

 σ11 σ12 0
σ12 σ22 0
0 0 0

 ;

i. find the normal, ν, and tangential, τ , stress on a surface of normal n =
(cos θ, sin θ, 0);

ii. show that, in the plane ν − τ , the points representing the stress state belong to
a circle (the Mohr’s circle);

iii. which is the physical meaning of the centre, radius and intersection with the
axes of the Mohr’s circle?

iv. generalize the Mohr’s circle to 3D stress states.

2. Show that σ is uniquely determined by the system of applied forces.

3. Assume that t = o on ∂Ω; show that ∀p ∈ ∂Ω the traction t on each plane orthogonal
to ∂Ω is tangent to ∂Ω.

4

σ · ε = σ · ∇u +∇>u
2

=
1

2
(σ · ∇u + σ · ∇>u) =

1

2
(σ · ∇u + σ> · ∇>u)

because σ = σ>; but, generally speaking, for any two tensors A and B, A ·B = A> ·B> so that

σ · ε =
1

2
(σ · ∇u + σ · ∇u) = σ · ∇u.
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4. Study the following cases of elementary stress states:

a) hydrostatic stress: it is that of a fluid at rest, that can exert only a compressive
normal stress;

b) pure extension: σ = σ e⊗ e, |e| = 1, σ ∈ R;

c) pure shear: σ = τ(m⊗ n + n⊗m), |m| = |n| = 1, m · n = 0, τ ∈ R.

For each one of these cases:

i. describe the stress state;

ii. find analytically the principal stresses and the principal directions of the stress;

iii. trace and study the Mohr’s circle.

5. Be σ1 > σ2 > σ3 the eigenvalues of σ (principal stresses);

i. show that σ1 > n · σ n > σ3 ∀n, |n| = 1;

ii. be m · n = 0, |m| = 1; then show that

max(m · σ n) =
1

2
(σ1 − σ3),

and that it is attained for

m =
1√
2

(e3 − e1), n =
1√
2

(e1 + e3),

with ei the principal directions of the stress;

iii. interpret all this with the Mohr’s circle.

6. Consider a vector x = p− o = `n, |n| = 1 and the value ν of the normal stress on
a surface orthogonal to n in o:

ν = n · σ n → ν`2 = x · σ x;

the quadric

x · σ x = ±k
2

`2

is called the stress quadric.

i. write the stress quadric in the principal base of the stress;

ii. which is the utility of the stress quadric?

iii. examine the cases:

a) σ1 > σ2 > σ3 > 0,

b) σ1 > σ2 > 0 > σ3,

c) σ1 > 0 > σ2 > σ3,

considering for the three cases the two possible situations ±k2/`2;

iv. find the stress quadric for the three elementary stress states of Ex. 4.

26



7. Find the principal shearing stress, i.e. the stationary values, with respect to the
direction n, of the tangential stress τ on an element of normal n. Express then the
same result with σ given in the principal base of the stress and represent the results
with the circles of Mohr.

8. Find τoct, the octahedral shearing stress, i.e. the value of the shearing stress on a
surface element orthogonal to the trisectrix of the first octant of the principal stress
directions frame.

9. The decomposition of ε introduced in Sect. 1.8 in spherical and deviatoric parts
is, of course, possible for σ too. Write this decomposition and give a physical
interpretation of the scalar that appears in the expression of the spherical part.
Find then this decomposition for the elementary cases of stress state of Ex. 4.

10. Define the principal invariants of σ, as well as of any other 2nd−rank tensor, like

I1 = trσ, I2 =
1

2
(trσ2 − tr2σ), I3 = detσ;

then, show that:

i. Id2 =
2

3
(τ 2

1 + τ 2
2 + τ 2

3 ),

ii. Id2 =
3

2
τ 2
oct,

where Id2 is the second principal invariant of σd, the deviatoric part of σ, while the
τi are the principal shearing stresses.

11. Show that σ and σd share the same principal directions but not necessarily the
same principal values.

12. A stress state is defined by

σ =

 σ11 0 σ13

0 σ22 0
σ13 0 σ33

 , with σ33 = (1 +
t

τ
)
x2

1 + x2
3

α2
, α, τ ∈ R,

t being the time. Find the principal stresses and the principal directions of stress
everywhere and ∀t. Give the Mohr’s representation of the stress state for t = 0, x1 =
x3 = 1.

13. Show that the vector (I−n⊗n)σ n, |n| = 1 takes its minimum norm, zero, if and
only if n is a principal direction for σ.

14. Be σ = σ1e ⊗ e + σ2(I − e ⊗ e), |e| = 1 and σ ∈ [σ1, σ2]. Show that ∀n, |n| = 1,
such that n · σ n = σ, the norm of the vector of Ex. 13 has constant value

τ =
√

(σ − σ1)(σ2 − σ).
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Chapter 3

Classical elasticity

3.1 Constitutive equations

Let us consider the most general problem of the equilibrium of deformable bodies (refer
to Fig. 2.6): a deformable body Ω is

• acted upon by body forces b on Ω;

• subjected to tractions t0 on ∂Ωt;

• constraint to the displacement u0 on ∂Ωu.

The problem is to find:

• the deformed configuration Ωt, i.e. the vector field of the displacement u = u(p);

• the tensor field of infinitesimal strain ε = ε(p);

• the tensor field of stress σ = σ(p).

The fundamental assumption is that strain and displacement are infinitesimal, so that
Ωt ' Ω, so that the equilibrium equations can be written on the reference configuration
Ω. The unknown of the problem are 15 scalar fields:

• the 3 components of u : ui = ui(p), i = 1, 2, 3;

• the 6 distinct components of ε : εij = εij(p), i, j = 1, 2, 3, εij = εji;

• the 6 distinct components of σ : σij = σij(p), i, j = 1, 2, 3, σij = σji.

The equations at our disposal are 9:

• the 6 relations displacement-strain:

ε =
∇u +∇>u

2
→ εij =

ui,j + uj,i
2

, i, j = 1, 2, 3, εij = εji; (3.1)

• the 3 equilibrium equations:

divσ + b = o → σij,j + bi = 0, i, j = 1, 2, 3. (3.2)
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These are the only general, i.e. valid for any solid, that can be written. There is hence a
lack of 6 equations. This fact shows that the description of the equilibrium problem by
uniquely geometry and mechanical balance is not sufficient: 6 other equations are needed
for the problem closure.

These 6 equations must introduce what is still absent in the general equations: the be-
havior of the material. Such equations are called constitutive equations, and they give the
link between σ and ε. Generally speaking,

σij = σij(u, ε,ω, ε,t, ε,p,ω,t,ω,p). (3.3)

Nonetheless, some requirements must be fulfilled by the constitutive equations:

• the mechanical behavior of a body must be independent from the place and orienta-
tion; as a consequence, any dependence from rigid translations and rotations must
vanish ⇒ σ cannot be a function of u nor of ω;

• as a consequence, we are left with

σ = σ(ε, ε,t, ε,p); (3.4)

• materials whose constitutive equations depend only upon ε,t:

σ = σ(ε,t) (3.5)

are viscous fluids, like the Newtonian fluids:

σ = −pI + 2µε̇+ λtrε̇I, (3.6)

with p the pressure, µ and λ the coefficients of viscosity;

• materials whose constitutive equations depend on both ε and ε,p are polar materials,
like some polymers; for them, non-local effects are possible;

• materials whose constitutive equations are of the type

σ = σ(ε) (3.7)

are classical solids, like metals, wood, concrete etc.; in this case, internal stresses
σij are only functions of the changes in length and in angle of fibers, described by
the εij.

3.2 Classical elasticity

A natural state for a solid is a state for which in the body ε = O when applied forces and
imposed displacements are null.

Then, classical elasticity is a theory concerned with

i. bodies with a natural state;
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ii. infinitesimal strain;

iii. bodies for which σ is a linear function of ε.

These assumptions give the following type of constitutive law:

σ = Cε; (3.8)

this is the generalized Hooke’s law that, actually, generalizes to 3D elastic bodies the
celebrated Hooke’s law, 1660: ut tensio sic vis1. The Hooke’s law concerned, at the
origin, the behavior of springs (Hooke tested clock’s springs), or, as he said, of any springy
body, i.e. of any body whose behavior is similar to that of a spring: elastic bodies. The
generalization of the Hooke’s law to 3D elastic bodies is due to Cauchy, 1821.

C is the elastic (stiffness) tensor; it describes, by the value of its components, the behavior
of the material; relating two second-rank tensors, it is a fourth-rank tensor2:

C = Cijkl ei ⊗ ej ⊗ ek ⊗ el, i, j, k, l = 1, 2, 3, (3.9)

which gives, for the components of σ,

σij = Cijkl εkl ∀ i, j, k, l = 1, 2, 3. (3.10)

A material whose constitutive equation is of this type is called a material of Cauchy. This
law implies that for ε = O, i.e. in the absence of applied forces, σ = O and, of course,
the converse: for any null stress state, ε = O: the body takes its original undeformed
configuration when it is not stressed, i.e. when it is not acted upon. This is the most
peculiar characteristic of elastic bodies.

The elastic moduli Cijkl are 81; their value must be determined experimentally. This is of
course very cumbersome, because 81 independent experimental measures should be done.
Nevertheless, we will see that in the end, for the cases interesting for us and very common
in practice, only two elastic coefficients are to be determined by laboratory tests.

To this purpose, we introduce two concepts:

i. homogeneous elastic bodies; in this case, C is independent from the position: the Cijkl

are constant all over Ω;

ii. isotropic elastic bodies; in this case, C is insensitive to any rotation: the Cijkl do not
depend upon the direction.

A homogeneous, isotropic, elastic body is hence a body whose response is elastic, inde-
pendent from the position and from the direction. Many important materials, like metal
alloys, are of this type. The study of this type of materials is the domain of classical elas-
ticity. The following of this text is concerned with problems of classical elasticity.

1Hooke discovered this law, empirically, in 1660, but he revealed it, under the form of an anagram,
ceiiinosssttuu, only in 1676 and finally under the final form only in 1678 in his book De Potentia Resti-
tutiva.

2∀A, B and L ∈ Lin(V), A⊗B is the fourth-rank tensor defined by the operation (A⊗B)L := (B·L)A.
Applying this rule to the dyads of a basis, we get a fundamental result: [(ei ⊗ ej)⊗ (ek ⊗ el)] (ep⊗eq) =
(ek ⊗ el) · (ep ⊗ eq)(ei ⊗ ej) = δkpδlq(ei ⊗ ej).
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3.3 Reduction of the number of elastic moduli

Let us see now how from 81 moduli we arrive to only 2. The first reduction is due to the
symmetry of σ and ε:

σij = σji → Cijkl εkl = Cjikl εkl ⇒ Cijkl = Cjikl,

εkl = εlk → Cijkl εkl = Cjilk εlk ⇒ Cijkl = Cjilk.
(3.11)

Hence, we have the following 45 conditions, called minor symmetries3,

Cijkl = Cjikl = Cijlk = Cjilk, (3.12)

that reduce the number of independent elastic moduli from 81 to 36.

A further reduction is obtained postulating that the material is a material of Green (1839).
The volume density of the variation of the elastic energy, see Sect. 2.7, is

δU = σ · δε = σijδεij; (3.13)

it represents the variation of the elastic energy, per unit volume, produced by a small
variation of the strain state. Let us consider a transformation of an elastic body from a
state A to a state B. Then, the body is made of a material of Green if the variation of
the elastic energy passing from A to B is independent from the transformation itself, but
depends uniquely upon the initial and final states:

δUfin =

∫ B

A

δU = UB − UA. (3.14)

The consequence of this assumption is that δU must be the exact differential of the elastic
energy density U , i.e.

dU = σ · dε = σij dεij, (3.15)

which gives the Green’s formula:

σij =
∂U

∂εij
. (3.16)

Then, by the Hooke’s law, the Green’s formula and the Schwarz theorem, we get

Cijkl =
∂σij
∂εkl

=
∂2U

∂εkl∂εij
,

Cklij =
∂σkl
∂εij

=
∂2U

∂εij∂εkl
,

⇒ Cijkl = Cklij ∀ i, j, k, l = 1, 2, 3. (3.17)

These 15 relations are called the major symmetries; they reduce the number of distinct
elastic moduli from 36 to 21.

No further reduction can be obtained in the most general case, i.e. without introducing
special properties (namely, elastic symmetries) of a given elastic material.

3The word symmetry is used here to signify the invariance of an elastic modulus with respect to a
permutation of the indexes. The same word, symmetry, is used in elasticity for indicating a transformation
that preserves the elastic behavior. The reader should be aware of this somewhat ambiguous double
meaning of the same word in the same context, that of elasticity.

32



To remark that a material of Cauchy is not necessarily a material of Green, and vice-versa.
In fact, a material of Cauchy is also of Green if it admits an elastic potential, U ; this fact
has always been verified experimentally for all the elastic materials. A material of Green
is also of Cauchy if σ is a linear function of ε; this is not always the case.

The most important class of elastic materials is that of hyperelastic materials, i.e. of
materials that are at the same time of Cauchy and of Green. In such a case, σ is a linear
function of ε, the material admits an elastic potential U and the Green’s formula is valid.
Then it must be

U =
1

2
σ · ε =

1

2
ε · Cε =

1

2
Cijkl εij εkl, (3.18)

i.e. U is necessarily a quadratic function of the εij. In fact, only in this way we get,
through the Green’s formula,

σij =
∂U

∂εij
=

∂

∂εij

(
1

2
Cmnpq εmn εpq

)
= Cijpq εpq, (3.19)

i.e. we satisfy at the same time to the fundamental relations of Green and Cauchy
materials.

We will see further that C is a positive definite tensor, which implies that it is inversible,
i.e.

∃S : ε = Sσ ⇒ S = C−1. (3.20)

So,
εij = Sijklσkl, (3.21)

which injected in the general expression (3.18) of U gives

U =
1

2
Sijklσijσkl, (3.22)

so that, deriving with respect to σij, we get

εij = Sijklσkl =
∂U

∂σij
, (3.23)

which is the dual, for the strains, of the Green’s formula.

In the most general case, the behavior of hyper elastic materials depends upon 21 distinct
moduli: this is the case of completely anisotropic or triclinic materials. The behavior of
an anisotropic material depends upon the direction, hence the moduli Cijkl are frame-
dependent quantities.

This cannot be the case of isotropic materials, whose elastic response is insensitive to a
change of frame: the elastic moduli of an isotropic material cannot be frame-dependent.
This means that for an isotropic material, U cannot depend upon the εij, that are frame-
dependent quantities, but rather on the invariants of ε4. As a consequence, being U a
quadratic fonction of the εij, the general expression of U must be of the type

U =
1

2
c1I

2
1 + c2I2, (3.24)

4The elastic energy U is, as any other quantity derived by a scalar product, an invariant, i.e. it is not
frame-dependent. Hence, because C for an isotropic material is frame independent, the expression of U
cannot depend upon frame-dependent quantities, the εij , but only upon frame-independent functions of
the εij : the invariants of ε.
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with5

I1 = trε = εii, I2 =
tr2ε− trε2

2
=
εii εii − εij εji

2
. (3.25)

The third order invariant of ε, i.e. det ε, cannot enter in the expression of U , because it is
a cubic function of the εij, while U must be a quadratic function of the εij. Then,

U =
1

2
[(c1 + c2)εii εii − c2 εij εji] , (3.26)

so that6

σii =
∂U

∂εii
= (c1 + c2)εii − c2 εii,

σij =
∂U

∂εij
= −c2 εji = −c2 εij.

(3.27)

For instance:

σ11 =
∂U

∂ε11

= (c1 + c2)(ε11 + ε22 + ε33)− c2 ε11,

σ12 =
∂U

∂ε12

= −c2 ε12 etc.

(3.28)

We see hence that in the case of isotropic materials, only two constants are sufficient to
characterize the elastic behavior.

3.4 Equations of Lamé

Classically, we pose

c1 + c2 = λ, −c2

2
= µ ⇒ c1 = λ+ 2µ, (3.29)

and we get, in compact form,

σij = 2µ εij + λ εkk δij, (3.30)

or, in tensor form,

σ = 2µ ε+ λ trε I. (3.31)

These are the equations of Lamé (1852), the constitutive equations for isotropic hypere-
lastic materials. They provide the 6 scalar equations (there are 6 distinct components for
σ and ε) for the closure of the elastic problem. λ and µ are the coefficients of Lamé: they
are the two moduli to be specified for determining the elastic behavior of a material.

5ε2 = εε = εijei ⊗ ej εhkeh ⊗ ek = εij εhk ej · eh(ei ⊗ ek) = εij εhk δjh(ei ⊗ ek) → trε2 =
εij εhk δjhtr(ei ⊗ ek) = εij εhk δjhδik = εij εji.

6Following a common practice, when an index is underlined, it is not a dummy index: no summation
over it.
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The inverse of the equations of Lamé can be easily obtained:

trσ = (2µ+ 3λ)trε → trε =
trσ

2µ+ 3λ
, (3.32)

that replaced in eq. (3.31) gives, after simple passages,

ε =
1

2µ

(
σ − λ

2µ+ 3λ
trσ I

)
. (3.33)

Coefficients c1 and c2 are never used in the calculations, λ and µ are preferred. The
components of C can be expressed as functions of the Lamé’s coefficients (no summation
over i and j):

Ciiii = c1 = λ+ 2µ,

Ciijj = c1 + c2 = λ,

Cijij = −c2

2
= µ =

Ciiii − Ciijj

2
,

i, j = 1, 2, 3, (3.34)

the other components are null.

It is often preferred to express the Lamé’s equations as functions of two other parameters,
the so-called technical or engineering constants, having a direct physical meaning and
easy to be determined experimentally by a unique traction test. We consider a bar, with
a cross section of area A, whose axis coincides with the x1-axis of a reference frame,
submitted to a tensile force f at its ends. We assume that (see the next Chapter on the
Saint Venant problem)

σ11 =
f

A
(3.35)

and it is easy to check that the stress tensor

σ = σ11 e1 ⊗ e1 (3.36)

satisfies to the equilibrium equations. So, by the Lamé’s equations we get

ε =
1

2µ

[
σ11 e1 ⊗ e1 −

λ

2µ+ 3λ
σ11 ei ⊗ ei

]
=

σ11

2µ(2µ+ 3λ)
[2(λ+ µ)e1 ⊗ e1 − λ(e2 ⊗ e2 + e3 ⊗ e3)] .

(3.37)

Now, we introduce

• the Young’s modulus E

E :=
σ11

ε11

; (3.38)

• the Poisson’s coefficient ν

ν := −ε22

ε11

= −ε33

ε11

. (3.39)
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Of course, thanks to isotropy, nothing changes if we change the labels of the axes. It is
self-evident that E measures the stiffness to extension, i.e. it gives a direct measure of the
stiffness of the material. ν, on its side, gives a measure of the so-called Poisson’s effect:
a tension in a direction normally produces a contraction in the transversal directions (an
expansion if tension is turned into compression).

We remark that the existence of only two independent elastic parameters means that
there are two distinct mechanical phenomena for stressed isotropic materials: they are
the extension stiffness and the Poisson’s effect.

The above formulae give us the expression of E and ν as functions of the Lamé’s coeffi-
cients:

E = µ
2µ+ 3λ

µ+ λ
, ν =

λ

2(µ+ λ)
; (3.40)

the converse relations are easy to be found:

λ =
ν E

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
, (3.41)

while the relations of the technical constants with the Cartesian components are:

C1111 = E
1− ν

(1 + ν)(1− 2ν)
,

C1122 = E
ν

(1 + ν)(1− 2ν)
,
→

E =
(C1111 − C1122)(C1111 + 2C1122)

C1111 + C1122

,

ν =
C1122

C1111 + C1122

.

(3.42)

Technical constants can be used in place of λ and µ for writing the Lamé’s equations;
using the above equations, it is easy to find that the equations of Lamé can be written
also in the following form:

σ =
E

1 + ν

[
ε+

ν

1− 2ν
trε I

]
, (3.43)

ε =
1 + ν

E
σ − ν

E
trσ I. (3.44)

Two other technical moduli are sometimes introduced, relating to two other possible
mechanical situations. For a pure shear stress state, e.g.

σ = σ12(e1 ⊗ e2 + e2 ⊗ e1), (3.45)

then
ε =

σ12

2µ
(e1 ⊗ e2 + e2 ⊗ e1). (3.46)

We define shear modulus G the quantity

G :=
σ12

2ε12

, (3.47)

so that

G = µ =
E

2(1 + ν)
. (3.48)
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Of course, nothing changes if the axes labels are changed. G, like E, measures a stiffness,
in this case that to shearing actions.

Now, we consider a spherical stress state:

σ = p I, p ∈ R, (3.49)

so that

ε =
p

2µ+ 3λ
I. (3.50)

The change in volume is

δv = trε =
3p

2µ+ 3λ
; (3.51)

then, we introduce the bulk modulus κ as

κ :=
p

δv
=

2µ+ 3λ

3
. (3.52)

κ measures the volume stiffness, i.e. the stiffness to volume changes; it is immediate to
find that

κ =
E

3(1− 2ν)
. (3.53)

To end this part, we remark that the relation (no summation over i)

σii = E εii (3.54)

shows clearly the linear dependence of stress from strain, as prescribed by the Hooke’s
law. This is why classical elasticity is also called linear elasticity. Experimentally, this is
well shown by the results of a common tension test on a steel bar: the typical diagram
σ−ε of such a test is represented in Fig. 3.1: the elastic behavior is just the initial, linear
phase; the subsequent phase is plasticity, separated from the elastic range by the yielding
point; the final phase, with a nonlinear dependence of σ upon ε, is the strain hardening.
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I

Figure 3.1: Typical σ − ε diagram.
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3.5 Elastic energy of an isotropic body

The elastic energy is readily written for an isotropic body, introducing eq. (3.31) or (3.43)
into eq. (3.18):

U =
1

2
(2µ trε2 + λ tr2ε) (3.55)

or equivalently

U =
E

2(1 + ν)

(
trε2 +

ν

1− 2ν
tr2ε

)
. (3.56)

3.6 Bounds on the elastic constants

The elastic moduli cannot take any possible value. In fact, when a body is acted upon
by forces, the elastic energy increases necessarily: it stores energy under the form of
elastic energy. Physically, this means that external forces do a positive mechanical work
to deform an elastic body. Hence, it must be

U =
1

2
ε · C ε > 0 ∀ε 6= O. (3.57)

Mathematically, this is equivalent to impose that C be a positive definite tensor. Of course,
this implies that the Cijkl must satisfy some conditions, in other words, they are bounded.
However, to use this approach to find these bounds is rather cumbersome, because this
needs the search of the eigenvalues of C, i.e. the resolution of its characteristic equation.
Of course, this is true for every elastic material, not only for the isotropic ones.

A mechanical approach is preferable: because it must be U > 0 ∀ε 6= O, one can chose
specially simple strain states. Let us see how to proceed for isotropic materials: we first
consider a spherical strain state:

ε = αI, α ∈ R; (3.58)

then

U =
1

2
σ · ε =

1

2
(2µ ε+ λ trε I) · ε =

α

2
(2µ trε+ 3λ trε) =

3

2
α2(2µ+ 3λ); (3.59)

this value of U is positive ⇐⇒
2µ+ 3λ > 0. (3.60)

Now, we consider a shearing strain state:

ε = γ(ei ⊗ ej + ej ⊗ ei), i 6= j, γ ∈ R; (3.61)

then, being trε = 0, we get

U =
1

2
σ · ε =

1

2
(2µ ε+ λ trε I) · ε = µ ε · ε

= γ2µ(ei ⊗ ej + ej ⊗ ei) · (ei ⊗ ej + ej ⊗ ei) = 2γ2µ,
(3.62)
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that can be positive ⇐⇒
µ > 0. (3.63)

The first case corresponds to a change of volume but not of shape, the second to a change
of shape but not of volume. Eqs. (3.60) and (3.63) are the only two bounds that concern
the Lamé’s constants. Because of eqs. (3.48), (3.34), (3.52) and (3.53), these bounds
correspond to pose

G > 0, κ > 0, (3.64)

C1111 + 2C1122 > 0, C1111 − C1122 > 0, (3.65)

and

E > 0, −1 < ν <
1

2
. (3.66)

Rather surprisingly, the bounds on E and ν are three in place of two.

To remark that materials with ν < 0 are theoretically possible: to a tension corresponds
a transversal dilatation and to a compression, a contraction. It can be shown that these
are the only necessary conditions for U being a positive definite quadratic form for the
case of an isotropic body.

The upper bound ν = 1/2 has a special interest: in fact,

lim
ν→ 1

2

κ = lim
ν→ 1

2

E

3(1− 2ν)
=∞; (3.67)

So, such materials have an infinite volume stiffness, i.e. they oppose an infinite stiffness
to change their volume: they are incompressible materials. In fact, for a spherical stress
state we have seen that

δv = trε =
p

κ
⇒ lim

κ→∞
δv = 0. (3.68)

This is actually true for any stress state, not only for the spherical ones; to prove this, we
put ν = 1/2 in the inverse Lamé’s equations:

ν =
1

2
→ ε =

3

2E
σ − 1

2E
trσ I ⇒ δv = trε = 0. (3.69)

3.7 The equations of Navier

The equilibrium equations

divσ + b = o (3.70)

can be written as functions of u, using the Lamé’s equations and the expression of ε =
ε(u), eq. (1.26)7:

divσ = div(2µ ε+ λtrε I) = 2µ divε+ λdiv(trε I) = 2µ divε+ λ∇(trε). (3.71)

7The following general result is used: div(ϕ S) = ϕ divS + S∇ϕ ∀ϕ ∈ R and ∀S ∈ Lin(V).
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Now, ε must be written as function of u,

ε =
∇u +∇>u

2
(3.72)

and considering that

div∇v = ∆v,

div(∇>v) = ∇divv,
∀v ∈ V , (3.73)

and that
trε = divu (3.74)

we obtain
divσ = µ∆u + (λ+ µ)∇divu. (3.75)

Finally, the equilibrium equations become

µ∆u + (λ+ µ)∇divu + b = o, (3.76)

or by components
µ ui,jj + (λ+ µ)uk,ki + bi = 0, i = 1, 2, 3. (3.77)

These are the Navier’s equations, expressing equilibrium as function of the displacement
u.

3.8 The equations of Beltrami-Michell

It is possible, and useful, to write the compatibility equations of Saint Venant-Beltrami,
eq. (1.68),

εij,kl + εkl,ij − εik,jl − εjl,ik = 0 (3.78)

in terms of stresses and forces, using the inverse Lamé’s equations:

εij =
1 + ν

E
σij −

ν

E
δijΘ, (3.79)

where
Θ := trσ. (3.80)

Injecting eq.(3.79) into eq.(3.78) we have

σij,kl + σkl,ij − σik,jl − σjl,ik =
ν

1 + ν
(δijΘ,kl + δklΘ,ij − δikΘ,jl − δjlΘ,ik). (3.81)

Let us pose l = k in eq.(3.81); then, we get

σij,kk + σkk,ij − σik,jk − σjk,ik =
ν

1 + ν
(δijΘ,kk + δkkΘ,ij − δikΘ,jk − δjkΘ,ik), (3.82)

or, better,

∆σij + Θ,ij − σik,jk − σjk,ik =
ν

1 + ν
(δij∆Θ + 3Θ,ij − 2Θ,ij). (3.83)
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By the equilibrium equation we get

σpq,q + bp = 0 → σpq,qr = −bp,r, (3.84)

and hence

∆σij +
1

1 + ν
Θ,ij −

ν

1 + ν
δij∆Θ = −(bi,j + bj,i). (3.85)

This is a set of 9 equations, but only 6 are independent, for the symmetries of i and j, so
this linear combination of the 6 original equations is equivalent to these last.

We need now to express Θ in terms of the bi,j. To this end, we pose k = i and l = j in
eq.(3.81) and sum up with respect to the repeated indexes, to get

2σij,ij − σii,jj − σjj,ii =
ν

1 + ν
(2δijΘ,ij − δiiΘ,jj − δjjΘ,ii); (3.86)

because
σii = σjj = Θ, δijΘ,ij = Θ,ii = ∆Θ, δiiΘ,jj = δjjΘ,ii = 3∆Θ, (3.87)

we obtain

σij,ij =
1− ν
1 + ν

∆Θ. (3.88)

But
σij,ij = −bj,j = −divb, (3.89)

so

∆Θ = −1 + ν

1− ν
divb, (3.90)

and finally we get

∆σij +
1

1 + ν
Θ,ij = − ν

1− ν
δijdivb− (bi,j + bj,i). (3.91)

These are the Beltrami-Michell equations (1900); they are the necessary conditions of
compatibility written in terms of stresses and forces.

Let us now consider the special case of constant body forces:

b = const. → divb = 0, bi,j = bj,i = 0 ∀i, j, (3.92)

so that eq.(3.91) becomes

∆σij +
1

1 + ν
Θ,ij = 0, (3.93)

known as equations of Beltrami (1892). For eq. (3.90) we have also

∆Θ = 0, (3.94)

i.e., Θ is a harmonic function; because

trε =
1

2µ+ 3λ
trσ, (3.95)

it is also
∆(trε) = 0, (3.96)
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i.e., also the trace of ε is a harmonic function. Finally, from the equations of Beltrami,
we get also

∆2σij = 0 ∀i, j, (3.97)

and because ε is a linear function of σ,

∆2εij = 0 ∀i, j, (3.98)

in other words, the components of σ and ε are biharmonic functions.

3.9 Superposition of the effects

In classical elasticity, all the sources of nonlinearity vanish: the relation between stress and
strain, the Lamé’s equations for isotropic bodies, or more generally the Hooke’s law, are
linear; the nonlinearity due to the effects of the displacements on the forces, that produce
the displacements, does not exist, because of the assumption of small perturbations. The
equilibrium equations, for instance in the form of the Navier’s equations, are linear in the
ui. Hence, as for any other linear problem, if f i, i = 1, ..., n are n systems of forces acting
upon the same elastic body Ω, with the same boundary conditions on ∂Ωu and {ui, εi,σi}
are the corresponding elastic solutions, then the solution to the new system of forces f0

obtained as a linear combination of the previous forces,

f0 = αi f i, i = 1, ..., n, (3.99)

is the linear combination of the previous solutions with the same coefficients αi:

{u0, ε0,σ0} = αi{ui, εi,σi} i = 1, ..., n. (3.100)

This is the Principle of Superposition of the Effects, that has several applications in the
analysis of elastic structures.

It has to be remarked, however, that this principle cannot be applied to the quantities
that are not linear, which is the case of the elastic energy. Just as an example, consider
the case of n = 2; then

U =
1

2
(α1σ1 + α2σ2) · (α1ε1 + α2ε2)

=
1

2
[(α1)2σ1 · ε1 + (α2)2σ2 · ε2 + α1α2(σ1 · ε2 + σ2 · ε1)]

= (α1)2U1 + (α2)2U2 + α1α2(σ1 · ε2 + σ2 · ε1) 6= α1U1 + α2U2.

(3.101)

3.10 The Principle of Virtual Displacements

Be δu a compatible virtual displacement field on Ω; this means that

i. δu is an infinitesimal, regular, time independent field of displacement;

ii. it satisfies to the boundary conditions on ∂Ωu : δu|∂Ωu = o;

42



iii. it satisfies to the geometric relations with ε : δu defines a virtual strain field δε as

δε =
∇δu +∇>δu

2
. (3.102)

We further assume that the forces are equilibrated with the stresses, i.e. that the body is
in equilibrium:

divσ + b = o. (3.103)

Then, the work done by the surface tractions t applied to Ω on ∂Ωt for the virtual
displacement δu is, for the theorem of Cauchy,∫

∂Ω

t · δu ds =

∫
∂Ω

σn · δu ds; (3.104)

so, using successively the theorem of Gauss, the identity

div(S>v) = S · ∇v + v · divS ∀v ∈ V and ∀S ∈ Lin(V), (3.105)

the equilibrium equation (3.103) and the fact that, see Note 4 of Chapter 2,

σ · ε = σ · ∇u, (3.106)

we get ∫
∂Ω

t · δu ds =

∫
∂Ω

σn · δu ds =

∫
∂Ω

σ>δu · n ds

=

∫
Ω

div(σ>δu)dω =

∫
Ω

(σ · ∇δu + δu · divσ)dω

=

∫
Ω

σ · ∇δu dω −
∫

Ω

b · δu dω

=

∫
Ω

σ · δε dω −
∫

Ω

b · δu dω,

(3.107)

and finally∫
Ω

σ · δε dω =

∫
Ω

b · δu dω +

∫
∂Ω

t · δu ds ∀ compatible δu. (3.108)

This is the Principle of Virtual Displacements (PVD) for deformable bodies, not exclu-
sively the elastic ones, because we have not introduced any constitutive law, so its validity
is quite general. As the same proof of the theorem shows, it is completely equivalent to
the equilibrium equations; for these reasons, this theorem is often called a principle, like
we do.

The PVD states that, at the equilibrium, the virtual work of the internal forces, the
left-hand side term, equals the virtual work of the external forces, the right-hand side
term not only for the real displacement field, but more generally for any compatible
virtual displacement field, i.e. for any infinitesimal displacement field that satisfies to
the kinematical boundary conditions and that is linked to the virtual strain field by eq.
(3.102).

The PVD is hence the principle of equilibrium and it has several and remarkable appli-
cations, like for the resolution of hyperstatic structures, see Chapter 5, or in the proof of
the theorems of the next Section.
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3.11 Elasticity theorems

The theorems in this Section have a great importance, as well as from the theoretical
point of view and for their numerous applications.

3.11.1 The Theorem of Clapeyron

If we apply the PVD not to a generic displacement field but to the real one, that produced,
at the equilibrium, by the applied forces and that is, of course, compatible, i.e. if δu = u
and δε = ε, then we have∫

Ω

σ · ε dω =

∫
Ω

b · u dω +

∫
∂Ω

t · u ds. (3.109)

The left-hand side is twice the elastic energy stored by Ω, while the right-hand side is
the actual work of external forces for the displacement field that they produce at the
equilibrium. This proves the Clapeyron’s theorem (1833): at the equilibrium, the work
done by the external forces for their final displacements is twice the elastic energy stored
in the body during deformation.

To remark that, unlike the PVD, this theorem is valid only for linearly elastic materials
(but not necessarily isotropic nor homogeneous), because we interpret the term σ · ε as
the double of the elastic energy, which is correct only for linear elasticity.

3.11.2 The Theorem of Betti

Let us suppose that the same body Ω is subjected first to a system of forces t1, b1 that at
the equilibrium give the displacement and strain fields u1 and ε1. Then, Ω is submitted
to another equilibrated system of forces, t2, b2, that produce the fields u2 and ε2. All
these displacement and strain fields, being real, are also virtual and compatible. So, we
are free to combine the forces of the first system with the displacements-strains of the
second one and vice-versa. For the major symmetries of C it is

Cijklε
1
ijε

2
kl = Cklijε

1
ijε

2
kl = Cklijε

1
klε

2
ij = Cijklε

2
ijε

1
kl, (3.110)

in other words
ε1 · Cε2 = ε2 · Cε1, (3.111)

so that applying the PVD we get∫
Ω

b1 · u2 dω +

∫
∂Ω

t1 · u2 ds =

∫
Ω

σ1 · ε2 dω =

∫
Ω

ε2 · Cε1 dω =∫
Ω

ε1 · Cε2 dω =

∫
Ω

σ2 · ε1 dω =

∫
Ω

b2 · u1 dω +

∫
∂Ω

t2 · u1 ds.

(3.112)

This is the Betti’s reciprocal theorem (1879): the external work done on an elastic body
by the forces of the first system for the displacements of the second one equals that done
by the forces of the second system for the displacements of the first one, when both the
systems are equilibrated. This theorem has several applications, namely in the theory of
the lines of influence.
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3.11.3 The Theorem of Kirchhoff

A further result concerns the general solution of the elastic problem: we know that the
elastic problem is described by 15 unknowns and ruled by 15 equations. But, actually,
does this problem have at least one solution? And if yes, is this solution the unique
possible one? We leave apart the first question, because in general too complicate (in
our problems, for each case we will give a constructive response) and let us consider the
question of the uniqueness of the solution.

We proceed assuming that there are two possible solutions to the same elastic prob-
lem, which means same body Ω, boundary conditions and applied forces: u1, ε1,σ1 and
u2, ε2,σ2. Then, we consider the difference of the two solutions:

u = u1 − u2, ε = ε1 − ε2, σ = σ1 − σ2. (3.113)

Of course, these fields correspond to the following body forces and boundary conditions:
b = o over Ω, t = o on ∂Ωt, u = o on ∂Ωu. So, by the PVD,∫

Ω

b · u dω +

∫
∂Ω

t · u ds = 0 =

∫
Ω

σ · ε dω =

∫
Ω

ε · Cε dω. (3.114)

Because C is positive definite, this can happen ⇐⇒ ε = O ⇒ ε1 = ε2; moreover,
ε = O⇒ σ = Cε = O too, which implies σ1 = σ2. Finally, if ε1 = ε2, then u1 = u2 +w,
with w an infinitesimal rigid displacement, absolutely inessential.

This result is the uniqueness theorem of Kirchhoff (1859): the elastic solution is unique.
The very importance of this theorem is that it gives a constructive way for finding a
solution to an elastic problem; if a solution is found in some way, then it is the solution,
because of the Kirchhoff’s theorem.

3.11.4 The Theorem of Castigliano

Let us consider an elastic body Ω, with given constraint conditions on ∂Ωu and acted
upon by some forces; among these forces, we consider a concentrated force fp applied in
p ∈ Ω. We imagine to give a small increment δfp to fp. Correspondingly, the elastic energy
of the body changes, for the contribution of :

• the work done by the other external forces;

• the work done by δfp.

The second contribution is negligible with respect to the first one, because it is of the
order o(δfp)

2; the first contribution, for the Betti’s theorem, is equal to the work done by
δfp during the application of the remaining forces.

So, if up is the displacement that p has in the direction of fp when Ω is deformed by the
whole system of applied forces, the increment of the elastic energy due to the increment
δfp will be

δfp · up = δfpup, (3.115)
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and the same increment can be written as

∂U

∂fp
δfp, (3.116)

which implies

up =
∂U

∂fp
. (3.117)

This is the Theorem of Castigliano (1875): the displacement of the point of application of
a concentrated force in the direction of the same force is equal to the partial derivative of
the elastic energy with respect to the same force.

This theorem has also a dual form, that can be proved in a similar way:

fp =
∂U

∂up
: (3.118)

the component of a force in the direction of the displacement of its point of application
is equal to the partial derivative of the elastic energy with respect to the same displace-
ment.

The theorem of Castigliano is used for the calculation of elastic displacements and in a
method for the resolution of hyperstatic structures.

3.11.5 The Theorem of Minimum Total Potential Energy

We define as kinematically admissible any state {u∗, ε∗,σ∗} for which

ε∗ =
∇u∗ +∇>u∗

2
, u∗ = u on ∂Ωu, σ

∗ = Cε∗. (3.119)

To remark that such a state is not necessarily equilibrated, because we do not require that
σ∗ satisfy to the equilibrium equations with the applied forces, but only that it is related
to the strain field by the Hooke’s law.

Then, the total potential energy E of an elastic body Ω, subjected to body forces b and
tractions t on ∂Ωt is defined on the set of kinematically admissible states as

E =
1

2

∫
Ω

σ∗ · ε∗ dω −
∫

Ω

b · u∗ dω −
∫
∂Ω

t · u∗ ds. (3.120)

E is the difference between the elastic energy of Ω and the work of the external forces.

Be now {u′, ε′,σ′} the real, hence equilibrated, solution of the equilibrium problem, and
put

u = u∗ − u′, ε = ε∗ − ε′. (3.121)

So, because the starred system is compatible and {u′, ε′,σ′} is the solution,

ε =
∇u +∇>u

2
, u = o on ∂Ωu. (3.122)
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C is symmetric, i.e. it has the major symmetries, which implies

ε∗ · Cε∗ = (ε′ + ε) · C(ε′ + ε) = ε′ · Cε′ + ε · Cε+ ε′ · Cε+ ε · Cε′

= ε′ · Cε′ + ε · Cε+ 2ε · Cε′.
(3.123)

So,
1

2

∫
Ω

σ∗ · ε∗ dω − 1

2

∫
Ω

σ′ · ε′ dω =
1

2

∫
Ω

σ · ε dω +

∫
Ω

σ′ · ε dω, (3.124)

where of course σ∗ = Cε∗,σ = Cε,σ′ = Cε′.

Because {u′, ε′,σ′} is a solution, then by the PVD and for u = o on ∂Ωu, we have∫
Ω

σ′ · ε dω =

∫
Ω

b · u dω +

∫
∂Ω

t · u ds. (3.125)

So, for the last two equations, we have

E∗ − E ′ = 1

2

∫
Ω

σ · ε dω =
1

2

∫
Ω

ε · Cε dω, (3.126)

where E∗ is the total potential energy of the starred, only kinematically admissible, state,
while E ′ is the total potential energy corresponding to the real, also equilibrated, solution
(a solution is of course kinematically admissible). Because C is positive definite, ε ·Cε ≥
0 ∀ε, and it is null ⇐⇒ ε = O, i.e. when ε∗ = ε′, so finally we get

E ′ ≤ E∗, (3.127)

with the equality that holds only when u∗ = u′ + w, ε∗ = ε′,σ∗ = σ′, i.e. when the
starred system coincide, left apart an inessential infinitesimal rigid displacement w, with
the real solution.

This is the Principle of Minimum Total Potential Energy: among all the possible values
that the total potential energy E can take in correspondence of given kinematically ad-
missible states, the minimum value is assumed for the real, hence also equilibrated, state.
This theoretical result is important also for practical purposes, because it offers a way
for the search of the solution: the (unique) solution to a problem of linear elasticity is
that corresponding to the kinematically admissible state that minimizes E ; then, that
kinematically state, and only that one, will be also equilibrated.

3.11.6 The Theorem of Minimum Complementary Energy

We define as statically admissible any stress field σo that satisfies the equilibrium and
boundary conditions:

divσo + b = o in Ω, σon = t0 on ∂Ωt. (3.128)

Then, the complementary energy defined on the set of statically admissible stress fields is

C =
1

2

∫
Ω

σo · εo dω −
∫
∂Ωu

σon · u0 ds, (3.129)
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with
εo = Sσo. (3.130)

C is the difference between the elastic energy of Ω and the work of the forces on the
boundary uniquely.

Then,

E + C =
1

2

∫
Ω

σ · ε dω −
∫

Ω

b · u dω −
∫
∂Ωt

t0 · u ds

+
1

2

∫
Ω

σ · ε dω −
∫
∂Ωu

t · u0 ds

=

∫
Ω

σ · ε dω −
∫

Ω

b · u dω −
∫
∂Ω

t · u ds = 0,

(3.131)

for the theorem of Clapeyron. This motivates the name of complementary energy.

Now, be {ũ, ε̃, σ̃} the real solution to the equilibrium problem for Ω, with of course
σ̃ = Cε̃; this solution is equilibrated and kinematically admissible. Let us introduce the
difference of the stress states

σ = σo − σ̃ ⇒ divσ = o Ω, σn = o on ∂Ωt. (3.132)

Then, using the same procedure exposed in eq. (3.123), we obtain

1

2

∫
Ω

σo · εo dω − 1

2

∫
Ω

σ̃ · ε̃ dω =
1

2

∫
Ω

σ · ε dω +

∫
Ω

σ · ε̃ dω. (3.133)

Because of eq. (3.132), we get8∫
Ω

σ · ε̃ dω =

∫
∂Ωu

σn · u0 ds =

∫
∂Ωu

σon · u0 ds−
∫
∂Ωu

σ̃n · u0 ds, (3.134)

Injecting this result into eq. (3.133) gives

Co − C̃ =
1

2

∫
Ω

σ · ε dω =
1

2

∫
Ω

σ · Sσ dω, (3.135)

with

Co =
1

2

∫
Ω

σo · εo dω −
∫
∂Ωu

σon · u0 ds (3.136)

the complementary energy corresponding to the statically admissible stress field (to which
is not asked the kinematical admissibility of the displacement and strain fields), while

C̃ =
1

2

∫
Ω

σ̃ · ε̃ dω −
∫
∂Ωu

σ̃n · u0 ds (3.137)

8This result is readily obtained thanks to the identity∫
∂Ω

An · v =

∫
Ω

divA · v dω +

∫
Ω

A · ∇v dω,

which derives from the Gauss theorem for tensors, and using the result of Note 4 of Chapter 2.
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is the complementary energy of the real state, which is at the same time statically and
kinematically admissible.

The argument now is exactly the same used for proving the principle of minimum total
potential energy: because S is positive definite9 then σ · Sσ > 0 ∀σ 6= o and it is nulle
⇐⇒ σ = o⇒ σo = σ̃, so finally we obtain

C̃ ≤ Co, (3.138)

which proves the Principle of Minimum Complementary Energy: among all the possible
values that the complementary energy C can take for given statically admissible stress
fields, the minimum value is assumed for the real, hence also kinematically admissible,
solution.

3.12 Exercises

1. Show that for linear, isotropic, elastic materials, σ and ε are coaxial, i.e. they share
the same eigenvectors. What does this means, mechanically speaking? Is this true
also for anisotropic materials?

2. Consider the decomposition into spherical and deviatoric parts of ε and σ:

ε = εs + εd, σ = σs + σd;

i. show that it is

U = Us + Ud, with Us =
1

2
σs · εs, Ud =

1

2
σd · εd;

what does this mean, mechanically?

ii. show that, for an isotropic material,

σs = Cεs, σd = Cεd,

and interpret it mechanically;

iii. show that Us depends only upon κ and Ud only upon G; why, in some sense,
this was to be expected?

iv. show that bounding the value of Ud is equivalent to bound the value of τoct, see
Ex. 8, Chapt. 2.

3. Express E, ν, κ and G as functions of c1 and c2 and vice-versa.

4. Write the equations of Lamé with κ and G as unique elastic parameters.

9The positive definiteness of S comes from the fact that S = C−1 or, mechanically, repeating verbatim
the argument used for proving that C is positive definite, but now starting from the expression (3.22) of
U .
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5. Be u such that curl u = o; use the Navier’s equations to show that

divu =
β

λ+ 2µ
+ const. (3.139)

6. Using the Navier’s equations show that

∆divu = − 1

λ+ 2µ
divb = −(1 + ν)(1− 2ν)

(1− ν)E
divb, (3.140)

which is called the dilatation equation.

7. An elastic cube whose constants are E and ν is compressed by uniform tractions
of value q on two opposite faces, while volume forces are negligible. Determine the
volume change and the variation of the length of the cube sides.

8. Do the same exercice, but this time the cube is surrounded by an infinitely rigid
material on the lateral sides.

9. A square plate is submitted to a uniform tension f on the four sides, and its elastic
contants are E and ν. Find the surface variation and the displacement field u.

10. A square plate whose elastic constants are λ and µ and with the sides parallel to
the axes x1 and x2, is submitted to some tractions on its sides and null body forces.
The resulting displacement field is

u(x1, x2) = γ x2 e1, γ ∈ R;

i. give a graphical interpretation of u;

ii. determine ε and σ;

iii. find the surface variation;

iv. determine the tractions on the boundary;

v. which type of deformation is this one?

11. A circular cylinder of radius R and height L is clamped at the lower base while
the upper one is turned through an angle β. The body forces and tractions on the
lateral surface are null.

i. make a conjecture on the displacement field and then calculate ε and σ;

ii. determine the actions to be applied to the upper base; what are the actions on
the clamped base?

iii. calculate the volume variation;

iv. determine the stress on any cross section of the cylinder;

v. which type of deformation is this one?

12. An isotropic body subjected to a change of temperature θ changes its volume. We
assume that this volume change is isotropic and proportional to θ through a coeffi-
cient α and that it adds to the mechanical deformation, due to the applied forces.
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Generalize the Lamé’s equations to take into account for the deformation due to θ
(this is the constitutive law for linear isotropic thermo-elasticity, or Hooke-Duhamel
law). Which is the physical meaning of α?

13. Using the Hooke-Duhamel law, find the stress in a cube, whose thermo-elastic con-
stants are E, ν and α, when it undergo a change of temperature θ; the cube is
completely immersed in an infinitely rigid medium.

14. A rectangular plate, isotropic and with constants λ and µ, is attached on a horizontal
side of length b (the other side is h) and can slip along it. It is subjected only to its
own weight γ, per unit of area.

i. Determine the boundary conditions;

ii. calculate the stress field;

iii. determine the final surface of the plate.

15. The circle
X2

1 +X2
2 = 1

is subjected to the deformation defined by{
x1 = a X1 + b X2

x2 = −b X1 + a X2
a, b ∈ R− {0}. (3.141)

i. for which values of a and b the deformation can be considered as infinitesimal?

ii. in such a case, find the final shape of the circle;

iii. if the circle is composed by an elastic material whose constants are λ and µ,
determine, in the absence of body forces, which are the tractions to be applied
to the circle to obtain the given deformation.

16. A cylinder of radius R and height � R is composed by a thermo-elastic material
whose constants are λ, µ, α > 0. It is surrounded by an infinitely rigid medium,
and heated to a temperature θ. Knowing that the friction coefficient for the contact
cylinder-medium is ν, find the torque to be applied per unit length of the axis in
order to make the cylinder turn.

17. In an ancient manuscript of Leonardo da Vinci, a figure has been recently discovered
which suggests that the famous Italian genius had probably realized the mechanics
of bent beams.

Inspired by this discovery, let us try to trace the possible track from the intuition of
Leonardo to modern mechanics: we consider a beam with rectangular cross-section;
b is the width and h the height of the section, while the beam’s length is `. We
chose a frame with the axis x1 horizontal, x2 vertical, both in the plane of the cross-
section, and x3 is the axis passing through the centre of all the sections (the beam
axis). Interpreting the figure of Leonardo, we assume that the displacement field is

u = ψ x2x3 e3, ψ ∈ R. (3.142)

The material is assumed to be isotropic of constants E and ν and the displacements
and strains infinitesimal.
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i. determine the strain field ε;

ii. find the volume change;

iii. determine the stress field σ;

iv. determine the formula of Navier, relating σ33 to its resultant moment on the
cross section and to the geometrical data of the section.

18. Consider the case of conservative body forces: b = ∇ϕ, with ϕ the force potential.
Write the Beltrami-Michell equations for such a case and show that if ϕ is harmonic,
then ∆Θ = ∆(trε) = 0 and ∆2σij = ∆2εij = 0 ∀i, j.
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Chapter 4

The Saint-Venant Problem

4.1 Problem definition

One of the most important applications of the theory of elasticity is the study of elastic
beams. This problem, important per se and for applications, is rather complicate. It can
be approached by different ways; in this Chapter, we look at a beam as it is in its reality
of a three-dimensional body, while in the next one we will consider a beam as an ideal
one-dimensional object.

The study of the beams needs some precision: a standard problem must be considered
in order to define and solve a specific case, sufficiently representative of interesting appli-
cations. This standard problem is known in the literature as the Saint-Venant Problem
after the name of the French scientist that defined and solved it (1855).

The Problem of Saint-Venant is defined as follows:

• the body Ω object of the study, the beam, is a cylinder (the Saint-Venant cylinder) of
finite length `; hence, the cross section S, of any possible form, but simply connected,
is constant;

• the material is linear elastic, homogeneous and isotropic;

• the cylinder is charged by tractions only at its ends; the system of applied forces is
equilibrated; tractions on the lateral surface and body forces are absent;

• the dimensions of the beam are such that ` � d, with d = sup{chords of S}; the
reason for this assumption will be clear further;

• the objective is always the same: find u, ε,σ everywhere in Ω.

With these assumptions, the system to be studied is of the type in Fig. 4.1; the cross
section represented on the left is seen from the positive direction of x3. We chose once
and for all a standard frame R = {o;x1, x2, x3} with o the centroid of one of the end
sections, x3 the axis connecting the centroids of all the sections of the beam and the two
axes x1 and x2, that belong to the end section x3 = 0, coincide with two principal axes of
inertia of the section, see Fig. 4.1. To be remarked that, classically, the frame used in the
Saint-Venant Problem is negatively oriented. We denote by S0 the base at x3 = 0, with
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Figure 4.1: The cylinder of Saint-Venant.

S1 that at x3 = ` and with Sl the lateral surface; on these three surfaces, the outward unit
normal is respectively n0 = (0, 0,−1), n1 = (0, 0, 1) and nl = (n1, n2, 0). It is apparent
then that ∂Ωt = S0 ∪ S1 ∪ Sl, ∂Ωu = ∅.

The forces on the two bases form an equilibrated system: R = o, Mo = o.

Then, the problem to be solved is: determine u, ε,σ such that:

in Ω


divσ = o,

σ = 2µ ε+ λ trε I,

ε =
∇u +∇>u

2
;

on S0 σ n0 = t0;

on S1 σ n1 = t1;

on Sl σ nl = 0;

with


∫
S0

t0 ds+

∫
S1

t1 ds = o,∫
S0

(p− o)× t0 ds+

∫
S1

(p− o)× t1 ds = o.

(4.1)

4.2 The Principle of Saint-Venant

The Saint-Venant Problem, as defined hereon, is too hard to be solved in its generality,
especially for the fulfillment of the boundary conditions. Nevertheless, practically, the
exact distribution of tractions on the ends of the beam is rarely known and often of a
scarce importance. More meaningful, are the resultants of forces and moments, that are
normally known quantities.

For this reason, Saint-Venant introduces at this point a famous postulate, known as
the Principle of Saint-Venant: if a distribution of forces acting on a portion of ∂Ωt is
replaced by a statically equivalent distribution, then the effects of the two distributions are
essentially the same on the parts of Ω sufficiently far from the loaded portion of ∂Ωt.

This is just an empirical principle that has a strong effect in view of the resolution of the
Saint-Venant Problem. In fact, because ` � d, replacing the actual distributions of t0
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and t1 on S0 and S1 has an appreciable effect only close to the ends, while in the rest of
the beam the static regime, i.e. the distribution of u, ε,σ is not appreciably affected by
such a change.

Experimentally, it has been seen that the length where the static regime is modified if the
distribution of the forces on the ends is changed is of the order of d.

The Principle of Saint-Venant constitutes one of the key points for the resolution of the
Saint-Venant Problem: the solution to be found will be, near the ends, either exact,
i.e. the tractions on the ends are applied in the way specified by the solution, either
an approximation of the real solution, satisfying the only requirement to be statically
equivalent to the real one.

Finally, because ` � d, only a small part of the beam will be concerned with a solution
different from the theoretical one, the one found applying the Principle of Saint-Venant
after introducing an appropriate distribution of tractions on the ends, statically equivalent
to the real ones.

To within a distance of the order of d from the ends, such a theoretical solution is not
appropriate, the difference with the real one becoming too important; in such zones, the
correct distribution of strain and stress should be looked for by other ways, for instance
by a complete three-dimensional analysis.

4.3 The four fundamental cases

Thanks to the Saint-Venant Principle, we are concerned only with the knowledge of F,
the resultant of tractions, and M, the resultant moment of the tractions, on the ends,
both applied in correspondence of the centroid of the section.

Actually, it is only needed the knowledge of F and M on S0, because for the equilibrium

F` = −F0, M` = −[M0 + (C` − o)× F0], (4.2)

where the subscript 0 indicates a quantity of the end x3 = 0 while the subscript ` of the
end x3 = ` and C` is the centroid of this last.

F can be decomposed into two parts (in the following, we classically denote the compo-
nents of F = (T1, T2, N)):

• the axial component → N = N e3;

• the shear component → T = T1 e1 + T2 e2.

The same can be done for M:

• the axial component (twisting moment or torque) → MT = M3 e3;

• the flexural component (bending moment) → M = M1 e1 +M2 e2.

Using the principle of superposition of the effects and the Saint-Venant Principle, our
problem can then be split into the following four cases, to be solved separately:

i. extension: on S0, the cylinder is subjected only to N;
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ii. bending: on S0, the cylinder is acted upon only by M;

iii. torsion: on S0, the cylinder is submitted only to MT ;

iv. shear: on S0, the cylinder is loaded only by T.

In the following, we will tackle each one of these four cases separately; of course, any
combination of the above cases can be analyzed summing up the effects of the elementary
cases.

4.4 The semi-inverse method

Though reduced to four elementary cases, the Saint-Venant Problem remains hard to
be solved, so Saint-Venant has proposed and used also a general approach, the famous
semi inverse method of solution: for each one of the above four cases, some, plausible,
assumptions are made about the distribution of u, ε or σ, leaving anyway enough freedom
for satisfying the conditions of equilibrium and compatibility. Then, once all the equations
satisfied, the uniqueness theorem of Kirchhoff guarantees that what has been conjectured
is actually the only possible solution for the case in object.

4.5 The fundamental assumption

According to the semi inverse method, for each one of the four cases above we will in-
troduce special assumptions, specially adapted to the case to be studied. In addition, we
make a general assumption, valid for all the cases:

σ11 = σ22 = σ12 = 0 ∀p ∈ Ω. (4.3)

This assumption is motivated by the same nature of the actions applied on the ends, that
are likely to produce only elongation and shearing of the fibers parallel to x3, but not of
compression or tension in the directions x1 and x2 nor shear of the cross section.

This assumption, though plausible, is anyway rather heavy, because now we have still 15
equations but only 12 unknowns: the problem can be overdetermined. So, for each one
of the four cases, care must be taken to make the conjecture to be the solution.

A general consequence concerns equilibrium equations, that for the assumption (4.3)
become

divσ = o →


σ13,3 = 0,

σ23,3 = 0,

σ13,1 + σ23,2 + σ33,3 = 0.

(4.4)

Hence,
σ13 = σ13(x1, x2), σ23 = σ23(x1, x2), (4.5)

so that, differentiating with respect to x3 the last equation gives

σ33,33 = 0, (4.6)
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i.e., σ33 is a linear function of x3. In addition, for the (4.3), trσ = σ33 and by the Beltrami
equations we know that for b = const (b = o in our case),

∆(trσ) = 0 → ∆σ33 = 0, (4.7)

so, for eq. (4.6) we get the equation

σ33,11 + σ33,22 = 0. (4.8)

We can say more than that; in fact, for b = const. the Beltrami equations of this case
give, for eqs. (4.3), (4.5) and (4.6),

∆σij +
1

1 + ν
σ33,ij = 0 →



σ33,11 = 0,

σ33,12 = 0,

σ33,22 = 0,

(1 + ν)(σ13,11 + σ13,22) + σ33,13 = 0,

(1 + ν)(σ23,11 + σ23,22) + σ33,23 = 0,

σ33,33 = 0.

(4.9)

As a consequence, σ33 is a function which is at most linear in x1, x2, x3 and it cannot
depend upon the product x1x2:

σ33 = c0 + c1x1 + c2x2 + c3x3 + c4x1x3 + c5x2x3; (4.10)

this is the most general expression for σ33.

About the boundary conditions, on Sl it is

σnl = o, nl = (n1, n2, 0) ⇒ σ13n1 + σ23n2 = 0. (4.11)

If we call
τ = σ13e1 + σ23e2 (4.12)

the tangential stress vector, which is the resultant of the shear stresses in a point, then
the last equation can be written as

τ · nl = 0 on Sl : (4.13)

the tangential stress is tangent to the cross section contour. This is a general fundamental
result of the Saint-Venant Problem.

4.6 Global balances

We define now the internal actions, that are the six forces and moments, with respect to
the centroid, resultant of the stress distribution in a cross section S:

1. axial force:

N(x3) =

∫
S

σ33 ds; (4.14)
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2. shear force along x1:

T1(x3) =

∫
S

σ13 ds; (4.15)

3. shear force along x2:

T2(x3) =

∫
S

σ23 ds; (4.16)

4. bending moment around x1:

M1(x3) =

∫
S

σ33 x2 ds; (4.17)

5. bending moment around x2:

M2(x3) = −
∫
S

σ33 x1 ds; (4.18)

6. twisting moment (around x3):

M3(x3) =

∫
S

(σ23 x1 − σ13 x2) ds. (4.19)

All the above internal actions are here intended, conventionally, to be the resultant of
the stress that the part of the beam from x3 to ` apply to the part from 0 to x3 across
the section S at x3; of course, the part from 0 to x3 apply to that from x3 to ` exactly
the opposite actions. We can now write the balance of forces and moments from 0 to x3:
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Figure 4.2: Conventions for the signs of the internal actions.

remembering that the only actions are applied to the ends, and using the convention for
the positive signs of the internal actions shown in Fig. 4.2, which means that on S0 it is
F0 = (−T1,−T2,−N),M0 = (−M1,−M2,−M3), the expressions of the internal actions
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at the abscissa x3 are

N(x3) = −F0 · e3 = N,

T1(x3) = −F0 · e1 = T1,

T2(x3) = −F0 · e2 = T2,

M1(x3) = −[M0 + (C − o)× F0] · e1

= −[−M1e1 −M2e2 −M3e3 + x3e3 × (T1e1 + T2e2)] · e1

= M1 + T2 x3,

M2(x3) = −[M0 + (C − o)× F0] · e2

= −[−M1e1 −M2e2 −M3e3 + x3e3 × (T1e1 + T2e2)] · e2

= M2 − T1 x3,

MT (x3) = −M0 · e3 = M3.

(4.20)

We can now pass to examine the four fundamental cases introduced in Sect. 4.3.

4.7 Extension

The only resultant on S0 different from zero is N ; according to the semi-inverse method,
we make the following conjecture on the distribution of the stresses:

σ13 = σ23 = 0, σ33 = c, c ∈ R → σ = c (e3 ⊗ e3). (4.21)

With such a stress field, constant throughout Ω, the equilibrium and compatibility equa-
tions are obviously satisfied; ε is readily found:

ε =
1 + ν

E
σ − ν

E
trσ I → ε =

c

E
[e3 ⊗ e3 − ν(e1 ⊗ e1 + e2 ⊗ e2)] , (4.22)

or in matrix form

σ =

 0 0 0
0 0 0
0 0 c

 , ε =
c

E

 −ν 0 0
0 −ν 0
0 0 1

 . (4.23)

Now, the displacement field can be calculated:

u1,1 = u2,2 = − ν
E
c, u3,3 =

c

E
, u1,2 + u2,1 = u1,3 + u3,1 = u2,3 + u3,2 = 0, (4.24)

which gives (for the integration constants, we assume that the end S0 and the axis x3 are
fixed)

u1 = − ν
E
c x1, u2 = − ν

E
c x2, u3 =

c

E
x3. (4.25)

Finally, one has to check the boundary conditions:

• on Sl, nl = (n1, n2, 0) so

σ nl = c(e3 ⊗ e3)(n1e1 + n2e2) = o; (4.26)
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• on S0, n0 = (0, 0,−1) so

σ n0 = −c(e3 ⊗ e3)e3 = −c e3; (4.27)

• on S1, n1 = (0, 0, 1) so

σ n1 = c(e3 ⊗ e3)e3 = c e3; (4.28)

The last two results mean that the tractions are uniformly distributed over the end cross
sections; this is a direct consequence of the assumed conjecture and of the Saint-Venant
Principle. Passing to the resultant we can determine the last unknown, c: on S1, N(x3 =
`) = N . Then ∫

Sl

σ33 ds =

∫
Sl

c ds = N ⇒ c =
N

A
, (4.29)

where A is the area of the cross section. Finally,

σ =
N

A
e3 ⊗ e3, (4.30)

ε =
N

EA
[e3 ⊗ e3 − ν(e1 ⊗ e1 + e2 ⊗ e2)] , (4.31)

u =
N

EA
(−ν x1,−ν x2, x3). (4.32)

The quantity EA is the extension stiffness of the beam. Because all the equations are
satisfied, for the Kirchhoff theorem eqs. (4.30), (4.31) and (4.32) are the solution of the
Saint-Venant Problem for the extension case.

4.8 Bending

In pure bending, the only action different from zero on the end S0 is

M0 = M1 e1 +M2 e2, (4.33)

while T1 = T2 = N = M3 = 0. Using the superposition principle, we consider separately
the two cases of M1 and M2, and we study first M1.

4.8.1 Conjecture on the stress field

The beam is acted upon by tractions on the ends that have as unique global effect a
moment around the axis x1. We tentatively assume, following the semi-inverse method,
that σ is defined by

σ13 = σ23 = 0, σ33 = b x2, b ∈ R → σ = b x2(e3 ⊗ e3), (4.34)
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or in matrix form

σ =

 0 0 0
0 0 0
0 0 b x2

 , (4.35)

i.e. we assume a linear distribution of σ33 with x2, the axis orthogonal to x1, which is the
axis of M1. Unlike the extension case, the stress state is no more homogeneous.

The equilibrium equations reduce to the only

σ33,3 = 0, (4.36)

which is obviously satisfied by the assumed stress field, while the Beltrami-Michell com-
patibility equations are all identically null, because σ13 = σ23 = 0 and σ33 is linear.

About the boundary conditions:

• on Sl, nl = (n1, n2, 0) so

σ nl = b x2(e3 ⊗ e3)(n1e1 + n2e2) = o; (4.37)

• on S0, n0 = (0, 0,−1) so

σ n0 = −b x2(e3 ⊗ e3)e3 = −b x2 e3; (4.38)

• on S1, n1 = (0, 0, 1) so

σ n1 = b x2(e3 ⊗ e3)e3 = b x2 e3. (4.39)

The datum on the ends is the knowledge of M1, so, considering e.g. S1, one has∫
S1

(p− o)× σn1 ds = M1e1 →

b

∫
S1

(x1e1 + x2e2)× x2e3 ds = M1e1 →

b

∫
S1

(−x1x2e2 + x2
2e1) ds = M1e1.

(4.40)

Remembering that x1 and x2 are central principal axes of inertia, the first term under
integral is null (it is a product of inertia, always null when done with respect to a couple
of principal axes) while ∫

S1

x2
2 ds := J1, (4.41)

the moment of inertia of the cross section around x1. Finally we get

b J1 e1 = M1 e1 → b =
M1

J1

, (4.42)

which gives the formula of Navier

σ33 =
M1 x2

J1

, (4.43)
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Figure 4.3: Variation of σ33 on a cross section.

relating the stress σ33 to the mechanical action, the geometrical characteristics of the
cross section, condensed in J1, and the position, namely the distance from the centroid.
The formula of Navier shows that σ33 takes its extreme values on the points of the cross
section whose distance from the the axis x1 is the highest, while on the points of the axis
x1, σ33 = 0: the axis x1 is the neutral axis, see Fig. 4.3.

Because all the conditions are fulfilled, for the Kirchhoff theorem the field σ so found is
the solution.

4.8.2 The strain field

We can now determine ε:

ε =
1 + ν

E
σ − ν

E
trσ I → ε =

M1 x2

EJ1

[e3 ⊗ e3 − ν(e1 ⊗ e1 + e2 ⊗ e2)] , (4.44)

or in matrix form

ε =
M1 x2

EJ1

 −ν 0 0
0 −ν 0
0 0 1

 . (4.45)

The quantity EJ1 is the bending stiffness of the beam (relative to the axis x1).

4.8.3 Displacements

We can now pass to calculate u:

u1,1 = u2,2 = −ν M1

EJ1

x2, u3,3 =
M1

EJ1

x2,

u1,2 + u2,1 = u1,3 + u3,1 = u2,3 + u3,2 = 0.

(4.46)

The displacements are hence quadratic functions; integrating u3,3 we get

u3 =
M1

EJ1

x2x3 + w(x1, x2), (4.47)
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with w(x1, x2) an unknown function. Then, from eqs. (4.465,6), we have

u1,3 = −w,1, u2,3 = − M1

EJ1

x3 − w,2, (4.48)

so

u1 = −x3w,1 + u(x1, x2), u2 = −1

2

M1

EJ1

x2
3 − x3w,2 + v(x1, x2), (4.49)

with u(x1, x2) and v(x1, x2) two unknown functions.

From eqs. (4.461,2) we obtain

−x3w,11 + u,1 = −ν M1

EJ1

x2, −x3w,22 + v,2 = −ν M1

EJ1

x2 (4.50)

and because these two equations must be true ∀x3, it is necessarily

w,11 = w,22 = 0, (4.51)

i.e. w(x1, x2) is harmonic, so we get

u = −ν M1

EJ1

x1x2 + f1(x2), v = −ν
2

M1

EJ1

x2
2 + f2(x1), (4.52)

with f1(x2) and f2(x1) two unknown functions. So:

u1 = −x3w,1 − ν
M1

EJ1

x1x2 + f1(x2),

u2 = −1

2

M1

EJ1

x2
3 − x3w,2 −

ν

2

M1

EJ1

x2
2 + f2(x1),

(4.53)

which inserted into eq. (4.464) gives

−2x3w,12 − ν
M1

EJ1

x1 + f1,2 + f2,1 = 0. (4.54)

Because the last three terms are independent from x3, necessarily

w,12 = 0, (4.55)

so finally w(x1, x2) must be linear in x1 and x2:

w = βx1 + γx2 + c0 (4.56)

and from what remains of the last equation we get

f1,2 = −α, f2,1 − ν
M1

EJ1

x1 = α, (4.57)

so

f1 = −αx2 + c1, f2 =
ν

2

M1

EJ1

x2
1 + αx1 + c2, (4.58)

with α, β, γ, c0, c1, c2 six arbitrary constants.
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Finally, the displacement field is of the type

u1 = −ν M1

EJ1

x1x2 − αx2 − βx3 + c1,

u2 =
M1

2EJ1

(νx2
1 − νx2

2 − x2
3) + αx1 − γx3 + c2,

u3 =
M1

EJ1

x2x3 + βx1 + γx2 + c0.

(4.59)

The integration arbitrary constants are determined by the boundary conditions on the
beam ends; if we fix the end S0 so that

u1 = u2 = u3 = u1,3 = u2,3 = u2,1 = 0, (4.60)

then we get
α = β = γ = c0 = c1 = c2 = 0 (4.61)

and finally the displacement field u is defined by the components

u1 = −ν M1

EJ1

x1x2,

u2 =
M1

2EJ1

(νx2
1 − νx2

2 − x2
3),

u3 =
M1

EJ1

x2x3.

(4.62)

Looking at u3 or also at eq. (4.44), we can see that fibers on the opposite sides of axis x1

suffer deformations of the opposite sign: elongation on one side, contraction on the other
one, while the fibers on axis x1 remain unchanged. This confirms the name neutral axis
given to x1.

4.8.4 The Euler-Bernoulli law

Let us now consider a point of the central axis, o = (0, 0, x3); the displacement of such a
point is

u0 =

(
0,− M1

2EJ1

x2
3, 0

)
, (4.63)

so its new position o′ = o+ u0 has coordinates

ξ1 = 0,

ξ2 = − M1

2EJ1

x2
3,

ξ3 = x3.

(4.64)

The deformed axis of the beam is hence a parabola. The plane that contains the deformed
axis is called the plane of bending. In this case, it is the same plane containing the couple
M1.
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The curvature χ of the axis is given by the general formula for the curvature of a plane
curve:

χ =
ξ2,33

[1 + (ξ2,3)2]
3
2

. (4.65)

When, as in our case, strains are small, then

|ξ2,3| � 1, (4.66)

so it can be neglected in front of 1, which gives the approximation for the curvature

χ ' ξ2,33. (4.67)

From this last and from eq. (4.642) we get hence

χ = − M1

EJ1

, (4.68)

which is the celebrated Euler-Bernoulli law for bending1. It relates the cause, the bending
moment M1, to the effect, the curvature χ, through the mechanical and geometrical
characteristics of the beam, condensed in the bending stiffness EJ1.

4.8.5 Deformation of the cross section

Equation (4.64) gives the tangent t to the deformed central line:

t = o′,3 = (0,−M1x3

EJ1

, 1) (4.69)

1This result can be obtained also through a more direct, geometrical approach: we assume that any
cross section remains plane and orthogonal to the deformed axis; this assumption, which is the constitutive
assumption of the Euler-Bernoulli beam theory was a result in the rigorous demonstration done before.
Then, the length of a fiber on the central axis x3 subtended by a small angle dθ is

ds0 = R dθ,

where R is the radius of curvature of the deformed central axis; such a fiber is not stretched. For the
Euler-Bernoulli assumption, the length of a (stretched) fiber subtended by the same angle dθ but at a
distance x2 from the central axis is

ds = (R+ x2) dθ,

so that the extension ε33 is given by

ε33 =
ds− ds0

ds0
=

(R+ x2) dθ −R dθ

R dθ
=
x2

R
.

We now assume that such an extension is produced by a longitudinal stress σ33, which is given by the
Lamé’s equations as

σ33 = Eε33 =
x2

R
E.

Remembering that the axes x1 and x2 are principal central axes of inertia, when integrating upon the
cross section the stress σ33 and its moments about the three axes, the only non vanishing term is the
moment about the axis x1 and we obtain easily

M1 = −
∫
S

σ33x2 ds = −E
R

∫
S

x2
2 ds = −EJ1

R
→ χ =

1

R
= − M1

EJ1
.

The sign − is due to the convention on the positive value for M1.
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or, introducing the radius of curvature

R =
1

χ
=
EJ1

M1

, (4.70)

t = (0,−x3

R
, 1). (4.71)

Equation (4.623) shows that all the points of a cross section remain in a plane: any cross
section is transformed into another planar section, turned with respect to the original one.
In addition, because the cross section remains planar, we can neglect, for the while, the
displacement in the plane of the cross section and consider only its rigid rotation about
the neutral axis. So,

u =

(
0,− x

2
3

2R
,
x2x3

R

)
(4.72)

and any point p = (x1, x2, x3) of such a section is transformed into

p′ = p+ u = (x1, x2 −
x2

3

2R
, x3 +

x2x3

R
). (4.73)

Then, because o′ = (0,−x2
3/2R, x3), eq. (4.64), any vector p′ − o′, lying in the plane of

the deformed section, is of the type

p′ − o′ = (x1, x2,
x2x3

R
) (4.74)

and finally
t · (p′ − o′) = 0, (4.75)

i.e., ∀x3, the tangent to the deformed central line is orthogonal to any vector of the
deformed cross section passing by x3. This means that any cross section remains not only
planar, but also perpendicular to the axis also after deformation.

This result is a characteristic of pure bending of beams in the framework of the Saint-
Venant Problem, and it proceeds, if it is not taken as a basic hypothesis, see note 1, from
the initial assumption of linear distribution for σ33. To be remarked that this result is
correct only for pure bending, i.e. for bending produced by end couples, while strictly
speaking it is not correct for bending accompanying the shear, see Sect. 4.10.

To study how a cross section at x3 = ζ is deformed in its plane, we consider a rectangular
section of width 2b and height 2h. The two vertical sides x1 = ±b will go into

η1 = ±b
(

1 +
νM1

EJ1

x2

)
. (4.76)

The two vertical sides go hence into two inclined straight lines, whose inclination does
not depend upon the position of the section along the beam axis.

The upper and lower sides x2 = ±h will go into

η2 = ±h+
M1

2EJ1

(νx2
1 − νh2 − ζ2). (4.77)

The two horizontal sides deform hence into a parabola and the cross section becomes like
in fig. 4.4
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Figure 4.4: Deformation of a rectangular cross-section for pure bending.

4.8.6 Biaxial bending

The case of M2 is evidently analogous and the computations lead to

σ33 = −M2x1

J2

, (4.78)

with J2 the moment of inertia of the cross action about the axis x2.

The case of biaxial bending, i.e. of the contemporary presence of both M1 and M2, is
simply obtained summing up the contributions of M1 and M2:

σ33 =
M1x2

J1

− M2x1

J2

. (4.79)

The equation of the neutral axis is hence

σ33 = 0 → M1x2

J1

=
M2x1

J2

, (4.80)

that can be transformed into

x2 =
1

tanψ

(
ρ1

ρ2

)2

x1, (4.81)

where

ψ = arctan
M1

M2

(4.82)

while

ρi :=

√
Ji
A

(4.83)

is the radius of gyration of the cross section with respect to axis xi, i = 1, 2.

By consequence, the inclination θ of the neutral axis on x1 is

tan θ =
x2

x1

=
1

tanψ

(
ρ1

ρ2

)2

→ tan θ tanψ =

(
ρ1

ρ2

)2

. (4.84)
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Figure 4.5: Biaxial bending.

The general situation is that depicted in Fig. 4.5. Let us consider the angle

θ −
(π

2
− ψ

)
= θ + ψ − π

2
; (4.85)

it is equal to π/2, i.e. M and the neutral axis are orthogonal, ⇐⇒

θ + ψ − π

2
=
π

2
→ θ + ψ = π ⇐⇒ tan(θ + ψ) = 0. (4.86)

But

tan(θ + ψ) =
tan θ + tanψ

1− tan θ tanψ
=

1
tanψ

(
ρ1
ρ2

)2

+ tanψ

1−
(
ρ1
ρ2

)2 = 0

⇐⇒ tan2 ψ = −
(
ρ1

ρ2

)2

,

(4.87)

which is impossible: M and the neutral axis cannot be orthogonal in the case of biaxial
bending. This means that whenever M is not aligned with one of the two principal central
axes of inertia, then M is not orthogonal to the neutral axis.

4.8.7 Bending and extension

If an axial force N is added to the bending moments M1 and M2, because all of these
internal actions produce exclusively σ33 as stress components, their effect can be added
directly and we get

σ33 =
N

A
+
M1x2

J1

− M2x1

J2

=
1

A

(
N +

M1x2

ρ2
1

− M2x1

ρ2
2

)
. (4.88)

It is immediately recognized that the neutral axis does not pas by the centroid of the
cross section and in general it can be completely exterior to it. In such a case, the stress
σ33 does not change of sign on the section. The general analysis of such problem needs
some elements of projective geometry and it is beyond the scope of this text.
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4.9 Torsion

For the case of torsion, the cylinder is acted upon on the end S0 by tractions whose
resultant is null and whose resultant moment is, for any cross section,

MT = M3 e3. (4.89)

The study of torsion is, mathematically speaking, much more complicate than that of
extension or bending. That is why, following also a historical order, we examine first the
simplest case of circular cross section, then we will pass to consider the problem of torsion
for a generally shaped cross section and finally we will consider an elegant approximate
solution for thin hollow sections.

4.9.1 The circular section

We consider a circular section of radius R and we make the following conjecture about
the displacement vector u (Coulomb, 1770): each point p moves rigidly on a circular arc,
remaining on its own section S, turning of an angle which is proportional to the distance
of S from the end S0, assumed as clamped. With such an assumption, see Fig. 4.6,

∀p = (x1, x2, x3) ∈ S,


u1 = r cos(α + θ)− r cos θ,

u2 = r sin(α + θ)− r sin θ,

u3 = 0,

(4.90)

with r = |p − o| and α is the angle by which the cross action is rigidly rotated. For a
small rotation,
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Figure 4.6: Torsion of a circular section.

u1 = r(cosα cos θ − sinα sin θ − cos θ) ' r(cos θ − α sin θ − cos θ)

= −r α sin θ = −α x2,

u2 = r(sinα cos θ + cosα sin θ − sin θ) ' r(α cos θ + sin θ − sin θ)

= r α cos θ = α x1,

u3 = 0.

(4.91)
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About the dependence of u from x3, for the assumption that α(x3) is proportional to the
distance from S0 we have

α(x3) = α x3, (4.92)

with the constant α that is called the torsion or twist angle; α measures the relative
rotation of two cross sections at unit distance.

Finally, the assumed displacement field is

u1 = −α x2x3,

u2 = α x1x3,

u3 = 0.

(4.93)

Coulomb gave the first this kinematics of the torsion, but wrongly he assumed it valid for
any cross section, which is false.

The strain field is hence

ε =
∇u +∇>u

2
=
α

2
[−x2(e1 ⊗ e3 + e3 ⊗ e1) + x1(e2 ⊗ e3 + e3 ⊗ e2)] , (4.94)

or in matrix form

ε =
α

2

 0 0 −x2

0 0 x1

−x2 x1 0

 ; (4.95)

because trε = 0, the deformation is isochoric. By the Lamé’s equations we get the stress
field:

σ = 2µε+ λtrε I = µα [−x2(e1 ⊗ e3 + e3 ⊗ e1) + x1(e2 ⊗ e3 + e3 ⊗ e2)] , (4.96)

or in matrix form

σ = µα

 0 0 −x2

0 0 x1

−x2 x1 0

 . (4.97)

It is immediate to check that such a stress field satisfies the equilibrium and the Beltrami-
Michell’s compatibility equations. For what concerns the boundary conditions,

• on Sl, nl = (
x1

R
,
x2

R
, 0) so

σ nl = µα [−x2(e1 ⊗ e3 + e3 ⊗ e1)

+x1(e2 ⊗ e3 + e3 ⊗ e2)] (
x1

R
e1 +

x2

R
e2) = o;

(4.98)

• on S0, n0 = (0, 0,−1) so

σ n0 = −µα [−x2(e1 ⊗ e3 + e3 ⊗ e1)

+x1(e2 ⊗ e3 + e3 ⊗ e2)] e3 = µα(x2,−x1, 0);
(4.99)

• on S1, n1 = (0, 0, 1) so

σ n1 = µα [−x2(e1 ⊗ e3 + e3 ⊗ e1)

+x1(e2 ⊗ e3 + e3 ⊗ e2)] e3 = µα(−x2, x1, 0).
(4.100)
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We know that the resultant moment of the stress on each basis equals the torque:

M3 e3 =

∫
S1

(x1, x2, 0)× µ α(−x2, x1, 0) ds

= µ α

∫
S1

(x2
1 + x2

2) ds e3 = µ α J0 e3,

(4.101)

with J0 the polar moment of inertia of the section; for the circle,

J0 =
πR4

2
(4.102)

hence

M3 =
πR4

2
µ α (4.103)

and
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Figure 4.7: Stress in a twisted circular section.

α =
M3

µ J0

. (4.104)

The torsion angle is hence proportional to the torque; the quantity µ J0 is the torsional
stiffness of the beam. Finally, we get

σ13 = −M3 x2

J0

, σ23 =
M3 x1

J0

, (4.105)

formulae algebraically similar to that of Navier, eq. (4.43): the material is mostly stressed
near the boundary and of course, for the central symmetry of the circular section, these
values are those of the stress on any couple of orthogonal diameters, see Fig. 4.7. Hence,
more generally, we can wrote that on any diameter the tangential stress τ varies with the
distance r from the center like

τ =
M3 r

J0

=
2M3r

π R4
→ τmax =

2M3

π R3
. (4.106)
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4.9.2 Sections of any shape

Let us consider now a cross section of any shape, different from the circular one. The
displacement field u cannot be of the type used for the circle, because the boundary
conditions on Sl should not be satisfied. In fact, for a general section we have, see Fig.
4.8,

nl =

(
−dx2

d`
,
dx1

d`
, 0

)
(4.107)

so with the solution valid for the circular section we should obtain
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Figure 4.8: Outward normal nl in a generally shaped section.

σ nl = µ α

(
0, 0, x1

dx1

d`
+ x2

dx2

d`

)
= o → x1dx1 + x2dx2 = 0, (4.108)

which is the differential equation of a family of circles: the circular section is the only one
compatible with the state of stress (4.97).

We then pose

u1 = −α x2x3,

u2 = α x1x3,

u3 = α ϕ(x1, x2),

(4.109)

with ϕ(x1, x2) the warping function, so called because it describes the warping, i.e. the
antiplane deformation, of the cross section. Then

ε =
∇u +∇>u

2
=
α

2
[(−x2 + ϕ,1)(e1 ⊗ e3 + e3 ⊗ e1)

+(x1 + ϕ,2)(e2 ⊗ e3 + e3 ⊗ e2)] ,

(4.110)

or in matrix form

ε =
α

2

 0 0 −x2 + ϕ,1
0 0 x1 + ϕ,2

−x2 + ϕ,1 x1 + ϕ,2 0

 ; (4.111)

because it is again trε = 0, the deformation is still isochoric. The Lamé’s equations give
the stress:

σ = 2µε+ λtrε I = µα[(−x2 + ϕ,1)(e1 ⊗ e3 + e3 ⊗ e1)

+ (x1 + ϕ,2)(e2 ⊗ e3 + e3 ⊗ e2)],
(4.112)
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or in matrix form

σ = µα

 0 0 −x2 + ϕ,1
0 0 x1 + ϕ,2

−x2 + ϕ,1 x1 + ϕ,2 0

 . (4.113)

The equilibrium equations are

σ13,3 = 0, σ23,3 = 0, σ13,1 + σ23,2 + σ33,3 = 0; (4.114)

the first two equations are identically satisfied, while the last one gives

ϕ,11 + ϕ,22 = 0 → ∆ϕ = 0; (4.115)

hence, ϕ(x1, x2) must be a harmonic function.

On the boundary Sl, nl = (n1, n2, 0) and we have

σ nl = µ α (0, 0, σ13n1 + σ23n2) = o, (4.116)

which gives the equation

σ13n1 + σ23n2 = 0 → ϕ,1n1 + ϕ,2n2 = x2n1 − x1n2. (4.117)

The quantity at the first member is the derivative of ϕ along nl, while that at the second
member is a known quantity ∀p ∈ ∂S, see Fig. 4.9:

nl × (p− o) = (n1, n2, 0)× (x1, x2, 0) = (0, 0, ξ), (4.118)

with
ξ(x1, x2) = x2n1 − x1n2. (4.119)

So, finding ϕ(x1, x2) corresponds to solve the following Neumann problem:
∆ϕ(x1, x2) = 0 in S,

dϕ

dnl
= ξ(x1, x2) on ∂S,

(4.120)

with ξ(x1, x2) a known function ∀p ∈ ∂S and depending on the shape of S. The solution
depends hence on the shape of the cross section S.

The existence of a solution to this problem is guaranteed if∮
∂S

dϕ

dnl
d` = 0, (4.121)

which is the case here:∮
∂S

dϕ

dnl
d` =

∮
∂S

(x2n1 − x1n2) d` =

∮
∂S

(x1dx1 + x2dx2) = 0 (4.122)

because the integrand is the exact differential of (x2
1 + x2

2)/2+const.
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Figure 4.9: Torsion of a generally shaped section.

The resultants of the stresses σ13 and σ23 on each section are still null, as it must be; in
fact, because ϕ(x1, x2) is harmonic, for the Gauss theorem and for the boundary condition
on ∂S, we get ∫

S

σ13 ds = µ α

∫
S

−x2 + ϕ,1 ds

= µ α

∫
S

[x1(ϕ,1 − x2)],1 + [x1(ϕ,2 + x1)],2 ds

=

∮
∂S

x1

(
dϕ

dnl
− x2n1 + x1n2

)
d` = 0.

(4.123)

A similar proof can be given for σ23. For the resultant moment, we get

M3 =

∫
S

(p− o)× (σ13, σ23, 0) ds = µ α

∫
S

(x2
1 + x2

2 + x1ϕ,2 − x2ϕ,1) ds. (4.124)

We put
J0

q
:=

∫
S

(x2
1 + x2

2 + x1ϕ,2 − x2ϕ,1) ds (4.125)

where

q =
J0

J0 +
∫
S
(x1ϕ,2 − x2ϕ,1) ds

(4.126)

is the torsion factor. Finally, we get

M3 = µ α
J0

q
(4.127)

and hence

α =
q M3

µ J0

. (4.128)

The quantity µ J0/q is the torsional stiffness of the section. So, what has changed with
respect to the circular case is the calculation of the torsional stiffness, now affected by the
torsion factor. It can be proved that q is always greater than 1, and, as it can be easily
recognized, it is equal to 1 only for the circular section. This means that, the torsion
angle α is smaller for a circular section than for any other section sharing the same polar
moment of inertia and made of the same material: the circular section is the stiffest one
for torsion.

All the problem is reduced to find, for a given section, the warping function ϕ(x1, x2).
This is not possible, in general: only some few solutions are known. Numerical approaches
and approximated solutions are hence to be used.
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4.9.3 The Bredt’s approximate solution

The most famous approximate solution is that of Bredt (1896) for thin-walled hollow
sections, see Fig. 4.10. We know that on the boundary of the section, ∂S, the traction is
null and that the tangential stress vector τ , defined in eq. (4.12), is parallel to ∂S.
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Figure 4.10: General scheme for the Bredt’s solution.

The first hypothesis of Bredt is that τ is parallel to the midline C ∀t, see Fig. 4.10 (t is
a curvilinear abscissa chosen arbitrarily along the midline C). Then, because the section
is thin-walled, the thickness h(t) is much smaller than the characteristic dimension d of
the cross section, e.g. d = sup{chords}, we can assume that τ is practically constant over
the thickness h(t) ∀t: this is the second hypothesis of Bredt.

The consequence of these hypotheses is that

τ(t) h(t) = const. (4.129)

In fact, isolating a slice of wall of the cross section, Fig. 4.11, for the equilibrium it must
be

τ1 h1 dx3 = τ2 h2 dx3 ⇒ τ h = const. (4.130)

This is analogous to what happens in hydrodynamics: the flux is constant for permanent
flows. We can now calculate τ , the norm of τ :

M3e3 =

∮
C

(p− o)× τ h dt = τ h

∮
C

(p− o)× e dt, (4.131)

because of eq. (4.129); e is the unit vector tangent to the midline C. Hence, the term
(p − o) × e is the area of the parallelogram defined, ∀p, by the vectors (p − o) and e.
Hence, ∮

C

(p− o)× e dt = 2Ω e3, (4.132)

with Ω the area of the surface surrounded by C; then

M3e3 = 2τ h Ω e3 (4.133)

so finally we obtain the first formula of Bredt:

τ =
M3

2Ω h
. (4.134)
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Figure 4.11: Scheme of the tangential stress for the Bredt’s solution.

This simple, approximate solution fulfills, in the mean ∀h(t), only the equilibrium equa-
tions, not the compatibility ones; it is based upon merely static considerations, i.e. on
equilibrium, and also the constitutive law is not used for it, which is hence valid also for
non-elastic materials. Nevertheless, it gives good results for small h(t) and shows that,
just like the speed of water increases when the section decreases, so the tangential stress
τ increases when the wall thickness h(t) decreases.

Through the PVD it is also possible to compute the rotation θ of a cross section: for the
situation in Fig. 4.12 it is:
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Figure 4.12: Scheme for the calculation of the twist angle with the Bredt’s solution.

• virtual work of the external actions: MBδθ;
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• virtual work of the internal actions:
∫
V
σ · δε dv.

We take as virtual displacements and strains the actual ones: δθ = θB and δε = ε. So,
for the inverse Lamé’s equations we get

MB θB = 2

∫
V

(σ13 ε13 + σ23 ε23) dv =
1

µ

∫
V

(σ2
13 + σ2

23) dv. (4.135)

But
σ2

13 + σ2
23 = τ 2 (4.136)

and τ does not depend upon x3; hence, indicating with ` the length of the midline C,

MB θB =
`

µ

∫
S

τ 2 ds =
`

µ

∮
C

τ 2 h dt =
`

µ

(
MB

2Ω

)2 ∮
C

h

h2
dt, (4.137)

so finally

θB =
MB`

4µΩ2

∮
C

1

h
dt. (4.138)

The quantity
1

4µΩ2

∮
C

1

h
dt. (4.139)

is purely geometric and it is often put in the form

1

4µΩ2

∮
C

1

h
dt :=

q

J0

, (4.140)

with q the torsion factor and J0 the polar moment of inertia. Finally,

θB = q
MB `

µ J0

. (4.141)

As a final remark, we notice that all the results concerning torsion apply only to compact
shapes. Thin-walled open sections, in particular, cannot be treated in this way. This topic
is beyond the scope of this text and the reader is addressed to the classical literature on
beams theory.

4.10 Shear

We come now to examine the last case, that of shear. We must immediately specify that
pure shear is not possible: shear is always joint to bending, because, for the equilibrium,
the presence of a shear force at an end of the beam produces always a bending moment
(that is why the case of bending examined in sect. 4.8, where the bending of the beam is
produced uniquely by couples applied at the ends of the beam, is sometimes called pure
bending).

In this case, the beam is loaded on the end S0 by the shear

T0 = F1 e1 + F2 e2. (4.142)
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The applied forces F1 and F2 coincide with the value of the two shear forces T1 and T2 for
x3 = 0, so we will simply indicate them as such, as usually done in the literature.

Like in the case of bending, we examine separately the two shears T1 and T2 and after we
will use the Principle of Superposition of the Effects. Let then us start with T2, see Fig.
4.13.
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Figure 4.13: Scheme for the analysis of the shear.

For the equilibrium of the part of beam between S0 and S(x3) we have that

T2(x3) = T2, M1(x3) = T2 x3. (4.143)

Hence, M1(x3) is not constant along the axis of the beam and, as anticipated, it is not
possible the existence of shear without bending. Nevertheless, still using the superposition
of the effects, we ignore the presence of M1(x3) and examine only the effects of T2.

The rigorous analysis of shear is very cumbersome, and beyond the scope of this text.
Fortunately, an approximate solution, satisfying, like the Bredt’s solution, only to equi-
librium, is rather easy to be found. We can roughly justify the use of an approximate
solution by the following consideration: for beams with ` � d, like in the Saint-Venant
problem, bending largely dominates over shear, in terms of stresses and deformations. Let
us show this by a rough computation: for a beam of rectangular section, b× h, subjected
to shear, in correspondence to the most solicited section, x3 = `, bending produces the
highest stress

σ33 =
M1 x

max
2

J1

=
6T2 `

b h2
. (4.144)

For the shear stress σ23, let us assume the rude approximation of uniform stress on the
cross section (inadmissible, because it violates the result that stress must be tangential
to the border of the section), which gives

σ23 =
T2

b h
, (4.145)

so that
σ33

σ23

=
6`

h
(4.146)

and because ` � h, then σ33 � σ23. It is is then sufficient an approximate evaluation
of the shear effects, because they are always much smaller than those of bending, in the
Saint-Venant problem.
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The approximate solution for shear is due to Jourawski (1856); the first assumption is
that the cross section is symmetric with respect to the shear axis (in this case, the axis
x2). The second assumption concerns the distribution of σ23: Jourawski assumes that it
is constant on each horizontal chord, i.e. that σ23 is independent from x1:

σ23 = σ23(x2, x3). (4.147)

This assumption violates the fundamental result of the Saint-Venant problem: tractions
are tangential to the border of the cross section. Then, a third hypothesis is made: on
the border of the section we assume that

σ13 = σ23 tanα, (4.148)

with α the angle between σ23 and the tangent to the border, see Fig. 4.14 a). In this way,
the equilibrium on the border is satisfied.

We need a fourth hypothesis, about the variation of σ13 along a horizontal chord: we
admit a linear variation between the two ends of a chord, see Fig. 4.14 b):

σ13 = σ23 tanα
x1

η
, (4.149)

with η(x2) the length of half a chord.
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Figure 4.14: The shear stresses in the Jourawski solution.

The stress components must be equilibrated, in particular they must satisfy the third
equilibrium equation of Cauchy:

σ13,1 + σ23,2 + σ33,3 = 0. (4.150)

The Naviers’s formula gives us

σ33 =
M1x2

J1

=
T2x2x3

J1

, (4.151)
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so injecting it, along with eq. (4.149), into eq. (4.150) we obtain(
σ23 tanα

x1

η

)
,1

+ σ23,2 +

(
T2x2x3

J1

)
,3

= 0. (4.152)

But σ23 does not depend upon x1, while

tanα =
dη(x2)

dx2

, (4.153)

so we have

σ23
dη

dx2

1

η
+ σ23,2 +

T2x2

J1

= 0 → σ23
dη

dx2

+ η
σ23

dx2

= −ηT2x2

J1

→

d(ησ23)

dx2

= −ηT2x2

J1

→ d(ησ23) = −ηT2x2

J1

dx2.

(4.154)

We integrate now between −xo2, upper limit of the cross section, and the position x2 of
the actual chord, upon which we want to determine σ23:∫ x2

−x02
d(ησ23) = −

∫ x2

−x02
η
T2x2

J1

dx2 → σ23 = − 1

2η

T2

J1

∫ x2

−x02
2η x2 dx2. (4.155)

The last integral in the equation above is just the opposite of the static moment S, with
respect to the axis x1, of the portion of the cross section between the upper limit and
the chord at x2. So finally, calling b = 2η the length of the chord we get the Jourawski’s
formula:

σ23 =
T2S
b J1

. (4.156)

Generally speaking, this solution does not satisfy the Beltrami-Michell compatibility equa-
tions. Nevertheless, it can be checked that for the case of rectangular sections, the
Beltrami-Michell equations are satisfied. So, for the Kirchhoff theorem, the Jourawski’s
solution is the correct one, for rectangular sections.

4.11 Yielding

The results of the Saint-Venant Problem let us calculate the state of stress at any point of
a beam. Generalizing these results to more general cases (presence of body forces, variable
section, forces on Sl etc.) is customary and supported by the results of experience.

The knowledge of σ allows for verifying the safety of the beam. This can be done if a
yielding criterion is specified. A yielding criterion defines a limit condition, usually stating
the transition from a reversible, elastic state to an irreversible one. Such a criterion is
needed to transform the set of the σij to a unique equivalent stress, according to the
criterion, to be compared to the admissible strength, measured by, normally, tensile tests
on the material composing the structure.

The very question is hence the choice of the yielding criterion. To give a detailed account
of the different yielding criteria existing in the literature is far beyond the scope of this
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text, so we restrict ourselves to the most popular among the criteria for isotropic elastic
materials: the Huber-Hencky-Von Mises criterion (in short HHVM).

According to this criterion, yielding is attained when the deviatoric elastic energy (see
Ex. 2, Chapt. 3):

Ud =
1

2
σd · εd (4.157)

reaches a critical value. Generally speaking, it is easy to show that

Ud =
1

4µ
σd · σd =

1

4µ

(
σ − 1

3
trσ I

)
·
(
σ − 1

3
trσ I

)
=

1

12µ
(3trσ2 − tr2σ)

=
1

6µ
[σ2

11 + σ2
22 + σ2

33 − σ11σ22 − σ11σ33 − σ22σ33 + 3(σ2
12 + σ2

13 + σ2
23)].

(4.158)

With the principal stresses, one gets

Ud =
1

6µ
[σ2

1 + σ2
2 + σ2

3 − σ1σ2 − σ1σ3 − σ2σ3]

=
1

4µ
[(σ1 − p)2 + (σ2 − p)2 + (σ3 − p)2], p =

1

3
trσ.

(4.159)

The limit condition is hence
Ud ≤ k0, (4.160)

with k0 an experimentally determined value.

For the case of a tensile stress, the one existing in the unidirectional traction test normally
used for characterizing the strength of isotropic materials, say

σ = σ1(e1 ⊗ e1), (4.161)

it is

Ud =
1

4µ

[(
σ1 −

σ1

3

)2

+
2

9
σ2

1

]
=

1

6µ
σ2

1. (4.162)

So, at the limit state, when σ1 reaches the value of the yielding stress, σ0, we have

k0 =
1

6µ
σ2

0. (4.163)

The limit condition of the HHVM criterion is hence

σeq =
√
σ2

11 + σ2
22 + σ2

33 − σ11σ22 − σ11σ33 − σ22σ33 + 3(σ2
12 + σ2

13 + σ2
23) ≤ σ0, (4.164)

or with the principal stresses

σeq =
√
σ2

1 + σ2
2 + σ2

3 − σ1σ2 − σ1σ3 − σ2σ3 ≤ σ0. (4.165)

For the case of the Saint-Venant Problem, σ11 = σ22 = σ12 = 0 everywhere in the beam,
so the criterion reduces to

σeq =
√
σ2

33 + 3(σ2
13 + σ2

23) ≤ σ0 (4.166)
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and remembering that the norm τ of the tangential stress τ , eq. (4.12), is

τ =
√
σ2

13 + σ2
23 (4.167)

we finally obtain the well known formula

σeq =
√
σ2

33 + 3τ 2 ≤ σ0, (4.168)

which is normally used for checking the safety of metallic beams. The term σeq is often
called the Von Mises (equivalent) stress.

4.12 Exercises

1. Use the representation theorem for rotations

R = I + sinα W + (1− cosα)W2,

with W the axial tensor of the rotation axis and α the amplitude of the rotation,
to show that the displacement field of the torsion for a circular section is the one
given in eq. (4.93).

2. Prove that the solution for the torsion of circular bars is valid also for a circular
pipe; what does it change in the formula for the tangential stress τ?

3. Prove that the choice of the origin of the axes, o, is immaterial for the case of torsion.

4. Show that the exact solution for the torsion of an elliptical section of equation

x2
1

a2
+
x2

2

b2
= 1

is given by the warping function

ϕ = −a
2 − b2

a2 + b2
x1x2

and develop the expression for the tangential stress τ and for the torsion factor q.

5. A bar is stretched by an axial force F . If the cross section area is A which is the
highest shear and on which elements of surface does it act upon?

6. A beam of cross section area A is stretched by a force F and its lateral contraction
is blocked. Show that the effective Young’s modulus is

E ′ =
1− ν

(1− 2ν)(1 + ν)
E

and determine the highest shear and the surface element where it acts upon.
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7. Show that the strain energy stored in a beam stretched by a load p uniformly
distributed over the end sections is, for unit volume,

U = Us + Ud with Us =
p2

18κ
, Ud =

p2

6µ

and express the ratio Ud/Us. What happens to this ratio when the Poisson’s coeffi-
cient varies from −1 to 1/2? Finally, calculate U as a function of N = pA, E and
ν.

8. Show that for a cylindrical shaft acted upon by a torque M3 it is

Us = 0, Ud =
τ 2

2µ

and calculate the whole energy stored in a beam of length `, as a function of M3,
using the theorem of Clapeyron.

9. Show that for a beam bent by end couples M1 it is

Us =
1

18κ

M2
1x

2
2

J2
1

, Ud =
1

6µ

M2
1x

2
2

J2
1

.

Then, express U as a function of E and determine the whole strain energy stored
in a beam of length `. Find this same last result using the theorem of Clapeyron.

10. For a beam acted upon by a shear force T2 on S0 show that, for the only stress field
associated to T2 and not to the related bending, it is

Us = 0, Ud =
1

2µ

(
T2S
b J1

)2(
1 +

4 tan2 α x2
1

b2

)
.

Calculate then the whole energy stored in a beam of length ` and show that it can
be put in the form

U tot
T = χ

T 2
2 `

2GA
,

where χ is a numerical coefficient called the shear factor, depending upon the cross
section shape, to be specified.

11. Still for the case of the previous exercise, show that the whole energy stored in the
beam for the bending associated to the shear force is

U tot
M =

T 2
2 `

3

6EJ1

.

12. Considering the results of the last two exercices, express the ratio

γ =
U tot
T

U tot
M

as function of the slenderness of the rod

λr =
`

ρ
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where

ρ =

√
J1

A
is the radius of gyration of the cross section of the rod. What consequences can be
drawn?

13. Examine the case of a rectangular cross section submitted to the shear T2; find the
distribution of σ13 and σ23 over the section, the maximum value of the tangential
stress and the shear factor.

14. Using the results of the last two exercices, express the ratio λr for a rod with
rectangular section.

15. Study the stress state on a circular section submitted to a pure shear.

16. Determine the tangential stress τ at any point of a square hollow section submitted
to a shear T and a torque MT .

17. Determine the stress variation on a I-shaped section submitted to a shear along the
vertical flange.

18. A I-shaped section is submitted to a moment M1 and a shear force T2. Calculate
the Von Mises equivalent stress in the critical points of the section.

19. A rectangular section is submitted to an axial force N and a bending moment M .
Determine the variation of σ33 on the section and the position of the neutral axis.
Then, examine the same problem reducing the actions to a unique axial force applied
with an eccentricity e to be determined. For which values of e the stress σ33 over
the section does not change of sign?

20. Imagine that in the case of the previous exercise the material cannot withstand
tensile stresses, like in a simple contact problem. Consider the case of a compressive
axial force N and study what happens in the section for any possible value of the
eccentricity e.

21. Consider a section of the form in the figure; it is submitted to a shear T2 applied
along the axis x2. Determine the shear stress at any point of the cross section and
prove that T2 can produce a torsion on the section unless it is applied at a point
CS, the shear center, that will be determined.
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22. A section of steel with section I as in the figure is submitted to a shear force T2

and a bending moment M1. Knowing the yielding stress σ0, determine if the section
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can withstand the applied actions using the HHVM criterion. Data: h = 400 mm,
t = 12 mm, e = 8 mm, b = 200 mm, T2 = 2000 KN, M1 = 50 KNm, σ0 = 160 MPa.
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23. Calculate the stress state for the beam in the figure, having a hollows square section.
Then, check the safety of the structure using the HHVM criterion, knowing that
the limit stress is σ0. Data: T = 4 KN, b = 200 mm, t = 6 mm, ` = 4 m, σ0 = 160
MPa.

24. Check the safety of the structure in the figure with the HHVM criterion. Data:
` = 6 m, d = 2 m, N = 2 KN, T = 3 KN, M = 8 KN, h = 200 mm, b = 80 mm,
t = 8 mm, e = 4 mm, σ0 = 160 MPa.
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Chapter 5

Rod theories

5.1 Introduction

The results of the Saint-Venant Problem greatly simplify the study of beams. In fact,
the whole stress state at any point of the beam can be found if the internal actions,
N, T1, T2,M1,M2 and M3 are known.

The problem of the study of structures composed by beams is hence reduced to the study
of the internal actions. These ones depend only upon the position along the beam axis,
say the axis z. So the equations concerning N, T1 etc. can be only ordinary differential
equations (ODEs), not partial differential equations (PDEs), which simplifies considerably
the problem and motivates for the study of beams reduced, ideally, to their axis.

Such theories, idealizing a beam as a one-dimensional element, are called rod theories (a
rod is considered here to be a beam reduced to its only axis). The objective of the rod
theories is hence to provide balance, compatibility and constitutive equations for rods,
i.e. for this special type of continuum.

5.2 Plane rods

In many practical cases, rods belong to a plane that contains one of their principal axes
of inertia of the cross section and are acted upon by loads that belong to such a plane.
This is the case of plane rods: the rods belong, also after the deformation, to their original
plane, where the loads act.

The case of plane rods is much simpler than the general one, because the only possible
internal actions reduce to only N, T2 and M1 (that we will indicate, in the following,
simply by N, T and M , because there is no possibility of ambiguity in the plane case). In
the remainder of this Chapter, we will focus on plane rods; nevertheless, it is not difficult
to generalize the results of the plane case to the general three-dimensional one, following
the same approach illustrated below for the plane case.

The objective is to write the balance, compatibility and constitutive equations for plane
rods, to arrive to a mechanical model for such elements. We will, namely, introduce
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two classical models of rods, the more general Timoshenko’s one and the very classical
Euler-Bernoulli rod model.

5.2.1 Balance equations

Let us begin the study of plane rods with the balance equations. The general situation
is sketched in Fig. 5.1; loads p(z) and q(z) are the data of the problem. The balance
equations can be obtained applying the principle of the sections of Euler to a piece of
road between the positions z and z+ dz. The assumed positive internal actions are those
depicted in the figure. The equilibrium of the rod implies that of the segment under
scrutiny, submitted to the external loads and to the internal actions transmitted to the
segment by the rest of the rod through the end sections. The balance gives hence:
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Figure 5.1: General sketch for the rod’s balance equations.

• equilibrium to axial force:

N(z + dz)−N(z) + r(z)dz = 0; (5.1)

• equilibrium to shear force:

T (z + dz)− T (z) + p(z)dz = 0; (5.2)

• equilibrium to bending moment (e. g. around the point of abscissa z):

M(z + dz)−M(z)− T (z + dz)dz − p(z)
dz2

2
−m(z)dz = 0. (5.3)

Developing the above expressions gives

N(z) +
dN(z)

dz
dz −N(z) + r(z)dz = 0,

T (z) +
dT (z)

dz
dz − T (z) + p(z)dz = 0,

M(z) +
dM(z)

dz
dz −M(z)− T (z)dz − dT (z)

dz
dz2 − p(z)

dz2

2
−m(z)dz = 0,

(5.4)
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and neglecting the terms of order greater than the first we finally obtain the balance
equations for rods:

dN

dz
= −r,

dT

dz
= −p,

dM

dz
= T +m.

(5.5)

In the special and very common case of m = 0, we remark that T is the derivative of M .
From the two last relations, we get also, by differentiation,

d2M

dz2
= −p+

dm

dz
, (5.6)

a second-order differential equilibrium equation relating directly the bending moment to
the loads.

5.2.2 Compatibility equations

Let us now turn the attention on geometric considerations. In fact, we need a link,
the compatibility equations of the rods, between the displacements of the rod and some
internal kinematical quantities defining the deformation of the rod. The general situation
is that sketched in Fig. 5.2, where w is the axial displacement, v the deflexion, i.e. the
displacement along y, β is the local rotation of the axis z and ϕ that of the normal to the
undeformed axis z.

7-

Figure 5.2: General scheme of the kinematics of a rod.

We introduce first the extension ε, the internal kinematical descriptor of the stretching of
the axis z:

ε =
dw

dz
. (5.7)

Then, we define the curvature κ of the rod

κ = −dϕ
dz

; (5.8)
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the sign − is due to the fact that in the Saint-Venant Problem the positive bending
moments are opposite to the positive concavity, see below.

Finally, we introduce the angular sliding or shear γ of the rod axis, describing how a
segment initially parallel to the rod axis changes in the deformation:

γ = β − ϕ. (5.9)

From fig. 5.2 we see that

ψ =
π

2
+ ϕ− β → γ = β − ϕ =

π

2
− ψ : (5.10)

γ measures the variation of the angle existing between the axis and a segment orthogonal
to it, from its initial value of π/2 to the final one of ψ. For small perturbations,

tan β =
dv

dz
' β, (5.11)

so we have

γ =
dv

dz
− ϕ. (5.12)

We remark that there is a substantial difference between a rod and a classical continuum:
in the rod theories, derivatives of angular quantities appear: a rod is a polar continuum,
i.e., unlike classical continuum bodies, it can transmit couples.

5.2.3 Constitutive equations

We have for the while only six equations, the balance, eq. (5.5), and the compatibility
ones, eqs. (5.7), (5.8) and (5.12), for a set of 9 unknowns on the whole: N, T,M, v, w, ϕ, ε, κ
and γ. We need hence three constitutive equations for the rods; they can be derived using
the results of the Saint-Venant Problem. The approach is energetic: we write first the
strain energy for a beam, Ub, between the two sections 1 and 2:

Ub =
1

2

∫
Ω

σ · ε dv =
1

2

∫
Ω

σ2
33

E
+

1

µ
(σ2

13 + σ2
23) dv

=
1

2

∫ 2

1

∫
S

(
N

A
+
M y

J

)2
1

E
+

1

µ

(
TS
b J1

)2(
1 +

4 tan2 α x2

b2

)
ds dz

=
1

2

∫ 2

1

N2

EA
+
χT 2

µA
+
M2

EJ
dz.

(5.13)

Now, thinking at the beam as a rod, we write the energy Ur:

Ur =
1

2

∫ 2

1

(Nε+ Tγ +Mκ) dz. (5.14)

This result can be obtained applying the Clapeyron’s theorem at the segment dx of the
rod, considered as charged uniquely by the internal actions. Of course, the solid being
the same, it must be

Ub = Ur ∀N, T,M, (5.15)
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which gives the conditions

Nε =
N2

EA
, Tγ =

χT 2

µA
, Mκ =

M2

EJ
, (5.16)

and finally the three constitutive equations for the rods:

N = EAε,

T =
µA

χ
γ,

M = EJκ.

(5.17)

We remark that, because of the linearity of the problem, the internal actions are propor-
tional to their corresponding kinematical parameter. We dispose now of all the equations
for the rod theories.

5.2.4 The Timoshenko’s rod

The compatibility equations can be injected into the constitutive equations to get (from
now on, for the sake of shortness, we denote by a prime the derivative with respect to z):

N = EAw′,

T =
µA

χ
(v′ − ϕ),

M = −EJϕ′.

(5.18)

If now we inject these equations into the balance equations, we get

(EAw′)′ = −r,[
µA

χ
(v′ − ϕ)

]′
= −p,

(−EJϕ′)′ = T +m =
µA

χ
(v′ − ϕ) +m.

(5.19)

Equations (5.18) and (5.19) define the Timoshenko’s rod model. In this model, any straight
segment originally orthogonal to the rod axis remains straight after the deformation, but
not necessarily orthogonal to the tangent of the deformed axis, because γ 6= 0, generally
speaking, which implies that v′ ' β 6= ϕ.

N and w are uncoupled from T,M, v and ϕ, but these last are coupled, which complicates
the resolution. Anyway, after injecting eq. (5.19)2 into the differentiated eq. (5.19)3, we
obtain an equation depending uniquely upon ϕ

(EJϕ′)′′ = p−m′. (5.20)

Once ϕ obtained, it can be injected into eq. (5.19)2 to obtain an equation depending
uniquely on v.
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5.2.5 The Euler-Bernoulli rod

Since the XVIIIth century a simplified model has been proposed by L. Euler and Jacob
Bernoulli for the bending case: the basic assumption of the Euler-Bernoulli rod theory is
that

β = ϕ ⇒ γ = 0. (5.21)

Geometrically, this corresponds to the vanishing of the angular sliding: unlike in the
Timoshenko’s model, a segment originally orthogonal to the axis remains orthogonal to
the deformed axis: hypothesis of conservation of the normals.

For small perturbations, this assumption gives

ϕ = β ' v′ → κ = −ϕ′ = −v′′. (5.22)

The equations for N and ε are not affected by this assumption, while for M and v we get

M = −EJv′′,
(−EJv′′)′ = T +m,

(EJv′′)′′ = p−m′.
(5.23)

These are the famous equations of the Euler-Bernoulli rod model. The problems for N, T
and M are now uncoupled; the bending problem is reduced to a fourth-order differential
equation. For what concerns T , this can be obtained by the second one of the above
equations, not from the constitutive equation because this should give T = 0 identically,
which would imply M = constant, which is false. Alternatively, T can be calculated
directly by the equilibrium equation once M known, by differentiation.

The above equations are valid for plane, rectilinear rods of any cross section, also variable
with z. For the very common case of constant cross section and material, they simplify
to

M = −EJv′′,
− EJv′′′ = T +m,

EJviv = p−m′.
(5.24)

The solution of eqs. (5.23) or (5.24), or in the general case of the Timoshenko’s model,
provides the displacement of the rod, determining hence its deformed shape, the so-called
elastica.

5.2.6 Isostatic and hyperstatic rods

The general problem for a rod is: knowing the applied actions p, q,m and the boundary
conditions, determine N, T,M, v, w and ϕ. Two cases are possible: the rod is isostatic or
it is hyperstatic.
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In the isostatic case, the equilibrium equations are sufficient to solve the problem:

N ′ = −r,
M ′′ = −p+m′.

(5.25)

T can be obtained directly by eq. (5.5)2,

T ′ = −p, (5.26)

or alternatively through eq. (5.5)3:

T = M ′ −m, (5.27)

once solved the bending equation, which is what is commonly done. Equation (5.25)1 is
of the first order and it needs one boundary condition: the value of N at one end. This
is not the case for the bending equation, eq. (5.25)2: it is of the second order, so it needs
two boundary conditions: the value that M or its derivative M ′ = T + m takes at the
ends of the rod. If T is computed in the second manner indicated hereon, there is no need
to specify boundary conditions for it, otherwise just one boundary condition, the value of
T at one end, must be associated to eq. (5.26). In all the cases, the boundary conditions
specify the values that the internal actions, N, T or M , take at the end of the rod.

Once the internal actions known, the problem is statically solved and the deformations of
the rod can be found using the constitutive equations; for the Timoshenko’s rod we have:

ε =
N

EA
, γ =

χT

µA
, κ =

M

EJ
. (5.28)

Finally, the displacements are obtained through the compatibility equations:

w′ = ε⇒ w′ =
N

EA
,

v′ = ϕ+ γ ⇒ v′ = ϕ+
χT

µA
,

ϕ′ = −κ⇒ ϕ′ = −M

EJ
.

(5.29)

Hence, it is not necessary to pass through the deformations: displacements can be calcu-
lated directly from the internal actions. The solution of the above first-order differential
equations needs a boundary condition for each equation, specifying the value of w, v or ϕ
at one of the rod’s ends.

For the Euler-Bernoulli’s rod, γ = 0 and ϕ = v′, so eqs. (5.28)1,3 and (5.29)1 do not
change, while eqs. (5.28)2 and (5.29)2 become meaningless and eq. (5.29)3 becomes

v′′ = −κ⇒ v′′ = −M

EJ
, (5.30)

a second-order equation that needs two boundary conditions, the value of v or v′(= ϕ),
i.e. of the deflection or of the rotation at the rod’s ends.

Another way to determine v and v′ for an isostatic rod is the use of the Mohr’s theorem
and corollary, cf. Sect. 5.3.
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The case of hyperstatic rods is apparently more complicate, but in practice more direct.
Because the equilibrium equations are not sufficient to solve statically the rod, one needs
to take into account, in equilibrium, of the constitutive law and relate the external actions
r, p and m to the displacements. This is exactly what is done, in the Timoshenko’s rod,
by eqs. (5.19) and (5.20):

(EAw′)′ = −r,[
µA

χ
(v′ − ϕ)

]′
= −p,

(EJϕ′)′′ = p−m′.

(5.31)

The above equations need the association of two boundary conditions to the first and to
the second equation, while three conditions are to be written for the third one; in all the
cases, these boundary conditions specify the value of the displacement components at the
ends of the rod.

In the case of the Euler-Bernoulli rod, eq. (5.31)1 does not change, eq. (5.31)2 is mean-
ingless while eq. (5.31)3 becomes eq. (5.23)3,

(EJv′′)′′ = p−m′; (5.32)

this is a fourth order differential equation, needing four boundary conditions. Such con-
ditions specify the value of v, v′, v′′ or v′′′ at the rod’s end. Because1, see eqs. (5.22),
(5.24)1,2,

v′ = ϕ, v′′ = −M

EJ
, v′′′ = −T +m

EJ
, (5.33)

the boundary conditions can concern hence both geometric, the deflexion v and the rota-
tion ϕ, and mechanical quantities, M and T .

In all the cases, once the displacements found, the internal actions can be calculated
through the constitutive equations, i.e. for the Timoshenko’s model through eq. (5.18).
As already said, eq. (5.18)1 is still valid, also for the Euler-Bernoulli rod, while eq.
(5.18)2 is meaningless: the shear T can be calculated through the equilibrium equation,
eq. (5.27), once M known, which can be obtained by eq. (5.23)1.

For ending this Section, we remark that the difference in the resolution of isostatic or
hyperstatic rods is in the number and types of boundary conditions to be specified, besides
the differential equations, of the first or second order in the first case, of the second, third
or fourth order for the second one.

5.2.7 The torsion equations

The results found for plane rods can be easily generalized to include an out-of-plane effect,
that of torsion MT . The general scheme is that in fig. 5.3:

1The more general case of rods of varying section is slightly more complicate and needs the use of eq.
(5.23)1,2.
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Figure 5.3: Scheme for the torsion of a rod.

• balance of the torsion:

MT (z + dz)−MT (z) +mt(z)dz = 0 →

MT (z) +
dMT (z)

dz
dz −MT (z) +mt(z)dz = 0 →

dMT

dz
= −mt;

(5.34)

• compatibility equations: the kinematical descriptor of torsion is the twist angle θ;
it is linked to the internal descriptor α, giving the relative rotation of two sections
separated by a distance dz by the relation

α =
dθ

dz
; (5.35)

• constitutive law: the strain energy of torsion for a beam is (see Ex. 8 Chapt. 4)

Ub =
1

2

∫ 2

1

q M2
T

µJ0

dz, (5.36)

and as a rod

Ur =
1

2

∫ 2

1

MT α dz, (5.37)

so we get

MT =
µ J0

q
α, (5.38)

a result already known from the Sant-Venant theory.

Finally we have

MT =
µ J0

q
θ′,(

µ J0

q
θ′
)′

= −mt,

(5.39)

These equations for torsion are formally identical to those for extension, eqs. (5.18)1 and
(5.19)1.
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5.3 The Mohr’s theorems

Let us now consider the case of a bent beam of constant stiffness EJ and without dis-
tributed couples; then,

M ′ = T, T ′ = −p → M ′′ = −p, v′′ = −M

EJ
. (5.40)

These two differential equations are formally identical ; so, the elastica of a rod coincides
with the diagram of the bending moment M∗ generated by a fictitious load

p∗ =
M

EJ
→ v = M∗. (5.41)

This is the Theorem of Mohr (1868); to remark that p∗ is the curvature. Deriving eq.
(5.41)2 gives

v′ = (M∗)′ = T ∗, (5.42)

i.e. the inclination ϕ of the elastica is given by the fictitious shear T ∗ (β ' tan β = v′ for
small perturbations). This is the corollary of Mohr.

The fictitious load p∗ is to be applied to a fictitious rod, having the same dimensions of
the real rod but whose boundary conditions must in general be changed:

• for a simply supported rod, the elastica has v = 0 and v′ 6= 0 at the edges; the
corresponding edges of the fictitious rod can be found considering that in the corre-
spondence it must be M∗ = 0 and T ∗ 6= 0; hence the fictitious rod must be simply
supported, like the real rod;

• for a cantilever: at the clamped edge, v = 0 and v′ = 0: the corresponding edge in
the fictitious rod must be a free edge, because in such a way M∗ = 0 and T ∗ = 0;
at the free edge of the cantilever, v 6= 0 and v′ 6= 0: in the corresponding edge of
the fictitious rod it must be M∗ 6= 0 and T ∗ 6= 0, so this edge must be clamped: a
cantilever rod is transformed into a fictitious cantilever where the edges are swapped.

Other situations can be studied in a similar way. The use of the Mohr’s theorem, and
corollary, is normally bounded to isostatic rods. In fact, in such a case the use of the
Mohr’s technique allows for finding deflections and rotations using exclusively equilib-
rium considerations, so without the need of solving differential equations. In the case of
hyperstatic rods, as we have seen above, the solution of the static problem passes through
the determination of the displacements and rotations, so in this case the Mohr’s theorem
and corollary become useless.

5.4 The Principle of Virtual Displacements for rods

The PVD can be adapted to rods; first of all, we define a state of virtual displacements-
deformations for a rod a state for which v, w, ϕ are

i. regular (continuous and with piecewise continuous derivatives);

ii. infinitesimal;
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iii. independent from time.

Be N, T,M, p, r a field of equilibrated actions, i. e.

dN

dz
= −r,

dT

dz
= −p,

dM

dz
= T,

+ b. c. (5.43)

We can then prove the following
Theorem. (Principle of Virtual Displacements for rods): be {v∗, w∗, ϕ∗} a field of virtual
displacements for a rod of length ` in equilibrium under the action of external and internal
actions; then ∫ `

0

(Nε∗ + Tγ∗ +Mκ∗) dz =

∫ `

0

(p v∗ + r w∗) dz. (5.44)

Proof. We remark first that the the left-hand side of the above equation is the internal
virtual work, produced by the internal actions for the deformations corresponding to the
considered virtual displacements field, while to the right-hand side we have the external
virtual work, i.e. that produced by the external applied loads. Hence, once more, the
PVD states the equality of the internal and external virtual works.

Because, by hypothesis, u∗, v∗ and ϕ∗ are sufficiently regular, we can calculate the internal
virtual deformations for the rod

ε∗ =
dw∗

dz
, γ∗ =

dv∗

dz
− ϕ∗, κ∗ = −dϕ

∗

dz
. (5.45)

Then, the internal virtual work becomes∫ `

0

[
N
dw∗

dz
+ T

(
dv∗

dz
− ϕ∗

)
−Mdϕ∗

dz

]
dz, (5.46)

and integrating by parts we get

[N w∗ + T v∗ −M ϕ∗]`0 +

∫ `

0

[
ϕ∗
(
dM

dz
− T

)
− w∗dN

dz
− v∗dT

dz

]
dz. (5.47)

The boundary term, the first one in the above equation, vanishes because at the edges it
is either an internal action either its dual kinematical descriptor to vanish. Because the
actions are equilibrated, eqs. (5.43) are satisfied, so that the term in brackets under the
sign of integral vanishes and finally we get∫ `

0

(Nε∗ + Tγ∗ +Mκ∗) dz =

∫ `

0

(p v∗ + r w∗) dz. (5.48)

We remark that constitutive equations have not been used in the proof of the PVD, so it
is valid for any type of material behavior, not only for the elastic rods.
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5.5 Hyperstatic systems of rods

The equations of rods allow, in principle, for studying any problem of rod structures,
regardless of the degree of hyperstaticity. Nevertheless, practically, they can tackle only
simple cases, e.g. single rods or sometimes systems of two rods, because very quickly they
become too complicate to be solved.

Actually, this approach is complete: it provides any type of information (v, w,M etc.)
everywhere in a rod. So, the question is to know whether or not it can exist an approach
which, paying the price of a lower information, can be nevertheless used effectively for
more complicated rod structures.

The answer is yes, and such a method is actually based upon the PVD; such a method
is sometimes called the force method for solving hyperstatic rod structures, because the
unknown of the method are generalized forces (forces or couples). We introduce it in the
following Section, specifying since now that the method, though based upon the PVD,
valid for any type of material behavior, is valid only for a linear structural behavior. This
assumption implies actually two distinct and equally important hypotheses: the material
is linearly elastic, on one side, and the perturbations are small, on the other side.

5.5.1 The Müller-Breslau equations

We introduce the method through an example, shown in Fig. 5.4; the structure in object
is twice hyperstatic and, thanks to the assumption of linear behavior, using the principle
of superposition of the effects, we can think to the structure as the sum of three isostatic
structures. This is a key point of the method: the original hyperstatic structures is
transformed into the sum of isostatic structures, that can be solved separately using nothing
but equilibrium conditions. In particular, the original structure is decomposed into:
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Figure 5.4: Scheme for the analysis of hyperstatic rod structures.

• a principal structure: the hyperstatic constraints have been removed (their choice is
not unique and anyway arbitrary) and the structure so obtained is acted upon only
by the given, known loads;
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• a number of auxiliary structures equal to the number of hyperstatic constraints
removed (in the example, two); each auxiliary structure is loaded uniquely by an
unknown generalized force, a reaction, statically dual of the corresponding removed
hyperstatic constraint.

Hence, there is an unknown generalized force for each degree of hyerstaticity, and each
one of them is applied to an auxiliary structure; in our example, we have hence two
unknowns, x1 and x2, indicated in Fig. 5.4. These unknowns are determined imposing
the geometrical condition that their corresponding displacement is null. We remark hence
that in this method the unknowns are forces and the equations, compatibility conditions
on the displacements.

Because each one of the structures decomposing the original hyperstatic one is isostatic, it
is possible to determine everywhere the internal actions merely using balance equations.
We indicate with

• N0, T0,M0 the internal actions in the principal structure;

• Ni, Ti,Mi those in the ith auxiliary structure loaded with xi = 1.

Thanks to the assumption of linearity, the actual internal actions in the real, hyperstatic
structure, are given by the superposition of the effects:

N = N0 +
n∑
i=1

xiNi,

T = T0 +
n∑
i=1

xiTi,

M = M0 +
n∑
i=1

xiMi,

(5.49)

with n the degree of hyperstaticity.

To determine the unknowns xi we use the PVD; to this purpose, we consider as virtual
displacements those of the real structure, that are of course surely admissible. As forces,
we consider those in each one of the auxiliary structures; because these structures are
isostatic, the internal actions, calculated using balance equations, are surely equilibrated
with the external loads. As a consequence, we are authorized to use the PVD with
such a system of forces and field of virtual (actually, in this case real) displacements.
We apply the PVD as much times as the auxiliary structures, i.e. as the degree of
hyperstaticity:

• 1st auxiliary structure:

– virtual work of the external forces (x1 = 1): the point of application of x1

is fix, in the real structure, so its virtual displacement is null, and hence the
corresponding virtual work;

– virtual work of the internal forces (we indicate with Ω the whole structure):∫
Ω

(N1ε+ T1γ +M1κ) d`; (5.50)
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the first equation is hence ∫
Ω

(N1ε+ T1γ +M1κ) d` = 0; (5.51)

• 2nd auxiliary structure: proceeding in the same way we obtain∫
Ω

(N2ε+ T2γ +M2κ) d` = 0. (5.52)

In the above equations, the internal kinematical descriptors ε, γ and κ are those in the
real structure. So, using the constitutive equations of elastic rods and the superposition
of the effects we get

ε =
N

EA
=
N0 + x1N1 + x2N2

EA
,

γ = χ
T

µA
= χ

T0 + x1T1 + x2T2

µA
,

κ =
M

EJ
=
M0 + x1M1 + x2M2

EJ
.

(5.53)

Replacing the relations above in the two PVD equations, after regrouping the terms we
get

x1

∫
Ω

(
N2

1

EA
+ χ

T 2
1

µA
+
M2

1

EJ

)
d`+ x2

∫
Ω

(
N1N2

EA
+ χ

T1T2

µA
+
M1M2

EJ

)
d`

+

∫
Ω

(
N1N0

EA
+ χ

T1T0

µA
+
M1M0

EJ

)
d` = 0,

x1

∫
Ω

(
N1N2

EA
+ χ

T1T2

µA
+
M1M2

EJ

)
d`+ x2

∫
Ω

(
N2

2

EA
+ χ

T 2
2

µA
+
M2

2

EJ

)
d`

+

∫
Ω

(
N2N0

EA
+ χ

T2T0

µA
+
M2M0

EJ

)
d` = 0.

(5.54)

These equations have the form of a symmetric system of linear algebraic equations; in
the general case of n degrees of hyperstaticity, we have a system of n equations with n
unknowns xi that can be synthetically written

ηijxj = ηi0, (5.55)

with

ηij = ηji =

∫
Ω

(
NiNj

EA
+ χ

TiTj
µA

+
MiMj

EJ

)
d`,

ηi0 = −
∫

Ω

(
NiN0

EA
+ χ

TiT0

µA
+
MiM0

EJ

)
d`.

(5.56)

The terms on the diagonal, ηii are necessarily positive, as it is apparent from the above
equations. Equations (5.55) are the Müller-Breslau equations (1886), with the coefficients

100



of the unknowns given by eq. (5.56). They provide the classical method for the resolution
of hyperstatic systems of elastic rods. In the very frequent case of slender rods, the
extension and shear deformation are much smaller than the bending one, so they can be
neglected and the calculation of the coefficients is greatly simplified, as it is reduced to
the only bending terms.

As a last point we remark that once determined the unknowns xi, the real distribution of
the internal actions in the structure can be easily calculated using eq. (5.49).

5.5.2 The dummy load method

The method of the forces does not give everything, e.g. it does not give the displacements.
Anyway, we can calculate the displacement v in a point still using the PVD, by the so-
called dummy load method. To this purpose, we apply the PVD using as displacement field
the real one and as forces those in any equilibrated isostatic system acted upon uniquely
by a unit force, the dummy load, dual of the displacement v to be found.

The virtual work of the external forces is hence equal to v, while that of the internal forces
is ∫

Ω

(
N Nd

EA
+ χ

T Td
µA

+
M Md

EJ

)
d`, (5.57)

where N, T,M are the real internal actions; they are already known by a previous calcu-
lation, for instance a merely static one if the structure is isostatic or having solved the
Müller-Breslau equations if it is hyperstatic. Nd, Td,Md are the internal actions produced
on the isostatic structure by the dummy load; being the structure isostatic, they can be
calculated by simple static conditions, hence they are equilibrated.

Finally, the PVD gives

v =

∫
Ω

(
N Nd

EA
+ χ

T Td
µA

+
M Md

EJ

)
d`. (5.58)

5.5.3 Effects of the temperature

A final question concerns the effects of the temperature changes. We still use the Hooke-
Duhamel model (see Ex. 12, Chapt. 3):

ε = εm + εt, (5.59)

where εm is the mechanical deformation, given by the Lamé’s inverse equations (3.44),
while the thermal deformation εt is given by

εt = ∆t αI, (5.60)

where ∆t is the temperature variation with respect to a state where, conventionally,
εt = o, and α is the coefficient of thermal expansion.
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For what concerns ∆t, the usual assumption in the rod theory is that it has a linear
variation through the thickness of the rod, see Fig. 5.5, which is rigorously true in a
stationary heat flow:

t(y) = t0 +
δt

h
y, t0 =

t+ + t−

2
, δt = t+ − t−. (5.61)

The global temperature change is hence decomposed into a uniform, t0, and an antisym-
metric one, δt.

ÊJ= c,ouf,

J _û,, ,-l

4 4 ,87'onr',

J trr-l w-J

Figure 5.5: Decomposition of a linear temperature change on a rod.

Now, we need to link εt to the deformation descriptors, ε, γ, κ. To this end, we consider a
length of rod between the sections 1 and 2 and we write the strain energy of the beam and
of the rod, that must be equal. Because for a Saint-Venant beam it is σ11 = σ22 = σ12 = 0,
we have

1

2

∫ 2

1

(σ33ε33 + 2σ13ε13 + 2σ23ε23) dv =
1

2

∫ 2

1

(Nε+ Tγ +Mκ) dz. (5.62)

But the (εt)13 = (εt)23 = 0, because of eq. (5.60); then, using the Saint-Venant Problem
results and the linear variation of t through the rod thickness we get, for the left-hand
term,

1

2

∫ 2

1

[∫
S

α

(
N

A
+
M y

J

)(
t0 +

δt

h
y

)
ds

]
dz =

1

2

∫ 2

1

α

(
N t0 +M

δt

h

)
dz, (5.63)

the other terms are null because o is the centroid of the cross section. So, because this
equation must be true ∀1 and 2, the two integrands must be equal, which gives

ε = α t0,

γ = 0,

κ = α
δt

h
.

(5.64)

Shear deformation is not affected by temperature changes; extension is influenced only by
uniform and bending only by antisymmetric changes of temperature. These deformation
descriptors for the temperature changes can be used in the Müller-Breslau equations to
solve the case of hyperstatic rod structures thermally loaded.
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5.6 Exercises

1. Determine the elastica of a cantilever beam with EJ = const., loaded:

i. by a uniform load p;

ii. by a concentrated force F at the free edge (this is the Galileo’s problem);

iii. by a couple M at the free edge.

2. Determine the function J(z) that a homogeneous uniformly loaded cantilever must
have to bend along a circular arch of radius R.

3. Determine the axial force N and displacement w of a vertical rod with EA = const.
clamped at its ends and submitted to its own weight.

4. Determine the variation h(z) of the height of a rectangular cross section of a can-
tilever loaded by a concentrated force at its free edge in order to have everywhere
the same highest stress σ33 (Galileo’s problem of the rod of uniform strength).

5. What does it change in the previous problem if it is the highest Von Mises equivalent
stress to be constant throughout the rod length?

6. Determine the displacement v of the center of a clamped-clamped rod loaded at
mid-span by a concentrated force F .

7. Study the structure in the figure and determine the maximum deflection (use the
rod equations of the Euler-Bernoulli model).

ÊJ= c,ouf,

J _û,, ,-l

4 4 ,87'onr',

J trr-l w-J

8. Resolve statically the previous exercise using the Müller-Breslau equations.

9. Find the displacement of the free edge of the rod in the figure using:

i. the rod equations;

ii. the Mohr’s theorem;

iii. the dummy load method.

ÊJ= c,ouf,

J _û,, ,-l

4 4 ,87'onr',

J trr-l w-J

10. A rod clamped at the ends is thermally loaded by:

i. a uniform temperature t0;
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ii. a through the thickness linear variation of the type t− = −t, t+ = +t.

Study the structure in both the cases, finding the reactions, internal actions and
displacements, using first the rod equations, then the Müller-Breslau equations and
the dummy load method.

11. Consider again the two cases of the previous exercice, but now the rod is simply
supported; what changes for the rod?

12. Study the structure in the figure, finding also the rotation of the central point,
using first the rod equations, then the Müller-Breslau equations and the dummy
load method.

ÊJ= c,ouf,

J _û,, ,-l

4 4 ,87'onr',

J trr-l w-J
13. For the structure in the following figure, determine F so as to have a null displace-

ment of point C.

ÊJ= c,ouf,

J _û,, ,-l

4 4 ,87'onr',

J trr-l w-J

14. Solve the previous problem with the span AB now loaded by a through the thickness
linear variation of the temperature of the type t− = −t, t+ = +t.

15. Study the structure in the figure, using first the rod equations, then the Müller-
Breslau equations.

L b --t

16. Make the same, loading now the rod uniquely by a thermal load of the type t− =
−t, t+ = +t.

17. Solve the structure in the figure using the Müller-Breslau equations.

L b --t

18. Make the same, loading now the rod uniquely by a thermal load of the type t− =
−t, t+ = +t.
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19. Solve the structure in the following figure using the Müller-Breslau equations (ne-
glect the axial and shear deformations). What happens when λ→∞?

L b --t

20. Calculate the total displacement of point C for the structure in the figure using the
dummy load method.

L b --t
Data:

• E = 210000 MPa

• h = 4 m

• ` = 2 m

• F = 500 KN

• a = 200 mm

• b = 200 mm

• e = 10 mm

• t = 16 mm

21. Study the problem of a cantilever loaded by a uniform load p using the Theorem of
Minimum Total Potential Energy.

22. Using the Theorem of Castigliano, calculate the displacement of the free edge of a
cantilever of constant section loaded by a concentrated force P at the free edge.
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23. The system in the figure is composed by five identical rods; calculate the displace-
ment of point A using the Theorem of Castigliano.

L b --t

24. Solve Ex. 11 using the Theorem of Castigliano.

25. An infinitely long pipe, whose weight per unit length is p and whose constant bending
stiffness is EJ , lays on a horizontal plane, that can be considered as infinitely rigid.
The pipe must be lifted at a certain point, by a crane, of a height equal to h. Which
is the lifting force that the crane must produce?

26. A rod whose length is `, weight per unit length p and constant bending stiffness EJ ,
lays on a horizontal plane, that can be considered as infinitely rigid. At the left end,
the rod is acted upon by a vertical force F . For what conditions the equilibrium is
ensured? How much the left end of the rod will be lifted up by F?

27. A rod whose length is `, weight per unit length p, thickness h and constant bending
stiffness EJ , lays on a horizontal plane, that can be considered as infinitely rigid.
The rod is heated on its upper surface to a temperature t, while the lower part is
at the temperature −t. Determine the vertical displacement of the mid point of the
rod.
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