
HAL Id: cel-01128826
https://hal.science/cel-01128826

Submitted on 10 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mathematics for Dynamicists - Lecture Notes
Thomas Michelitsch

To cite this version:
Thomas Michelitsch. Mathematics for Dynamicists - Lecture Notes. Doctoral. Mathematics for
Dynamicists, France. 2006. �cel-01128826�

https://hal.science/cel-01128826
https://hal.archives-ouvertes.fr


Mathematics for Dynamicists

Lecture Notes

c© 2004-2006 Thomas Michael Michelitsch1

Department of Civil and Structural Engineering

The University of Sheffield

Sheffield, UK

1Present address : http://www.dalembert.upmc.fr/home/michelitsch/



.

Dedicated to the memory of my parents Michael and Hildegard Michelitsch

Handout Manuscript with Fractal Cover Picture by Michael Michelitsch
https://www.flickr.com/photos/michelitsch/sets/72157601230117490

1



Contents
Preface

1 Part I

1.1 Binomial Theorem

1.2 Derivatives, Integrals and Taylor Series

1.3 Elementary Functions

1.4 Complex Numbers: Cartesian and Polar Representation

1.5 Sequences, Series, Integrals and Power-Series

1.6 Polynomials and Partial Fractions

1.7 Matrix Calculus

2 Part II

2.1 Recurrences

2.2 Integral Transformations

2.2.1 Dirac’s δ-Function

2.2.2 Fourier Transformation: Fourier-Integrals and -Series

2.2.3 Laplace Transformation

2.3 Linear Ordinary Differential Equations and Initial Value Problems

2.4 Solution Methods: Operator Method

2.5 Solution Methods: Laplace transforms

2.6 Systems of Linear Differential Equations

3 Questions:

3.1 Questions to Part I

3.2 Questions to Part II

4 Appendix

5 Literature

6 Mock Exam

2



Preface

These notes are the essence of the lecture series ”Mathematics of Dynamicists” started
in November 2004 and held regularly at the University of Sheffield as a MSc course
module.

The module ”Mathematics for Dynamicists” addresses to any students of En-
gineering and Natural Sciences who are interested in mathematical-analytical solution
methods to tackle problems in physics and engineering dynamics.

The lecture notes consist of two parts. Part I is a warmup of the basic mathemat-
ics which is prerequisite for the understanding of part II. Some students will be familiar
with the basics reviewed in part I, however the experience showed that it is useful to
repeat these basics before starting with dynamical problems of engineering which are
described by Recurrences and Ordinary Differential Equations in part II. To ensure the
appropriate maths level needed for part II, the reader is highly recommended to answer
the questions to part I before going to part II.

Part II is the essential part and gives a brief introduction to the theory and
solution methods for linear recurrences, Ordinary Differential Equations (ODEs) and
Initial Value Problems (IVPs) which are also referred to as Cauchy Problems. The
main goal is less to give proofs but more on applications of the methods on dynamical
problems relevant to physical and engineering sciences.

Instead of strict proofs we rather confine to short derivations with emphasis on
applications of the analytical techniques. The reader is referred to the standard literature
for any further proofs which are beyond the scope of these lecture notes.

The selection of materials for this short-term module (2 weeks time) can only be
an incomplete and sometimes arbitrary selection of materials. To improve the syllabus,
suggestions from anybody are highly appreciated. The enclosed lecture notes are con-
tinuously updated and extended. Any communicated discrepancies and errors will be
corrected steadily2.

I am especially grateful to my wife Dr. Jicun Wang for proof-reading this
manuscript, to Mr. Shahram Derogar (Dept. Civil & Struct. Eng., Univ. of Sheffield)
and to Dr. Andrzej F. Nowakowski (Dept. of Mech. Eng., Univ. Sheffield) for their
helpful critical comments and valuable inputs which significantly improved the contents
of this lecture.

Sheffield, November 2006 Thomas Michael Michelitsch

2Email: t.michelitsch@sheffield.ac.uk , Phone: ++44 (0)114 22 25765 , Fax: ++44 (0)114 22 25700
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1 Part I

In this section we give a brief repetition of the basic maths which is prerequisite to
understand the dynamical problems and their solution methods introduced in part II.

1.1 Binomial Theorem

In this section we derive the expansion of (a+b)n in terms akbn−k where a, b are arbitrary
complex numbers and n is an integer (n = 0, 1, 2, ..,∞). For n = 1, we have

(a+ b)0 = 1 (1)

(a+ b)1 = a + b (2)

for n=2

(a+ b)2 = (a+ b)(a + b) = (0 + 1)a2 + (1 + 1)ab+ (1 + 0)b2 = a2 + 2ab+ b2 (3)

for n = 3

(a+b)3 = (a+b)(a+b)2 = (0+1)a3+(1+2)a2b+(2+1)ab2+(1+0)b3 = a3+3a2b+3ab2+b3

(4)
and for general n = 0, 1, 2, ..., we have

(a+ b)n =
n∑

k=0

Cn,ka
kbn−k (5)

We here observe that

C(n, k) = C(n− 1, k) + C(n− 1, k − 1) (6)

and with C(n, n) = C(n, 0) = 1. Relation (6) can be visualized in terms of Pascal’s
triangle. Hence we have for k = 1 and arbitrary n ≥ 1

C(n, 1) = C(1, 1) + C(1, 0) + C(2, 0) + ..+ C(n− 1, 0) = 1 + 1 + ..+ 1
︸ ︷︷ ︸

n times

= n (7)

for k = 2 and arbitrary n ≥ 2

C(n, 2) = C(2, 2)+C(2, 1)+C(3, 1)+ ..+C(n−1, 1) = 1+2+ ..+n−1 =
n(n− 1)

2
(8)

for k = 3 and arbitrary n ≥ 3

C(n, 3) = C(3, 3) + C(3, 2) + C(4, 2) + ..+ C(n− 1, 2) =
2× 1

2
+

3× 2

2
+ ..+

(n− 1)(n− 2)

2
=

n(n− 1)(n− 2)

2× 3

(9)

... for arbitrary k ≤ n.

C(n, k) = C(k, k)+C(k, k−1)+C(k+1, k−1)+..+C(n−1, k−1) =
n(n− 1)...(n− k + 1)

1× 2..× k
(10)
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where C(n, 0) = C(n, n) = 1 and moreover C(n, k) = C(n, n − k). When we introduce
the factorial function, then we have ”m-factorial” being defined as

m! = 1× 2× ..× (m− 1)×m (11)

and further it is convenient to define 0! = 1. Taking into account that

n(n− 1)..(n− k + 1)
︸ ︷︷ ︸

k factors

=
n!

(n− k)!
(12)

Then we have that (where we introduce the notation a1 + a2 + .. + an =
n∑

k=0

ak)

(a+ b)n =
n∑

k=0

n!

(n− k)!k!
akbn−k (13)

where one defines 0! = 1. The binomial coefficient
n!

(n− k)! k!
often is also denoted in

the form of
n!

(n− k)!k!
=

(

n

k

)

=

(

n

n− k

)

(14)

and referred to as n over k, where

(

n

0

)

=

(

n

n

)

=
n!

n! 0!
=

n!

n!
= 1 (as 0! = 1).

1.2 Derivatives, Integrals and Taylor Series

When we have a function f(t) which we assume to be infinitely often continuously3

differentiable, it is interesting how this function changes when t is increased by a bit,
say h. That is we consider

f(t+ h) = f(t) +
∫ t+h

t
f ′(τ1)dτ1 (15)

where we have introduced the derivative

f ′(τ) =
df(τ)

dτ
= lim

δ→0

f(τ + δ)− f(τ)

δ
(16)

Then we can again put

f ′(τ1) = f ′(t) +
∫ τ1

t
f ′′(τ2)dτ2 (17)

and a similar relation we have between the n−1th derivative f (n−1) and the nth derivative
f (n), namely

f (n−1)(τ) = f (n−1)(t) +
∫ τ

t
f (n)(τ ′)dτ ′ (18)

Now we put expression for f ′(τ1) (17) into the integral of (15) and obtain

f(t+ h) = f(t) + f ′(t)
∫ t+h

t
dτ1 +

∫ t+h

t
dτ1

∫ τ1

t
f ′′(τ2)dτ2 (19)

3A function f(t) is referred to as continuous in a interval x ∈ [a, b] if there is for any ǫ > 0 a δ, so
that f(x+ δ)− f(x) < ǫ.
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or

f(t+ h) = f(t) + f ′(t)h+ f ′′(t)
∫ t+h

t
dτ1

∫ τ1

t
dτ2 +R2 (20)

f(t+ h) = f(t) + f ′(t)h + f ′′(t)
∫ t+h

t
dτ1(τ1 − t) +R2

= f(t) + f ′(t)h + f ′′(t)
h2

2
+R2

(21)

where the remainder term R2 is given by

R2 =
∫ t+h

t
dτ1

∫ τ1

t
dτ2

∫ τ2

t
dτ3f

′′′(τ3) (22)

To evaluate R3 we make use of (18) for n = 3, i.e. we replace the variable function
f ′′′(τ3) by the with respect to the τ3-integration constant f ′′′(t) plus remaining integral
R3. Then we can write for (22)

R2 = f ′′′(t)
∫ t+h

t
dτ1

∫ τ1

t
dτ2

∫ τ2

t
dτ3 +R3

= f ′′′(t)
∫ t+h

t
dτ1

∫ τ1

t
dτ2(τ2 − t) +R3

= f ′′′(t)
∫ t+h

t
dτ1

(τ1 − t)2

2
+R3

= f ′′′(t)
h3

3!
+R3

(23)

Repeating this process successively, we obtain

f(t+ h) = f(t) + hf ′(t) +
h2

2
f ′′(t) + ..+ f (n)(t)

hn

n!
︸ ︷︷ ︸

Sn

+Rn (24)

where the remainder term is given by

Rn =
∫ t+h

t
dτ1

∫ τ1

t
dτ2..

∫ τn

t
dτn+1f

(n+1)(τn+1)
︸ ︷︷ ︸

n+1 integrations

(25)

which can be also rewritten as

Rn =
∫ t+h

t

(t+ h− τ)n

n!
f (n+1)(τ)dτ (26)

If limn→∞Rn = 0, the series Sn converges towards f(t+h). (24) is also known as
Taylor Theorem. If the remainder term Rn does not tends to zero, the series expansion
can still be convergent, however not towards the value f(t+ h). Moreover, if we have a
convergent power series

g(t) =
∞∑

n=0

ant
n (27)

which we assume to be convergent, then we find by differentiating (27) at t = 0 the rela-
tion between the coefficients an and the derivatives at t = 0, namely an = 1

n!
dn

dtn
f(t)|t=0.
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Thus a power series of the form (27) always represents its own Taylor (Mac-Laurin)
series. This remains also true for polynomials, i.e. for a series braking with a certain
maximum power tm.

To judge whether or not the remainder term Rn tends to zero for increasing n, we
need not to evaluate Rn explicitly, instead it is sufficient to estimate its value to judge
whether or not it tends to zero when n exceeds all limits. To this end we make use of
the Mean Value Theorem of integral calculus which says for any in the interval [a, b]
continuous function g(x) that

g(x̃) =
1

(b− a)

∫ b

a
g(x)dx

∫ b

a
g(x)dx = (b− a)g(x̃)

(28)

where x̃ ∈ [a, b]. Applying this relation to the last integral of (25) or equivalently to (26)
we obtain

Rn = f (n+1)(t +Θnh)
hn+1

(n+ 1)!
(29)

where 0 ≤ Θn ≤ 1 (t +Θnh ∈ [t, t + h]). Hence we have for limn→∞Rn → 0

f(t+ h) =
∞∑

k=0

f (k)(t)

k!
hk (30)

An expansion the of the form (30) is referred to as a Taylor Series. For the h

range in which the remainder Rn → 0 as n → ∞ tends to zero, Sn→∞ in (24) yields
exactly f(t + h). Then Sn is an approximation for f(t + h) up to the remainder Rn.
Equation (30) is referred to as the Taylor series or Taylor expansion of function f around
t with respect to h. If we expand around t = 0 then the Taylor series is also referred
to as Mac-Laurin series. For any function it has to be checked whether or not the
remainder tends to zero for increasing n. There is always only one unique power series
of a function when expanding it with respect to a variable t. Many functions can be
only defined and computed by Taylor series. Examples include Exponential-function,
Logarithm, Hyperbolic and circular (trigonometric) functions. Taylor series have the
useful property that one can generate derivatives and integrals of the function expanded
by differentiating the powers of t and integrating powers, respectively. Note that the
concept of Taylor series can also be extended to complex valued functions.
Power function: By using (30), we obtain the Mac-Laurin series of (1+ x)α according
to

(1 + x)α = 1 + αx+
α(α− 1)

2!
x2 + ..+

α(α− 1)..(α− n + 1)

n!
xn +Rn (31)

where α is a real (not necessarily integer) number.
The remainder term has the form

Rn =
α(α− 1)..(α− n + 1)(α− n)

(n+ 1)!
(1 + Θnx)

α−nxn+1 (32)

where 0 ≤ Θn ≤ 1. The remainder obviously tends to zero for xn

(1+Θnx)n
≤ xn → 0,i.e.

when |x| < 1. Hence the series

(1+x)α = 1+αx+
α(α− 1)

2!
x2+ ..+

α(α− 1)..(α− n + 1)

n!
xn+ .. =

∞∑

n=0

(

α

n

)

xn (33)
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Expansion (33) converges for −1 ≤ x ≤ 1 towards (1 + x)α. We observe from
(33) that if α = m is an integer, the series (33) coincides with the binomial expansion
for (1 + x)m, breaking with the power xm. In this case it is a sum of a finite number of
terms, holding for any x, not only |x| < 1.

1.3 Elementary functions

In this section we derive some basic functions which are inevitable for our further appli-
cations. Generally, Taylor series which are used to compute values of functions.
Exponential function: The exponential function describes a growth or decay process
with its change rate being proportional to the value to the value itself. There are a huge
set of examples showing exponential time evolution, among them the time-evolution of
an asset with a certain interest and the decay of an radioactive isotope. Let us assume
we have to a time t = 0 the amount x0 and the bank will give us an interest rate h (100h
percent), then our assets will obey the following recurrence relation4

xn+1 = (1 + h)xn (34)

where xn denotes the amount of money after n years with the initial condition (amount
of money at t = 0) x0. (34) is the simplest example for a linear recurrence relation,
i.e. xn+1 is a linear function of xn. We shall linear recurrences in more details below.
The solution of the recurrence (34) obviously is

xn+1 = (1 + h)nx0 (35)

which gives using the binomial theorem (13) to evaluate (1 + h)n

(1 + h)n =
n∑

k=0

n(n− 1)..(n− k + 1)

k!
hk (36)

If we introduce a continuous time variable t = nh and consider the limiting case h → 0
with t = nh = const thus n = t

h
→ ∞, then (36) becomes

(1 + h)n =

n= t
h∑

k=0

(nh)(nh− h)..(nh− kh+ h)

k!
=

n∑

k=0

t(t− h)..(t− kh + h)

k!
(37)

in the limiting case h → 0, the powers t(t− h)..(t− kh+ h)
︸ ︷︷ ︸

k factors

→ tk and
t

h
→ ∞ and

hence we obtain

lim
h→0

(1 + h)

t

h =
∞∑

k=0

tk

k!
= et (38)

which is the definition of the Exponential function et. Often one denotes it also as
et = exp(t), and just calls it the Exponential of t. The series

et =
∞∑

k=0

tk

k!
(39)

4Without loss of generality our consideration holds for any complex h.
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which we derived from the binomial theorem is the Taylor series (Mac-Laurin series) of
this function with respect to t around t = 0. We observe from (39) that its derivative
with respect to t yields the same series, thus

d

dt
et = et =

∞∑

k=0

tk

k!
(40)

that is y = et solves the differential equation
d

dt
x = x and correspondingly we find the

solution of
d

dt
x = λx is x(t) = eλtx0 (x0 = const).

When we return to our recurrence problem (35), we see that this limiting case
h → 0 when we put xn = x(t) and xn+1 = x(t+ h)

lim
h→0

x(t + h) = (1 + h)x(t) (41)

or equivalently

lim
h→0

x(t + h)− x(t)

h
= x(t) (42)

The left hand side of this relation is just the definition of the time derivative at
time t, namely limh→0

x(t+h)−x(t)
h

= dx(t)
dt

, thus the recurrence (42) yields in the limiting
case the differential equation

dx

dt
= x (43)

which has the solution x(t) = etx0 where x0 is a constant indicating x0 = x(t = 0).
Without loss of generality, this consideration remains true also for any starting time t0,

i.e. x(t) = e(t− t0)x(t0). By using the Binomial Theorem (13), we can similarly show
as in (36) that

et = lim
n→∞

(1 +
t

n
)n (44)

also yields the exponential function. For t = 1, the limiting case of (44) is called
e = 1 + 1

1!
+ 1

2!
+ 1

3!
+ .. ≈ 2.7183 Euler number. It is clear that we can represent any

number by a = eln(a) and therefore ax = ex ln(a). Inverting (44) by putting x = et yields
per definition the natural Logarithm function t = ln(x) and is obtained by the limiting
case

ln (x) = lim
n→∞

n[x

1

n − 1] (45)

Let us now assume that x = 1 + u with |u| ≤ 1, in order to derive a series for
ln(1 + u). Then we have5

ln (1 + u) = lim
n→∞

n[(1 + u)

1

n − 1] (46)

and because of

(1 + u)

1

n = 1 +
1

n
u+

1

2!
(
1

n
− 1)u2 + ... =

∞∑

k=0

(
1
n

k

)

uk (47)

5The restriction |u| ≤ 1 is necessary to guarantee the convergence of the series.
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converging for |u| ≤ 1. As all terms for k ≥ 1 in (47) contain the factor
1

n
, we can write

for (46)

ln (1 + u) =

= lim
n→∞

{u+ (
1

n
− 1)

u2

2!
+ (

1

n
− 1)(

1

n
− 2)

u3

3!
+ .. + (

1

n
− 1)× ..× (

1

n
− k + 1)

uk

k!
+ ..}

(48)

thus
1

k!
(
1

n
− 1)× ..× ((

1

n
− k+1) → 1

k!
(−1)k−1(k− 1)! = (−1)k−1 1

k
in the limiting case,

thus

ln (1 + u) = u− u2

2
+

u3

3
− u4

4
+ ..+ (−1)k−1u

k

k
+ .. (49)

which is the Mac-Laurin series of ln (1 + u) with respect to u converging for −1 < u ≤ 1.
The convergence of this series will be discussed in more detail in section 1.5.
Hyperbolic functions: Related to the Exponential function are the Hyperbolic func-
tions, namely cosh(t), sinh(t) and tanh(t). They are defined as

cosh (t) =
1

2
(et + e−t)

sinh (t) =
1

2
(et − e−t)

tanh(t) =
sinh(t)

cosh(t)

(50)

or equivalently et = cosh(t) + sinh(t), e−t = cosh(t) − sinh(t). By expanding the expo-
nential into a Mac-Laurin series

et =
∞∑

n=0

tn

n!
= 1 + t +

t2

2
+

t3

3!
+ .. (51)

and as a consequence of (50) rearranging the terms according to even and odd powers
of t, we get

cosh (t) =
∞∑

n=0

t2n

(2n)!

sinh (t) =
∞∑

n=0

t2n+1

(2n+ 1)!

(52)

where cosh (t) contains only even powers and sinh (t) only odd powers of t. We emphasize
that the definitions of above functions remain also true when t is complex. In the next
section we give a brief review of complex numbers.

1.4 Complex numbers: Cartesian and polar representation

Cartesian representation of a complex number: Let x and y denote the axis of a
Cartesian coordinate system, then we introduce the complex number z as follows

z = x+ iy (53)
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where i =
√

(−1) denotes the imaginary unit6 and is conceived to be directed in the

positive y-direction with i2 = −1. (53) is referred to as Cartesian representation of the
complex number z and x = Re{z} is called the real part of z and y = Im{z} is referred
to as the imaginary part of z. Both x and y are real numbers, iy is a imaginary number.
A visualization of complex numbers is obtained when we represent them as ”vectors”
in the complex plane, where the 1 is the basis vector in positive x-direction and the
imaginary unit i the basis vector in positive y-direction.

Complex numbers were first introduced by Gauss, wherefore the complex plane
is referred to as Gaussian plane. Complex numbers are together with the Theory of
complex functions one of the most crucial tools in mathematics, engineering science
and physics. To calculate with them is just as with real numbers, but separating real
and imaginary parts. Let z1 = x1 + iy2, and z2 = x2 + iy2 be complex numbers, then we
can define the addition the sum of them (addition of complex numbers)

z1 + z2 = x1 + iy1 + x2 + iy2 = x1 + x2 + i(y1 + y2) (54)

and their product (multiplication of complex numbers)

z1z2 = (x1+ iy1)(x2+ iy2) = x1x2+ i2y1y2+ i(x1y2+x2y1) = x1x2−y1y2+ i(x1y2+x2y1)
(55)

where we have used i2 = −1. The geometrical interpretation of the multiplication of 2
complex numbers becomes clear when performing the multiplication in polar represen-
tations shown below. Let z = x+ iy be a complex number, then z∗ = x− iy is referred
to as the complex conjugate of z. Sometimes in the literature the complex conjugate
is also denoted as z̄ instead of z∗.
Polar representation of complex numbers: Let us introduce the polar coordinates

x = ρ cosϕ, y = ρ sinϕ (56)

where ρ =
√
x2 + y2 and

y

x
= tan(ϕ). Then one makes the convention that the angle ϕ

is in the range π < ϕ ≤ π. Other conventions are possible which are equivalent because
of the 2π-periodicity of the trigonometric functions, for instance 0 ≤ ϕ < 2π. Expressing
z in polar coordinates then writes

z = ρ(cosϕ+ i sinϕ) (57)

Now we introduce the exponential function for an imaginary argument iϕ in the
form

eiϕ =
∞∑

n=0

(iϕ)n

n!
(58)

Because of i2m = (−1)m and i2m+1 = i(−1)m we obtain for eiϕ the representation

eiϕ =
∞∑

m=0

(−)m
ϕ2m

(2m)!
︸ ︷︷ ︸

cos (ϕ)

+i
∞∑

m=0

(−)m
ϕ2m+1

(2m+ 1)!
︸ ︷︷ ︸

sin (ϕ)

= cosϕ+ i sinϕ (59)

or equivalently
cos(ϕ) = cosh (iϕ) = 1

2
(eiϕ + e−iϕ)

sin(ϕ) = 1
i
sinh (iϕ) = 1

2i
(eiϕ − e−iϕ)

(60)

6In many textbooks, the imaginary unit is denoted as j instead of i.
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where the hyperbolic functions (60) just indicate just the even and odd parts of the
exponential function, respectively.

In view of decomposition (59) into circular (trigonometric) functions, we also can
write the complex number in the form (57), namely

z = ρ eiϕ (61)

ρ = |z| =
√
zz∗ is referred to as the modulus of z, and ϕ = arg(z) is referred to as the

argument of the complex number z or sometimes its phase. The exponential eiϕ is also
referred to as phase factor. Note that complex conjugation of a phase factor means to
change the sign of its phase, namely (eiϕ)∗ = 1

eiϕ
= e−iϕ. Per definition the argument of

the complex number z is within the interval −π < arg(z) ≤ π]. To meet this convention
arg(z) is expressed in terms of the arctan-function (where −π

2
< arctan(..) < π

2
) in the

form
arg(z) = arctan( y

x
), if Rez > 0

arg(z) = arctan( y
x
) + πsign(y), if Rez < 0

(62)

where z = x+ iy and sign(y) = ±1 is the sign of y (y = |y|sign(y)).
By using representation(61), it is straight-forward to see the geometrical interpre-

tation of the multiplication of two complex numbers z1 = ρ1 exp iϕ1 and z2 = ρ2 exp iϕ2

z1 · z2 = ρ1ρ2 exp (iϕ1) exp (iϕ2) = ρ1ρ2 exp [i(ϕ1 + ϕ2)] (63)

that is the moduli are being multiplied, whereas the angles are added. Or equivalently:
Multiplying a complex number with another complex number means to multiply with
its modulus and rotate by its argument.

In the next section we give a brief review of the properties of complex numbers.
All considerations of above series and functions remain true in the complex case.

1.5 Sequences, Series, Integrals and Power-Series

In this section we give a brief review of the convergence criteria which are a useful
tool to judge whether or not an infinite series converges towards a finite limit. All state-
ments on sequences and series made in this paragraph hold also when they are complex.
Sequences: Before we start to look at series, let us first give a criteria for the con-
vergence of a sequence a0, a1, .., an, .. which is due to Cauchy: the sequence {an} is
convergent an → a if there is for any given ǫ > 0 a nǫ so that |an − a| < ǫ. A simple
example is the sequence an = 1

n
which converges towards a = 0.

Series: Let us consider the convergence of series. To this end, we consider first the
Geometrical series which can be obtained from (33) for α = −1, namely

(1 + z)−1 = 1− z + z2 − z3 + .. =
∞∑

n=0

(−1)nzn (64)

where z can be a complex number z = x + iy. As we know from (33), this series is
convergent for |z| = ρ < 1. The circle ρc = 1, which separates convergent z from
nonconvergent z, is generally referred to as the circle of convergence. For z = −x and
|x| < 1 we have that

(1− x)−1 = 1 + x+ x2 + x3 + .. =
∞∑

n=0

xn (65)
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Let us now consider an arbitrary infinite sum of the form

An =
n∑

j=0

aj (66)

where aj can be complex numbers. An converges for n → ∞ if there exists a convergent
series

Bn =
n∑

j=0

|bj | (67)

with |bn| > |an|∀n, i.e. Bn is an upper limit for An ≤ ∑∞
n=0 |an|.

The series An→∞ converges absolutely if the an tends to zero at least as fast as the
power ζn with 0 < ζ < 1. It is a necessary condition that an → 0 for convergence, but
not a sufficient one. An example for a divergent series of this kind is the harmonic series
(see question 6). Note an → 0 for n → ∞ does not necessarily indicate that

∑

n an is
convergent!.

From this consideration we obtain the convergence criteria for the series (66):
The series An→∞ converges absolutely (absolute convergence means

∑∞
n |an|) if there is

a ζ (0 < ζ < 1) where limn→∞ |an| ≤ const ζn or equivalently if

lim
n→∞

|an|
1
n < 1 (68)

or as an equivalent criteria

lim
n→∞

|an+1|
|an|

< 1 (69)

Criteria (68) is due to Cauchy and (69) is due to D’Alembert. Both criteria are equivalent
to each other and indicate absolute convergence, i.e. convergence of

∑∞
n |an|.

Integrals: We give the following theorem on the convergence of functions and existence
of integrals: If f(t) is a monotonous function and if the series converges

∞∑

n

f(n) < ∞ (70)

then also the integral
∫ ∞

f(t)dt < ∞ (71)

is convergent and vice verse. The lower limit of integration is omitted as it changes the
integral only by a constant and thus does not influence the convergence behavior and
the same is true for the lowest index n0 in series (70). We only need to prove either
the sum (70) or the integral (71) being convergent in order to judge the convergence for
both of them. The proof is as follows: Let f(t) be a monotonous decreasing function for
0 ≤ t ≤ ∞, then we have that

∞∑

n=1

f(n) ≤
∫ ∞

0
f(t)dt ≤

∞∑

n=0

f(n) (72)

from which follows if the integral is convergent, it is also the series, and vice versa.
Note: If the sequence an → 0 converges towards zero as n → ∞, it is a necessary

however not sufficient condition that
∑∞

n an is convergent. An example is the harmonic
series

∑∞
n

1
n
which is divergent (see question 6).
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Power-Series: It is also useful to use above convergence criteria to derive the circle of
convergence for a complex power series. Consider the series

A(z) =
∞∑

j=0

ajz
j (73)

where z = ρeiϕ. Applying the above criteria to (73), we have convergence if their terms
tend to zero faster than a geometrical series. We have convergence for |z| fulfilling

lim
n→∞

(|z|n|an|)
1
n = |z||an|

1
n < 1 (74)

or

|z| < lim
n→∞

1

|an|
1
n

= ρc (75)

or equivalently by using (69), we have convergence when |z| fulfills

lim
n→∞

|an+1||z|n+1

|an||z|n
= |z| |an+1|

|an|
< 1 (76)

or

lim
n→∞

|z| < lim
n→∞

|an|
|an+1|

= ρc (77)

Both criteria are equivalent and it depends on the problem to decide which criteria may
be more convenient in order to determine the radius of convergence ρc.
In conclusion: A power series

∑∞
n=0 anz

n converges if z is within the circle of conver-
gence |z| < ρc, which is given by either of the relations (75) and (77). In the case
when (69) and (77) tend to infinity, the power series is convergent for all z. If these
limiting cases yield zero, it means that the power series is nowhere convergent except
for z = 0. Note: (75) and (77) determine the radius of convergence, i.e. it determines
that within the circle of convergence |z| < ρc, we have convergence. However it does
not provide information about the behavior of convergence at the circle of convergence,
i.e. for |z| = ρc. To judge the convergence on the circle of convergence, additional
considerations have to be made. An example is the geometrical series

1

1− x
= 1 + x+ x2 + ..+ xn + .. (78)

with convergence circle ρc = 1, i.e. (78) converges for x < 1, but obviously this is not
true any more for x = 1.
To judge the convergence behavior on the circle of convergence, it is often useful to
employ another convergence criteria, which is due to Leibniz saying that: If a series is
alternating, i.e. sign(an+1) = −sign(an) and |an| monotonously decreasing |an+1| < |an|
with limn→∞ an = 0 tending to zero, then the series

∑∞
n an =

∑

n(−1)n|an| is convergent.
For instance we can use this criteria to judge what happens on the radius of convergence
for the Logarithm series (49) for u = 1 which is alternating and meeting the Leibniz
criteria, thus

ln(2) = ln (1 + u)|u=1 = 1− 1

2
+

1

3
− 1

4
+ .. + (−1)k−1 1

k
+ .. (79)

which converges according to the Leibniz criteria towards ln(2).
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1.6 Polynomials and Partial Fractions

In this section we give a brief outline of the properties of polynomials and partial frac-
tions.
Polynomials: Let us consider a polynomial of degree n = 01, 2, ..., where n is an integer
number

P (λ) = λn + an−1λ
n−1 + ..+ a1λ+ a0 (80)

where the highest power n determines the degree of the polynomial. A fundamental
property of polynomials is that they can be factorized in terms of their zeros λi (P (λi) =
0), namely

Pn(λ) = (λ− λ1)
m1 × ..× (λ− λr)

mr (81)

where mi is referred to as the multiplicity of the zero λi and where n = m1 + .. + mr.
If ms = 1 then there is only one factor (λ− λs) in (81). Note that in general the zeros
λi of a polynomials are complex numbers. Without loss of generality we have put the
coefficient of λn as equal to one.
Partial Fractions: Let Qm(λ) and Pn(λ) be polynomials of degrees m and n, respec-
tively, where m < n, then exists a decomposition into partial fractions according to

Qm(λ)

Pn(λ)
=

Am1

(λ− λ1)
+ ..+

A1

(λ− λm1)
m1

+
Bm2

(λ− λ2)
+ ..+

B1

(λ− λ2)m2
+ .. (82)

where λs (s = 1, .., r) denote the r zeros of the denominator Pn(λ) and ms indicate the
multiplicity of zeros λs, i.e.

Pn(λ) = Πr
i (λ− λi)

mi (83)

and Al denote constant coefficients to be determined. It is sufficient to look at the case
m < n only, as otherwise we can utilize polynomial division to bring the result into
the form of a polynomial of degree m − n plus a fraction of the form (82). In order
to determine the coefficients A1, .., Am1 we multiply (82) with (λ − λ1)

m
1 . Then (82)

assumes the form

(λ−λ1)
m1

Qm(λ)

Pn(λ)
= Am1(λ−λ1)

m1−1+ ..+A1+(λ−λ1)
m1 [

Bm2

(λ− λ2)
+ ..+

B1

(λ− λ2)m2
+ ..]

(84)
Note that the left hand side of this relation is no more zeros λ1 in its denominator (see

(83), Pn(λ)
(λ−λ1)m1

= Πr
i 6=1(λ− λi)

mi). Hence we obtain the coefficients A1, .., Am1 containing

the terms (λ− λ1)
−p1 (p1 = 1, .., m1) as

A1 = (λ− λ1)
m1

Qm(λ)

Pn(λ)
|λ=λ1

A2 =
1

1!

d

dλ

{

(λ− λ1)
m1

Qm(λ)

Pn(λ)

}

|λ=λ1

..

Am1 =
1

(m1 − 1)!

dm−1

dλm−1

{

(λ− λ1)
m1

Qm(λ)

Pn(λ)

}

|λ=λ1

(85)

and so forth for all remaining coefficients related to the terms (λ−λs)
−ps (ps = 1, .., ms).

The case when the multiplicity of a zero λ1 is equal to one (m1 = 1) is also covered. In
this case only the first equation (85)1 occurs with m1 = 1.
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Example: The fraction x2+2x
(x−3)3(x+1)

is to be decomposed into partial fractions. According

to (82) we can write

x2 + 2x

(x− 3)3(x+ 1)
=

A1

(x+ 1)
+

B1

(x− 3)3
+

B2

(x− 3)2
+

B3

(x− 3)
(86)

To handle with partial fractions instead of a representation of the form (82) is
often much more convenient, for instance if we want to integrate such functions. We can
find an antiderivative by integrating its partial fractions, namely

∫
dx

(x2 + px+ q)
= A1

∫
dx

(x− x1)
+A2

∫
dx

(x− x2)
= A1 ln(x−x1)+A2 ln(x−x2)+const

(87)

where xi are the zeros of x2 + px + q, where we have non-multiple zeros p2

4
− q 6= 0 is

assumed. In the case of x1 = x2 we have

∫ dx

(x− x1)2
= − 1

(x− x1)
+ const (88)

1.7 Matrix Calculus

In this section we recall briefly the essentials of matrix calculus with special emphasis
on eigenvectors and normal forms of matrices.

We confine here to quadratic matrices, which are as a rule sufficient for our
purposes.
Quadratic Matrices: A quadratic n× n matrix A is a scheme

A =








a11, .., a1n
.. ..

.. .. ..

an1, .., ann








(89)

Matrices are essential in order to deal with linear recurrences which we shall
consider in the next section. Let ~X = x1e1+..+enxn ∈ Rn be a vector with n components
xi with the basis vectors ei in the n-dimensional vector space Rn = R× ..×R Normally
the basis vectors ei are chosen in Cartesian representation, namely

ei · ej = δij (90)

where we have introduced the Scalar Product of two vectors ~a,~b according to

~a ·~b = a1b1 + a2b2 + .. + anbn = |~a||~b| cosαa,b (91)

where αa,b is the angle between ~a and ~b and |~a| denotes the modulus of a vector ~a being

defined as |~a| =
√

a21 + a22 + ..+ a2n. The condition (90) indicates mutual ortho-normality
(it means mutually orthogonal and normalized, i.e. ei ·ei = 1) of the basis vectors where
δij denotes Kronecker δ-symbol being defined as

δij =

{

1; i = j

0; i 6= j
(92)

i.e., δ11 = δ22 = .. = δnn = 1, and δ12 = δ13 = ..δn−1,n = 0. For a Cartesian basis
{e1, .., en} we have
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Det(e1, .., en) = 1 (93)

which means that the coordinate system spanned by {e1, .., en} is a rectangular one.
(93) represents the volume of the n dimensional unit cube spanned by the ortho-normal
basis vectors. In (93) we have introduced the Determinant of an n×n matrix A = (aij)
(i, j = 1, .., n) which is defined by

DetA =
∑

σ

(−1)σa1,i1 × ..× an,in (94)

where the summation is performed over all n! permutations of the indices. σ = σ denotes
the number of transpositions (mutual exchanges of indices) necessary to transform the
sequence {1, 2, .., n} into the permutated sequence {i1, i2, .., in}.

For example the determinant of a 2× 2 matrix A = (aij (i, j = 1, 2) is given by

DetA = a11a22 − a12a21 (95)

The value of a determinant is a measure for their linear dependence (or indepen-
dence). DetA = 0 indicates that A consists of n linear dependent (columns and line)
vectors. DetA 6= 0 indicates they are linear independent. What means linear indepen-
dence? A useful definition is: The vectors ~X1, ~X2, .., ~Xn are linear independent if the
system of equations

C1
~X1 + C2

~X2 + .. + Cn
~Xn = 0 (96)

have no other than the trivial solution C1 = C2 = .. = Cn = 0. Linear independence
of a set of vectors ~Xi ∈ Rn also means that any given vector ~b ∈ Rn can be uniquely
represented by a linear combination A1

~X1+..+An
~Xn, which means the set ~Xi constitutes

a basis of the vector space Rn with which all vectors of the Rn can be represented. In
this sense the constants Ai represent the ~Xi-components of vector ~b. If the vectors
~X1, ~X2, .., ~Xn are linear independent, i.e. rank{X} = n, (X = ~X1, ~X2, .., ~Xn), then we

can use the set of ~Xi as a basis to span any vector ~Y = (yi) (i = 1, .., n), that is the
equation system

C1
~X1 + C2

~X2 + ..+ Cn
~Xn = ~Y (97)

or in matrix notation X = ( ~X1, .., ~Xn)

X · ~C = ~Y (98)

has one unique solution-vector ~C = (Ci) because of DetX 6= 0 which is crucial to invert
(98). Formally we can write the inversion as

~C = X−1~Y (99)

where X−1 is the inverse matrix to X fulfilling the property X ·X−1 = X−1 ·X = I.
Further details about solution techniques (Cramer’s rule, Gaussian elimination) which
can be found in many textbooks. Applying Cramer’s rule, the coefficients Ck of vector
~C can equivalently be written as
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C1 =
Det

(

~Y , ~X2, .., ~Xn

)

Det
(

~X1, ~X2, .., ~Xn

)

C2 =
Det

(

~X1, ~Y , .., ~Xn

)

Det
(

~X1, ~X2, .., ~Xn

)

.. ..

Ck =
Det

(

~X1, ~X2, .., ~Xk−1, ~Y , ~Xk+1, .. ~Xn

)

Det
(

~X1, ~X2, .., ~Xn

)

.. ..

Cn =
Det

(

~X1, ~X2, .., ~Xn−1, ~Y
)

Det
(

~X1, ~X2, .., ~Xn

)

(100)

where the numerators on the right hand sides of the Ck are generated by determinants
of matrices which are obtained when replacing ~Xk by ~Y in X =

(

~X1, ~X2, .., ~Xn

)

.

Rank of a Matrix: In the case of linear independence of the vectors ~X1, ~X2, .., ~Xn

the rank of the matrix X = [ ~X1, ~X2, .., ~Xn] is n. Generally, the rank of a matrix is
the number of linear independent column vectors (coinciding with the number of linear
independent row vectors). For a n×n matrix A with some non-zero elements the rank is

between 1 and n, i.e. 1 ≤ rank(A) ≤ n. If the rank of the n×n matrix ( ~X1, ~X2, .., ~Xn) is
r with 1 ≤ r ≤ n, then there exists a n− r parametric solution of (96). For instance for

r = n−1, we have one-parametric solution ~C = (Ci) = C~V (with one parameter C to be
arbitrarily chosen). Another observation is useful: If the rank r of an n× n-matrix
A is smaller than n, i.e. r < n, then its determinant DetA = 0 is zero.
Further matrix operations: A linear relation between two vectors ~X = (xi) and
~Y = (yi) means any component yi is a linear combination of the components xi, hence

yi = Ai1x1 + ..+ Ainxn =
n∑

j=1

Aijxj , i = 1, .., n (101)

Symbolically we can write this linear relation in matrix form, namely

~Y = A · ~X (102)

indicating the ”multiplication” of a vector with a matrix. When we now assume ~x = B·~w,
then we arrive at the multiplication of two matrices A and B, defined by

(A ·B)ij =
n∑

k=1

AikBkj (103)

Note in general A ·B 6= B ·A, that is, matrix multiplication is in general non-
commutative. The sequence of multiplication is crucial, unlike the case when we
multiply scalar numbers. A little later we will discuss under which conditions the matrix
multiplication is commutative (i.e. can be traced back on scalar multiplication).

Eigenvectors and eigenvalues: In general a vector A · ~X differs by modulus and
direction from vector ~X . That leads us to the question: Are there vectors whose direction
remains unchanged when multiplying them with a matrix A? Clearly such vectors depend
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on matrix A. If ~v represents such a vector, then any scalar multiple const~v of it also
represents such a vector. Hence we look for vectors ~v fulfilling

A · ~v = λ~v (104)

A vector fulfilling (104) is referred to as an Eigenvector of matrix A and λ an Eigenvalue
of matrix A. Bringing λ~v to the left hand side, (104) can be rewritten as

(A− λI) · ~v = 0 (105)

where I = (δij) is the unity matrix (I ~X = ~X, ∀ ~X)7. We see that ~v is obviously the
nontrivial solution vector of the homogeneous system of equations (104). A nontrivial
(i.e. nonzero) solution only exists if λ is chosen such that the rank of (A− λI) is at
most n− 1. That means the condition

Det (A− λI) = 0 (106)

for λ needs to be fulfilled. From this condition (106), λ is to be determined. This
condition also is referred to as Characteristic Equation. From the definition of the
determinant follows that P (λ) = (A− λI) is a polynomial of degree n. P (λ) is referred
to as the Characteristic Polynomial of the matrix A and (106) is referred to as the
characteristic equation. Using the properties on polynomials of section 1.6 we know that
P (λ) has n zeros λi. There are now two different possibilities: (i) All zeros of (106)
are different, i.e. λi 6= λj for i 6= j; and (ii) we have multiple zeros λs. Let us first of
all discuss case (i), i.e. the multiplicity of any zero λi is equal to 1. We then have n

different equations

(A− λiI) · ~vi = 0 (107)

with n different non-zero eigenvectors ~vi in general8. In the appendix it is shown that if all
eigenvalues λi 6= λj for i 6= j then the n eigenvectors ~vi are linear independent and hence
constitute a complete basis of the n-dimensional vector space, i.e. any arbitrary vector
~b = (bi) =

∑n
i ci~vi can be represented as a unique linear combination of eigenvectors.

Because of DetV 6= 0 (V = (~v1, .., ~vn)), the matrix A has the representation

A = V · D ·V−1 (108)

where

D = diag(λ1, ..λn) = (λiδij) =











λ1 0.. .. 0
0 λ2 0.. 0
0 0.. .. 0
0 .. λn−1 0
0 0.. 0 λn











n×n

(109)

is the diagonal form (normal form) consisting of the eigenvalues (λ1, .., λn) in the same
sequence as V the corresponding eigenvectors (~v1, .., ~vn). (109) is referred to as the
diagonal form or diagonal representation of matrix A. The diagonal matrix D is the
most simple and natural representation of the matrix A. Again we emphasize that the
representation (109) exists in general only if we have n linear independent eigenvectors
~vi, i.e. if we have enough, namely n eigenvectors that they constitute a complete basis
of the Rn. This is always true if the eigenvalues λi are all different and it is sometimes

7∀ abbreviating ”for all”.
8Any eigenvector ~vi is only determined up to a constant, i.e. ~vi · const is also a eigenvector ∀ const
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true if we have multiple eigenvalues (see below). To understand (109) we consider how it

acts on an arbitrary vector ~X which has the unique representation ~X = C1 ~v1+ ..+Cn ~vn
in terms of eigenvectors. Then we have that A · ~X = C1λ1 ~v1 + ..+Cnλn ~vn = V · DV−1.

A matrix with det(A) = 0 is called singular thus its inverse does not exist. As

a consequence a system of equations A · ~X = ~b do not have a solution if ~b is linear
independent from the columns of A.
Let us now consider the case of multiple (degenerate) eigenvalues. The characteristic
polynomial assumes then the form9

Det (A− λI) = (−1)n
r∏

j=1

(λ− λj)
mj (110)

where the mj are referred to as the algebraic multiplicity of the eigenvalue λj(with
m1 + ..+mr = n). Let λs be an eigenvalue with algebraic multiplicity ms > 1 and

rs = rank (A− λsI) (111)

Now we have the following possible cases:
Case (i) rs = n −ms: In this case we can find ms linear independent eigenvectors ~vs

i

i = 1, 2, .., ms fulfilling

(A− λsI) · ~vs = 0 (112)

In this case the situation is in a sense the same as if we would have ms different
eigenvalues: We can find a ms dimensional eigenbasis. If rj = n − mj is true for all
eigenvalues λj then a full basis consisting of eigenvectors exist thus the diagonal form of
matrix A exists.
Case (ii) rs = n −ms + δs > n −ms: In this case we can find only n − rs = ms − δs
(δs = 0, 1, .., ms − 1) linear independent eigenvectors as solutions of (112) (The case
δs = 0 corresponds to the above case that rs = n−ms. That is in this case there are not
enough linear independent eigenvectors which spanning the complete ms-dimensional
space. In this case there is no basis consisting of eigenvectors thus matrix A is non-
diagonalizable. However we can find a basis which transforms matrix A to its most
simple representation which is the so called Jordan Normal Form, with

A = VJV−1 (113)

where

J =











J1 0.. .. 0
0 J2 0.. 0
0 0.. .. 0
0 .. Jr−1 0
0 0.. 0 Jr











(114)

where to each eigenvalue λs with multiplicity ms (114) contains n−rs = ms−δs Jordan
blocks of the form

9where we introduce the notation
∏r

j=1
αj = α1α2..αr.
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Js = λsδij + δi,j−1 =











λs 1.. .. 0
0 λs 1.. 0
0 0.. .. 0
0 .. λs 1
0 0.. 0 λs











(115)

For more details we refer to the literature.

For the sake of completeness we briefly recall the most important properties of
determinants. All relations hold for both cases when the vectors ~Xi are row vectors as
well as column vectors since DetA = DetAtr (where Atr denotes the transposed matrix
of A generated by exchange of rows and columns, i.e. (Atr)ij = (A)ji. Then we have

Det
(

~X1, ~X2, .. ~Xn

)

= −Det
(

~X2, ~X1, .. ~Xn

)

(116)

i.e. to exchange of any two vectors will change the sign of the determinant.

Det
(

C1
~X1, C2

~X2, .., Cn
~Xn

)

= C1 · C2 · .. · Cn

(

~X1, ~X2, .. ~Xn

)

(117)

and
Det

(

~X1, C1
~X1 + C2

~X3, ~X3.. ~Xn

)

= 0 (118)

i.e. a determinant with linear dependent column or row vectors is vanishing. Moreover
we have the product rule

Det(A ·B) = (Det(A)) · (Det(B)) (119)

i.e. the determinant of a matrix product is the product of determinants of the matrices.
This case includes also (117) when multiplying A with a diagonal matrix. From (119)
follows that

Det(A ·A−1) = Det I = Det(A) ·Det(A−1) = 1 (120)

or

Det(A−1) =
1

DetA
(121)

and similarly
Det(An) = (Det(A))n (122)

When we have a matrix which possesses a diagonal form and hence the repre-
sentation A = VDV−1, where D is the diagonal matrix consisting of eigenvalues of the
form (108), then it follows that

DetA = Det (VDV−1) = DetD =
n∏

i=1

λi (123)

and similarly we have with that

Det(A− λI) = Det
(

V(D − λI)V−1
)

= Det(D − λI) =
n∏

i=1

(λi − λ) (124)

which is indeed the characteristic polynomial Pn(λ) (Eq. (106). Moreover from (122)
and (124) we find that

Det(Am) = (Det(A))m =
n∏

i=1

λm
i (125)
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Functions of matrices: Let us assume A has a diagonal-form (i.e. the geometrical
multiplicity of all eigenvalues is n) and thus can be represented as A = VDV−1. Let us
now consider the mth power (m = 0,±1,±2, ..)

Am = A · .. ·A
︸ ︷︷ ︸

m times

(126)

Because of A = V · D ·V−1, (126) assumes the form

Am = V · D ·V−1 ·V
︸ ︷︷ ︸

I

·D ·V−1 · .. ·V · D ·V−1 = V · DmV−1 (127)

where

Dm = diag(λm
1 , .., λ

m
n ) = (λm

i δij) =











λm
1 0.. .. 0

0 λm
2 0.. 0

0 0.. .. 0
0 .. λm

n−1 0
0 0.. 0 λm

n











(128)

In view of these relations we can define functions of n × n matrices to be also
n × n matrices by their Taylor series, namely a scalar function f(λ) has a Mac-Laurin
series according to

f(λ) =
∞∑

m=0

amλ
m, |λ| < ρc (129)

with am = 1
m!

dm

dλm f(λ = 0) and converging for λ < ρc. Then the corresponding matrix
function can be defined by

f(A) =
∞∑

m=0

amA
m (130)

having the same coefficients as the scalar function (129) and where the scalar variable
λ is replaced by matrix A. By using (127) and (128) we can further write (130) in the
form

f(A) = V(
∞∑

m=0

amDm)V−1, |λi| < ρc (131)

We can evaluate the series f(D) =
∑∞

m=0 amDm by taking into account that D is
diagonal and obtain

f(D) =

(
∞∑

m=0

amλ
m
i δij

)

=











f(λ1) 0.. .. 0
0 f(λ2) 0.. 0
0 0.. .. 0
0 .. f(λn−1) 0
0 0.. 0 f(λn)











(132)

We observe that the matrix f(A) has the eigenvalues f(λi) (where λi

are the eigenvalues of A) and the same eigenvectors as A. Note: the power
series in the diagonals converge only towards the f(λi) if all eigenvalues λi are within
the circle of convergence ρc of expansion (129), i.e. if the eigenvalue with the maximum
modulus is within the circle of convergence Max(|λi|) < ρc. A prominent example of a
function of a matrix B is the exponential being defined as

exp(B) =
∞∑

m

Bm

m!
(133)
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with ρc = ∞, i.e. converging ∀λi. Often one considers functions of B = At, where t is
a scalar (time) variable. A very useful property of the matrix exp (At) is that it solves
in full analogy to scalar functions the linear differential equation system (where A is
assumed to be a constant time independent n× n matrix)

d

dt
exp (At) = A · exp (At) (134)

which is easily verified by using the expansion of the exponential. thus the vector
~X(t) = exp (At) · ~X0 solves the differential equations system

d

dt
~X = A · ~X (135)

with the initial vector ~X(t = 0) = ~X0. This will be important in part II when we
consider systems of differential equations (Sec. (2.6)).

2 Part II

In this section we give an introduction into analytical methods to tackle dynamical
problems. We consider recurrences which describe discrete dynamical processes and
their continuous counterpart which are described by Ordinary Differential Equations
(ODE’s) and Initial Value Problems (IVPs) with special emphasis on dynamical engi-
neering applications and physics. We recall the general theory briefly, but for the sake
of analytical feasibility we mainly confine to dynamical systems which can be described
by ODEs with constant (time independent) coefficients. Fortunately many dynamical
problems relevant in engineering science and physics are covered by this type.

2.1 Recurrences

Many processes in dynamics can be described by either (i) differential equations or by (ii)
recurrences. Differential equations describe processes which evolve continuously in time,
whereas recurrences are an appropriate description when we are looking on the time
evolution of a variable X only to certain discrete times tn, i.e. X(tn) = Xn. Examples
are the development of a population which we measure for instance every year at the
same day, or an asset on the bank which grows not continuously. A recurrence can be
described as a discrete mapping of the form

Xn+1 = f(Xn, C) (136)

with a given initial value X0 and a so called control parameter C (or even a set of control
parameters). For the definition of recurrences the introduction of a control parameter
is not necessary, however in many cases the dynamic behavior of a variable becomes
more clear by considering the dependence of the dynamical behavior of such a control
parameter. f(X,C) can be an arbitrary generally also nonlinear function of X . An
example for the influence of a control parameter is the growth of a population under
the influence of a variable food supply which enters the dynamic behavior as a control
parameter. The dynamic behavior, i.e. the development of Xn depends on both, the
initial value X0 and on the control parameter C, i.e. Xn = Xn(X0, C). Formally we
write the solution of (136) in the form

Xn = f(..f(X0, C))
︸ ︷︷ ︸

n times

(137)
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i.e. the initial value X0 is inserted into the function, and the result is again inserted
into the function; this process is performed n times. One also calls such a process when
the results is again entered into the function itself as iteration or feedback loop. In
most nonlinear cases (apart from a few exceptions), there is no other possibility as to
compute Xn by performing the (nonlinear) feedback loop n-times which corresponds to
(137). As a rule, one cannot predict the long-term dynamic behavior of such a nonlinear
recurrence, (i.e. the behavior after a high number n of loops) of nonlinear mappings
except one performs all the n iterations explicitly. This is also reflected by the high
sensitivity on the initial conditions X0 of nonlinear recurrence mappings. Therefore
nonlinear recurrences are also referred to as deterministic chaotic mappings. To
get an overview on the nonlinear dynamic behavior one needs to perform the iterations
on a computer. A prominent example of the most simple nonlinear recurrence is the
Verhulst-Equation

Xn+1 = µ(1−Xn)Xn (138)

with control parameter µ. If the behavior for n → ∞ is bounded, i.e. non-divergent,
then the sequence Xn (for large n) is referred to as an attractor. In (138) one can find
attractors Xn(µ) for 0 < µ < 4 for a certain set of initial conditions. The representation
of this attractor vs µ has become famous under the name Feigenbaum diagram, and
was discovered first by Mitchell Feigenbaum about three decades ago. (138) is conceived
as the most simple example for a deterministic chaotic system. If we chose instead of
real variables Xn complex variables, then nonlinear recurrences generate dynamics with
basins which remain bounded (non-divergent) in both the complex z0-plane of initial val-
ues (Julia Set) as well as in the complex c-plane of control parameters (Mandelbrot
Set) with so called fractal boundaries or simply Fractals. The terminology Fractal
and related, the field of Fractal Geometry was first introduced by Benoit Mandelbrot
describing geometrical objects having non-integer dimensions, indicating their highly
irregular shapes. Mandelbrot was motivated by the wish to create a theory and quanti-
tative measure of roughness in order to describe rough surfaces and boundaries quanti-
tatively. Fractal objects have the remarkable property of self-similarity, which means
that zooming into a fractal pattern reveals again a ”similar” looking fractal pattern. As-
signing different colors depending how fast a recurrence of the form (136) converges or
diverges can generate fractal images of stunning beauty10. Well-known is the so called
Mandelbrot Set generated by the complex mapping zn+1 = z2n + c in the complex c-
plane for a constant initial condition z0 = 0 which was first discovered and described by
Benoit Mandelbrot. An example for a fractal image which was generated by a complex
recurrence of the form (136) is shown on the cover page of these notes. Unfortunately we
cannot devote here more space to the highly challenging field of Nonlinear Dynamics,
Chaos Theory, Complex Systems and Fractal Geometry. The interested reader
is highly encouraged to further deal with these strongly related subjects. Any support
for this goal is provided.
For the sake of analytical calculability we confine us now to linear recurrences which
can be solved in closed form, i.e. without performing n iterations explicitly. Linear re-
currences, are mappings (136) where F (X,C) is a linear function of X having the form
F (X,A,B) = AX +B, where A,B are constant (control) parameters.
Linear recurrences: The most simple example of a linear recurrence we already met
in section 1.3 (eq. 34)). Similarly, in the general case, a linear recurrence has the form

10Stunning examples of Fractals including downloadable references for further reading, pro-
grams and related links can be found in the web at http://michelitsch-fractals.staff.shef.ac.uk and
http://en.wikipedia.org/wiki/Burning Ship fractal
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Xn+1 = AXn +B (139)

with a given initial value X0 and control parameters (constants) A,B. Performing the
n iterations from X0 to Xn leads to

Xn = AnX0 +B(1 + A+ A2 + ..+ An−1)

Xn = AnX0 +B
(An − 1)

(A− 1
)

(140)

especially for B = 0 (140) yields Xn = AnX0 according to the recurrence Xn+1 = AXn

with given X0.
So far we considered in this section dynamical systems of one variable (one-degree of
freedom). However, we can also define recurrences for systems characterized by n vari-

ables (multi-degree of freedom systems)which is represented by a vector ~X . In these
cases it is clear that linear recurrences are defined by matrix relations of the form.

~Xn+1 = A · ~Xn +~b (141)

where A is now a N × N matrix. In complete analogy to the scalar case (136), the
evaluation of (141) yields analogously to (140) the solution

~Xn = An ·X0 + (I+A+A2 + .. +An−1) ·~b

~Xn = An ·X0 +
(An − 1)

(A− 1)
·~b

(142)

where it is important that the matrices (142) stand left of the vectors, in accordance

to the recurrence (141). Note, for ~b = 0 (142). The matrix (An−1)
(A−1)

can be further

evaluated by using (131) if A has a diagonal form, i.e. the geometrical multiplicity of
its eigenvectors is n.
In above cases we considered only scalar recurrences of the form (136). Let us now
consider linear scalar recurrences of the form

Xn+1 = aXn + bXn−1 + c, n = 1, 2, .. (143)

with control parameters a, b, c and initial two values X0, X1
11 . (143) can be traced back

by introducing the vectors for n = 1, 2, ..

~Xn =

(

Xn

Xn−1

)

, ~c =

(

c

0

)

(144)

on case (141). Then we can write instead of (143) the matrix recurrence of the form
~Xn = A · ~Xn−1 + ~c, namely

(

Xn

Xn−1

)

=

(

a b

1 0

)

·
(

Xn−1

Xn−2

)

+

(

c

0

)

, n = 2, 3, .. (145)

which is solved by (142). As an explicit example we consider the Fibonacci numbers
which are defined as a recurrence of the form (143), namely

11Two initial values have to be given since a recurrence of the form(143) gives no information how
X1 is generated from X0.
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Xn+1 = Xn +Xn−1, n = 1, 2, .. (146)

with given initial values X0, X1. By using (145) we can write instead of (146) the matrix
form

(

Xn

Xn−1

)

=

(

1 1
1 0

)

·
(

Xn−1

Xn−2

)

, n = 2, 3.. (147)

which yields by using (142) with ~b = 0

(

Xn+1

Xn

)

=

(

1 1
1 0

)n

·
(

X1

X0

)

, n = 2, 3.. (148)

which can be evaluated explicitly by using (127). We will do so in questions 21 and 22.

2.2 Integral Transformations

This section is devoted to the most common integral transformations such as Fourier
transformation and series, Laplace transformation, as they are needed in engineering
sciences and physics all over. Especially in part II these transformations are an inevitable
tool to tackle dynamical problems. To this end it is very useful to introduce the Dirac’s
δ-function.

2.2.1 Dirac’s δ-Function

Let us consider a function w(t, ǫ) where ǫ > 0 denotes a positive parameter with
w(t0, ǫ) = Max(ǫ) which has the following properties: The function is normalized ac-
cording to

∫ ∞

−∞
w(t, ǫ)dt = 1, ∀ǫ (149)

where limǫ→0w(t0, ǫ) = ∞ and w(t0, ǫ) = Max{w(t, ǫ)}. That means w is a function
which becomes more and more narrow with decreasing ǫ and with increasing maximum
w(t0, ǫ). Because of the conservation of the area below the curve w(t, ǫ) this also means
that as a necessary condition, limǫ→0w(t, ǫ) = 0∀t 6= t0. There is an infinite set of
functions with these properties. The easiest example is a square-pulse function defined
as

w(t, ǫ) =







1

ǫ
; for− ǫ ≤ t ≤ +ǫ

0; elsewhere

(150)

which obviously fulfills all demanded properties. The Dirac’s δ-function then can be
defined as the limiting case

δ(t) = lim
ǫ→0

w(t, ǫ) =







1

ǫ
→ ∞, for − ǫ ≤ t ≤ +ǫ

0, elsewhere

(151)

By applying the Mean Value Theorem (28) we can find for all a < t < b and for
any continuous function f(t)
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∫ ∞

−∞
w(t− t′, ǫ)f(t′)dt′ = f(t+ ǫΘ)

∫ ∞

−∞
w(t− t′, ǫ)dt′

︸ ︷︷ ︸

=1

= f(t+ ǫΘ) (152)

with −1 < Θ < 1 where we have used (149). When we exchange the integration and
limǫ→0 we obtain

∫ ∞

−∞
limǫ→0w(t− t′, ǫ)
︸ ︷︷ ︸

δ(t−t′)

f(t′)dt′ =
∫ ∞

−∞
δ(t− t′)f(t′)dt′ = f(t) (153)

An integral of the form (153) is referred to as a Convolution integral12 Convolu-
tions are the continuous analogue to matrix multiplication (in view of the analogy of a
discrete index i and the continuous index t). In view of (153) we observe that convo-
luting a function with the δ-function yields the function. In this sense the δ-function
plays the role of the unity operator 1̂ which maps the function (which can be conceived
as vector in the function space) on itself 1̂f = f . Because δ(t− t′) = 0 for t 6= t′ we can
write if a < t < b

∫ b

a
δ(t− t′)f(t′)dt′ = f(t) (154)

The Dirac-δ-function δ(t) actually is not a function in its usual sense but is only
defined ”under the integral”. If t would not be in the interval [a, b], then (154) would
be zero. Physically the δ-function δ(t) represents an idealized unit force pulse taking
place at t = 0. A δ-function can also occur in the space and can then represent for
instance the mass density of a point-unity-mass13. Useful is also the antiderivative of
the δ-function, namely

∫ t

−∞
δ(t′) = H(t) (155)

where Θ(τ) denotes the Heaviside unit-step function being defined as

H(t) =







1, t > 0
1
2
, t = 0

0, t < 0
(156)

where the value 1
2
for t = 0 is a reasonable extension which is due to the fact that the

δ-function is a limiting process of an even function in t, i.e. δ(t) = δ(−t). The derivative
of the Heaviside unit step function is again the δ function ,namely d

dt
H(t) = δ(t), i.e.

the δ(t)-function describes the sudden increase of the Heaviside step function at its
discontinuity at t = 0.

In order to introduce Fourier Transformation below, the δ-function will be a
highly convenient tool. We will make use of the following integral14

I = lim
ǫ→0+

∫ ∞

0
e−ǫt cosωtdt =:

1

2

∫ ∞

−∞
eiωt dt (157)

12A convolution is generally defined as
∫
g(t− t′)f(t′)dt′ with integral kernel g(τ).

13The responseX(t) on such a δ-pulse excitation is referred to as theGreen’s function or Propagator.
14With limǫ→0+(..) we mean ǫ tends to zero whilst being positive.
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Note that the integral (157) is only well-defined for at least small ǫ 6= 0. To
evaluate it we can write it in the form (where Re(..) means the real part)

I = Re lim
ǫ→0+

∫ ∞

0
e−(ǫ−iωt) dt = lim

ǫ→0+
Re

{

1

(ǫ− iω)

}

=
ǫ

ǫ2 + ω2
(158)

We observe that the right hand side of (158), ǫ
ǫ2+ω2 tends to zero as ǫ for ω 6= 0 but to

infinity at ω = 0 as 1
ǫ
. This leads us to the conjecture that this function could end up in

a δ-function as ǫ → 0+ and thus has a ”similar” behavior (with respect to ω) as (151).
To verify this, we consider the integral

∫ ∞

−∞

ǫ

ǫ2 + ω2
dω =

∫ ∞

−∞

1

1 + (ω
ǫ
)2
dω

ǫ
= arctan (

ω

ǫ
)|∞−∞ = π (159)

which is independent of ǫ. Hence the function 1
π

ǫ
(ω2+ǫ2)

fulfills the normalization condition

(149), thus we can conclude

1

π
I(ω, ǫ) = lim

ǫ→0+

1

π

ǫ

(ω2 + ǫ2)
= δ(ω) (160)

and we can conclude from this result by using (157) that

δ(ω) =
1

2π

∫ ∞

−∞
eiωt dt (161)

which is an important and highly useful representation of the δ-function, especially also
for the introduction of Fourier transformation.

2.2.2 Fourier Transformation: Fourier Integrals and -Series

Fourier Integrals: Let us assume that f(t) is a function where
∫ ∞

−∞
f(t)dt < ∞ (162)

exists. To introduce the Fourier integral we first represent f(t) by the identity (154)

f(t) =
∫ ∞

−∞
δ(t− t′)f(t′)dt′ (163)

where we know from (161) that

δ(t− t′) =
1

2π

∫ ∞

−∞
eiω(t−t′) dω (164)

inserting this representation for δ(t− t′) into (163) we obtain

f(t) =
1

2π

∫ ∞

−∞
dω

∫ ∞

−∞
eiω(t−t′) f(t′)dt′ =

1

2π

∫ ∞

−∞
eiωt dω

∫ ∞

−∞
e−iωt′ f(t′)dt′

︸ ︷︷ ︸

f̂(ω)

(165)

where f̂(ω) is referred to as the Fourier Transform of the function f(t). Note that
f̂(ω) is a different function of ω as f(t) of t. The integral

f(t) =
1

2π

∫ ∞

−∞
f̂(ω)eiωt dω (166)
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is referred to as the Fourier Integral or the Fourier Representation of the function
f(t). Note that (166) exists only for functions f(t) fulfilling condition (162). The Fourier
transform is given in (165) by

f̂(ω) =
∫ ∞

−∞
e−iωt′ f(t′)dt′ (167)

where f̂(ω = 0) just recovers the condition (162). f(t) is referred to as the time domain
representation and f̂(ω) is referred to as the frequency domain representation. Both
representations are equivalent. (167) is referred to as the Fourier transformation of f(t)
into the frequency domain and (166) is referred to as the back-transformation into the
time domain. Note that the phase factor occurs complex conjugate to each other in
(162) and (167). Hence knowing either f(t) or f̂(ω) contains both the full equivalent
information, if f̂(ω) is known then f(t) can be recovered by using (166) and vice verse.
This is especially useful and important for the solution of dynamical problems which
we shall discuss below: In many cases one can determine directly the Fourier transform
of a solution, i.e. the solution in the frequency domain. By using (166) then one can
determine the desired time-domain solution. Hence Fourier transformation is one of the
most crucial tools in the solution of linear differential equations which is to be discussed
in part II.
Fourier Series: We observe in (166) that all frequencies ω contribute to f(t). This is
the case when the only condition for f(t) is (162), i.e. when f(t) is sufficient rapidly
decaying. In other cases in dynamics we have instead so called periodic boundary
conditions for f(t), which means f(t) is defined over an interval 0 < t < T and then
periodically continued, namely

f(t) = f(t+ T ) = f(t+ nT ) (168)

where n = 0,±1,±2, ..∞. When we look at (166) we see that (320) must be reflected
in the condition eiω(t+nT ) = eiωteiωnT . Hence we have to claim that eiωnT = 1 defines
a selection rule for omega, namely only the discrete frequencies ω = ωm = 2π

T
m (m =

±1,±2, ..,∞) which are integer multiples of the basic frequency ω1 =
2π
T

are compatible
with (168). Hence, instead of integrating over all frequencies ω as in (166), f(t) has here
the representation

f(t) =
∞∑

m=−∞

ame

2πim

T
t

(169)

This representation is referred to as a Fourier Series of f(t). A Fourier series
always exists in the case of periodic boundary conditions (168), i.e. when f(t) is
periodically continued with period T . The Fourier coefficients am are obtained by using
the orthogonality relation

∫ T

0
e

2πi(m− n)

T
t
dt = Tδmn (170)

where m,n = ±1,±2, .. and δmn is the Kronecker δ-symbol (92). Hence we obtain

1

T

∫ T

0
f(t)e

−2πim

T
t
dt =

∞∑

m=−∞

am
1

T

∫ T

0
e

2πi(m− n)

T
t
dt

︸ ︷︷ ︸

δmn

= an (171)
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that is the Fourier-coefficients are obtained by

an =
1

T

∫ T

0
f(t) e

−2πim

T
t
dt (172)

where again the phase factor in (172) is the complex conjugate of that one in the Fourier-
series (169). Remark: In case of a discontinuity of f at t = t0 (often for instance at
the boundaries t0 = nT ), the Fourier series (169) converges towards the mean value
f(t0−ǫ)+f(t0+ǫ)

2
, (ǫ → 0). This effect is referred to as Dirichlet theorem, which reflects

the limiting case of the fact that (169) for a finite number of terms always represents a
continuous function.

2.2.3 Laplace Transformation

It is often the case that Fourier transformation is not possible, because neither of the
conditions (162) and (168) applies. Nevertheless, the Laplace transformation is a special
kind of Fourier transformation of a slightly modified function. Laplace transformation
is useful when we deal with causal functions f(t) which are only nonzero for t > 0. The
reason for this is that often a sudden δ(t)-type force impact takes place, say at time
t = 0 and we are interested in the response of the system taking place only after the
impact, i.e. for t > 0. Let us assume that f(t) = H(t)f(t) is such a causal function
where H(t) denotes the Heaviside unit step function defined in (154), the the Laplace
Transform L(f) of f(t) exists if there is a σc with σc > 0 such that

∫ ∞

0
f(t) e−σctdt < ∞ (173)

This condition means that f(t) may not increase faster than exponentially, with
exponent exp(σct). The Laplace transform L(f) of a function f(t) exists if

|f(t)| < Meσct, t > 0 (174)

As we shall see, Laplace transformation is nothing else as the Fourier trans-
formation (166), (167) of the the modified function f(t)H(t)e−st with sufficient large
Re(s) > σc. That means (173) is condition (162) for the function f(t)H(t)e−st. An
example of such a function which is Laplace transformable is eλt. Then σc = Re(λ). A
function which increase faster than exponentially, e.g. et

2
is not Laplace transformable,

as there does not exist a σc so that the condition (173) can be met.
Let us assume that f(t) = H(t)f(t) is causal and meets (173), then the Laplace trans-
form of f(t) is defined as

L(f) = f̃(s) =
∫ ∞

0
e−stf(t)dt (175)

where s is a complex variable, where Re(s) > σc and σs is referred to as the abscissa
of convergence. The Laplace transform (175) of f(t) is only defined in the complex
half-plane fulfilling Re(s) > σc.
Before we discuss some examples of Laplace transforms, let us tackle the question: If
only the Laplace transform f̃(s), is known, how can we get back the the time-domain
representation f(t), where we only get back the causal part of f(t)H(t) (t > 0). To this
end, let us take into account that s = σ + iω, where σ = Re(s) > σc and ω = Im(s),
then (175) can be re-written as a Fourier transform, namely
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f̃(s = σ + iω) =
∫ ∞

−∞
e−iωt (e−σtH(t)f(t))

︸ ︷︷ ︸

Fourier transformed function

dt (176)

where the H(t)-function guarantees the right lower integration limit at t = 0. This
relation shows that the Laplace transform of f(t)H(t) is nothing else than the Fourier
transform of e−σtH(t)f(t) where σ = Re(s). Thus, if the Laplace transform f̃(σ+ iω) =
f̃(s) is given as a function of s, we only need to invert the Fourier transformation (176)
according to (166) to recover the time domain representation function e−σtH(t)f(t) of
which (176) is the Fourier transform. Thus

H(t)f(t) =
eσt

2π

∫ ∞

−∞
f̃(s = σ + iω)eiωtdω (177)

where we have multiplied both sides with e−σt to recover the causal function f(t)H(t),
i.e. f(t) for t > 0.
We will take great advantage of Laplace transforms in the solution of Initial Value
Problems which will be discussed in part II. The main advantage of the use of Laplace
transforms for the solution of Initial Value Problems is that the back-transformation,
namely the evaluation of the integral (177)(inversion of Laplace transformation into
the time domain) as a rule needs not to be performed explicitly. Instead, in most
practical cases the knowledge of the Laplace transform allows to give H(t)f(t) as they
are tabulated or easy to be traced back as we shall wee in the examples to follow.
As a highly useful example let us consider the Laplace transform of eλtH(t), i.e. of the
causal branch of an exponential functions with arbitrary complex λ. The the Laplace
transform L(eλt) is given by using (175)15

L(eλt) =
∫ ∞

0
e−(s−λ)tdt =

1

s− λ
(178)

where the Laplace transform is defined only when Re(s) > Re(λ) = σc. From this
relation we can read off a couple of useful Laplace transforms, namely by putting λ = 0
we find

L(1) = 1

s
(179)

We can Moreover generate from (178) L(t) by differentiating both sides of (178)
with respect to λ at λ = 0, namely

L(t) = d

dλ

(
1

s− λ
|λ=0

)

=
1

(s− λ)2
|λ=0 =

∫ ∞

0
te−(s−λ)tdt =

1

s2
(180)

and by successive differentiation with respect to λ at λ = 0

L(tn) = dn

dλn

(
1

s− λ

)

|λ=0 =
n!

(s− λ)2
|λ=0

∫ ∞

0
tne−(s−λ)tdt =

n!

sn
, n = 0, 1, 2, .. (181)

where in this relation for n = 0 and n = 1 (179) and (180) are recovered. The Laplace
transforms (181) are defined only for Re(s) > 0 = σc (because λ = 0). In the following
we derive some useful relations between Laplace transforms which will be needed for the
solution of dynamic problems in part II.

15We skip the Heaviside H(t)-function and write instead of L(H(t)eλt) only L(eλt) bearing in mind
that only the causal part of eλt, i.e. for t > 0 is Laplace transformed.
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First, we assume throughout that f(t) fulfills (174) and assume in all cases Re(s) > σc.
Very useful is the relation between the Laplace transforms of f(t) and its time derivative
Df(t) where D = d

dt
denotes the time derivative operator. The Laplace transform

L(Df(t)) is given by (where we again skip throughout the Heaviside function)

L(Df) = f̃(s) =
∫ ∞

0
e−stDf(t)dt (182)

where we can apply partial integration by using the properties of the differential operator
e−stDf(t) = D[e−stDf(t)]− f(t)De−st = D[e−stDf(t)] + sf(t)e−st = (D + s)(e−stf(t)).
More compactly we can write

e−stDf(t) = (D + s)(e−stf(t)) (183)

to arrive at

L(Df) =
∫ ∞

0
(D + s)(e−stf(t))dt (184)

which we can evaluate taking into account that
∫∞
0 s(e−stf(t))dt = sL(f(t)) and the

integral operator D−1 compensates D taking into account the lower integration limit
t = 0,

∫ ∞

0
D(e−stf(t))dt = (e−stf(t))|∞0 = 0− f(t = 0) = −f(0) (185)

thus we obtain for (184)
L(Df) = sL(f)− f(0) (186)

which can be found in many textbooks. Hence the time derivative operator D modifies
the Laplace transform by a pre-factor s minus the initial value f(t = 0).
Let us now consider the Laplace transform of the nth time derivative Dnf(t) = dn

dtn
f(t),

where we emphasize here that we always mean the Laplace transform of the causal part
H(t)Dnf(t) ( 6= Dn[H(t)f(t)]!). To this end we make use of the corresponding relation
(183) for the nth derivative

e−stDnf(t) = (D + s)n(e−stf(t)) (187)

thus
L(Dnf) =

∫ ∞

0
(D + s)n(e−stf(t))dt (188)

To make the evaluation of (188) easier, we apply a little trick namely we use the trivial
identity

(D + s)n = sn + (D + s)n − sn = sn +D
n∑

k=1

(D + s)n−ksk−1 (189)

where we have used an−bn = (a−b)(an−1+an−2b+..+abn−2+bn−1) by putting a = D+s

and b = s. Let us now evaluate

L(Dnf(t)) =
∫ ∞

0
e−stDnf(t)
︸ ︷︷ ︸

(D+s)n(e−stf(t))

dt = snL(f) +
∫ ∞

0
D{

n∑

k=1

(D + s)n−ksk−1e−stf(t)}dt

(190)
where we have used (189). Further evaluation yields, where one operator D under the
integral (190) is compensated by the integration

L(Dnf(t)) = snL(f) +
n∑

k=1

(D + s)n−ksk−1e−stf(t)|∞0 (191)
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We can again make use of (187) (read from right to the left hand side) and obtain

L(Dnf(t)) = snL(f) + {e−st
n∑

k=1

Dn−ksk−1f(t)}|∞0 = snL(f)−
n∑

k=1

sk−1Dn−kf(t = 0)

L(Dnf(t)) =

= snL(f)− [Dn−1f(t = 0) + sDn−2f(t = 0) + ..+ sn−2Df(t = 0) + sn−1f(t = 0)]
(192)

Relation (192) covers all cases for n = 01, 2, ...
For n = 2 it yields

L(D2f(t)) = s2 −Df(t = 0)− sf(t = 0) (193)

The Laplace transform (192) of H(t)Dnf(t) is determined by the Laplace trans-
form of H(t)f(t) and by the initial values f(t = 0), Df(t = 0), .., Dn−1f(t = 0) up to the
(n− 1)th order. Because the Laplace transform of the nth-order time derivative contains
all initial values f(t = 0), Df(t = 0), .., Dn−1f(t = 0) makes it especially useful for the
solution of Initial Value Problems to be discussed below.

2.3 Linear Ordinary Differential Equations and Initial Value
Problems

Linear Ordinary Differential Equations: We begin with the description of a dy-
namical process characterized by one degree of freedom, i.e. one variable X(t) which is
the unknown of the problem and which is to be determined as solution and t denotes the
continuous time variable. Moreover, as dynamical processes are related to the change of
variable X in time, which is mathematically the time derivative d

dt
X(t) = DX(t) where

D = d
dt

is the time derivative operator which is defined by acting on variable X(t) by
producing its time derivative. The physical meaning of X(t) could be for instance a dis-
placement, then DX(t) would be a velocity and D2X(t) an acceleration. We emphasize
that we confine here on linear differential equations.
A general dynamic process then can be described by a differential equation, physically
it can be conceived as a equation of motion which has the general form

[

Dn + an−1(t)D
n−1 + .. + ak(t)D

k + ..+ a1(t)D + a0
]

X(t) = b(t) (194)

or more compact, one can write (194) more compactly

L̂X(t) = b(t) (195)

with the linear operator

L̂ = Dn + an−1(t)D
n−1 + .. + ak(t)D

k + ..+ a1(t)D + a0 (196)

(194)is called a inhomogeneous linearOrdinary Differential Equation (ODE).
The operator L̂ is just defined by its action on X(t). The highest derivative DnX(t)
determines the order of the differential equation. Without loss of generality we can
always divide the differential equation by the coefficient of DnX(t), thus we can chose
it as equal to one. The ak(t) in (196) are given by problem. They are in general time
dependent functions and also the disturbance function b(t) is given by the dynamical

problem defined by (194). DkX(t) = dk

dtk
X(t) denotes the kth derivative of variable
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X(t) with respect to time t. Note that if the ak = ak(t) are time dependent, then
ak(t)D

kX(t) 6= DkX(t)ak(t), thus the sequence is essential. The right hand side of (194)
b(t) is referred to as disturbance function and has physically often the meaning of an
external force (194) with a non-vanishing disturbance function on the right hand side is
referred to as a inhomogeneous differential equation. X(t) is also often referred to as
the response of the the dynamical system (on a exciting force b(t)). In case we have no
disturbance function, i.e. b = 0 then (194) is referred to as a homogeneous differential
equation.
A physical example for a dynamical system described by a differential equation of the
form (194), is the damped harmonic oscillator which we will discuss in depth later. The
harmonic oscillator obeys an equation of motion of the form

[

D2 +
γ

m
D +

d

m

]

X(t) =
F (t)

m
(197)

where X(t) is the elongation of the oscillator from the equilibrium position X = 0, and
−γDX denotes the friction force (assumed to be proportional to the velocity DX where
γ > 0 is the friction coefficient, and −dX the spring force with spring constant d. The
disturbance function F (t) is an external driving force and m denotes the mass of the
oscillator. (197)is second order differential equation.
In order to construct the solution for a linear differential equation of the form (195), it
is useful to review the properties of the linear operator L̂ defined by (196), namely it
follows directly from the linearity of L̂ that

L̂(C1X1(t) + C2X2(t)) = C1L̂X1(t) + C2L̂X2(t) (198)

where Ci are arbitrary constants (independent on t). From this relation it follows for
the homogeneous problem

L̂X(t) = 0 (199)

If X1(t) and X2(t) are both solutions of (199), then also any linear combination C1X1+
C2X2 with arbitrary constants Ci.
In general we can find n linear independent solutions X1(t), X2(t), ..Xn(t) to a homoge-
neous differential equation of nth order all fulfilling L̂Xi = 0. Hence the complete space
of solution functions of the homogeneous problem (199) is covered by

Xh(t) = C1X1(t) + C2X2(t) + ..+ CnXn(t) (200)

where Ci are arbitrary constants. A solution (200) of the homogeneous problem (199)
is referred to as Complementary Function. Each basis function Xi(t) is also a com-
plementary function since it solves the homogeneous problem. A complete set of (linear
independent) basis functions X1(t), .., Xn(t) with which we can generate any possible
complementary function is referred to as a Fundamental System of solutions for the ho-
mogeneous problem. There are n such basis functions Xi(t) for a differential equation
of nth order. If we have a set of n functions solving (199), how can we judge whether or
not the set is a fundamental system? How can we actually define linear independence
or dependence of functions? So far we only talked about linear (in)dependence when we
considered vectors spanning an n-dimensional vector space Rn.
To construct solutions for the inhomogeneous problem of (195) we have to notice that
there is no general method available to find a solution of a inhomogeneous problem (195).
Nevertheless in many cases, the properties of solutions are useful to consider in order to
construct them. Let us assume we have found such a particular solution Xp(t) which is
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also referred to as Particular Integral solving L̂Xp(t) = 0, then the general solution
of the inhomogeneous problem (195) is given by

X(t) = Xh(t) +Xp(t)

X(t) = C1X1(t) + C2X2(t) + ..+ CnXn(t)
︸ ︷︷ ︸

Complementary Function

+ Xp(t)
︸ ︷︷ ︸

Particular Integral

(201)

i.e. the general solution of the ODE (194) is the sum of the Complementary
Function and any Particular Integral. By varying the Ci we obtain the whole va-
riety of all possible solutions of (201). Especially if we have found by some way two
different particular integrals Xp1 and Xp2 then the function Xp1 − Xp2 solves the ho-

mogeneous problem, namely we have L̂(Xp1 −Xp2) = L̂Xp1 − L̂(Xp2 = b(t) − b(t) = 0.
That is, the difference of two particular integrals always is a complementary function
Xh = Xp1−Xp2 and can be written in terms of a fundamental system in the form (200).
Hence the general solution (201) defines us also the complete n-parametric (containing
n arbitrary parameters Ci) are a set of possible particular integrals.
Superposition Principle: The superposition principle is a consequence of linearity of
the operator L̂ and say: If Y1(t) is a particular integral solving L̂Y1 = b1(t) and Y2(t) a
particular integral solving L̂Y2 = b2(t), the Y = Y1 + Y2 is a particular integral solving
L̂Y = b1 + b2.
Let us now recall a criteria for the linear independence of a set of function, i.e. with
this criteria we can judge whether or not a set of complementary functions (solutions of
the homogeneous problem) constitute a fundamental system. To this end we imagine
that a function X can be conceived as a ”vector” having infinitely many components
X(t), i.e. we have the analogy of a vector ~v = (vi), namely the discrete index i corre-
sponds in a function to the continuous ”index” t. To this end we can recall the linear
independence of a set of vectors ~v1, .., ~vn ∈ Rn which means that we can always find
non-trivial solutions for coefficients Ci so that any arbitrary given vector ~b ∈ Rn can be
uniquely represented by C1 ~v1+ ..+Cn ~vn = ~b. Similarly, we claim for a set of independent
functions Xi(t), .., Xn(t), that any given function function Y (t) (which is in the function
space) can be uniquely represented by the identity16

C1X1(t) + ..+ CnXn(t) = Y (t) (202)

That is, selecting n arbitrary different times ti, we see that (202) produces a
n× equation system, which determines the coefficients Ci uniquely if the set of basis
functions Xi(t) is linear independent. For a set of linear independent functions Xi(t)
the determinant (where all times ti are different to each other ti 6= tj , i 6= j) must be
non-vanishing, namely

W(t1, .., tn) = Det








X1(t1), .., Xn(t1)
.. ..

.. .. ..

X1(tn), .., Xn(tn)








6= 0, ∀ti 6= tj (203)

Now we can consider (203) for different times tm = t1+mh (m = 0, 1, 2, .., n− 1)
and for h → 0 by adding linear combinations of X(tm) to different columns, to obtain a
criteria for linear independence of a set of functions which is known as

16An ”identity” means an equation holds identical for a whole range of time t.
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W (t) = Det











X1(t), .., Xn(t)
DX1(t), .., DXn(t)
.. ..

.. .. ..

Dn−1X1(t), .., Dn−1Xn(t)











6= 0 (204)

where D = d
dt

means the derivative with respect to time t. The determinant W (t) is
referred to as the Wronskian. A criteria for linear independence of a set of functions
simply is W (t) 6= 0. If the set Xi(t) are complementary functions, then W (t) 6= 0 is a

sufficient condition, that the set ~X1(t), .., ~Xn(t) constitutes a fundamental system of
solutions for the homogeneous differential equation (199) and hence constitute a
complete basis of the function space of solutions of the homogeneous problem. We shall
show later the statement: If we have found a fundamental system at time t with non-
vanishing Wronskian W (t) 6= 0 at certain time t, then the Wronskian remains nonzero
for all times. This is important as it means, if a set of functions is a fundamental system
to a certain time t, then it remains a fundamental system to all times.
So far, all our considerations hold also when the coefficients of the ODE in (194) are time
dependent. However, for the sake of simplicity, we confine us now to linear differential
equations with constant, i.e. time independent constants ak = const 6= ak(t) in (194).
Linear ODEs with constant coefficients:
Example: Let us consider the second order differential equation

L̂X(t) = b(t) (205)

where
L̂ = D2 + 2αD + β2 (206)

and D denotes the time derivative operator. with constant (time independent) coeffi-
cients α, β = const ∈ R. Let us first find the solution of the homogeneous differential
equation (complementary function), (205), i.e. b = 0. Let us ”try” a solution of the the
form eλt which is promising because of Deλt = λeλt, and D2eλt = λ2eλt. We look now
for which λ eλt is a solution of the homogeneous problem which leads us to the condition

(D2 + 2αD + β2)eλt = (λ2 + 2αλ+ β2)eλt = 0 (207)

where we have to replace just D by λ in the Operator L̂ in this equation. Since eλt 6= 0∀t,
to make (207) equal to zero we have the condition that the so called Characteristic
Polynomial P (λ) = (λ2 + 2αλ+ β2) is vanishing

P (λ) = (λ2 + 2αλ+ β2) = 0 (208)

(208) is referred to as characteristic equation of the differential equation. The character-
istic polynomial P (λ) is generated by replacing D in L̂ by λ, i.e. we can say the operator
L̂ is the characteristic polynomial of the differential operator D, L̂(D) = P (D). Hence
the characteristic polynomial of a differential equation of nth order has a characteristic
polynomial of nth order and therefore has n zeros λi in our case n = 2, that is (208) has
the roots

λ1,2 = −α±
√

α2 − β2 (209)

which are in general complex quantities. Hence the two functions eλ1t, eλ1t solve the
homogeneous problem. Now we need to check for which λi the set eλ1t, eλ1t constitutes
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a Fundamental system of solutions of the homogeneous problem. This set is only a
fundamental system if the Wronskian of this differential equation is non-zero. The
Wronskian in this case is given by

W = Det






eλ1t eλ2t

λ1e
λ1t λ2e

λ2t




 = Det






1 1

λ1 λ2




 e(λ1+λ2)t = (λ1 − λ1)e

(λ1+λ2)t (210)

that is W 6= 0 if λ1 6= λ2, i.e. the zeros λ1, λ2 must be different to each other that the
set eλ1t, eλ2t constitutes a fundamental system of solutions of the homogeneous problem.
From (209) follows that the zeros are different if α2 6= β2. Let us first of all confine on
the case that λ1 6= λ2. Then the complementary function is given by

Xh(t) = C1e
λ1t + c2e

λ2t (211)

with arbitrary coefficients C1, C2. Let us now assume that b(t) = ept in (205) where
P (p) 6= 0, i.e. p 6= λ1,2. Let us find a particular integral Xp(t) for this case

(D2 + 2αD + β2)
︸ ︷︷ ︸

P (D)

Xp(t) = ept (212)

Since we know that Dkept = pkept, we can ”try” a particular integral of the form
(as we remember it is sufficient to find any particular integral) Xp(t) = Cept with a
constant to be determined by inserting it into the differential equation P (D)Cept = ept,
namely

CP (p)ept = ept (213)

or

C =
1

P (p)
=

1

(p2 + 2αp+ β2)
(214)

where the denominator of this equation is non-zero as we have assumed above P (p) 6= 0.
Thus a particular integral is

Xp(t) =
ept

(p2 + 2αp+ β2)
(215)

and hence the general solution of (205) with b(t) = ept is a particular integral plus the
complementary function, namely X(t) = Xh(t) +Xp(t), thus

X(t) = C1e
λ1t + C2e

λ2t +
ept

(p2 + 2αp+ β2)
(216)

where the complementary function in (216) holds only when λ1 6= λ2.
Initial Value Problem: As we saw in this paragraph, a linear ordinary differential
equation of nth order has a complementary function with with n arbitrary constants Ci

(see (201)). This means without any further condition the general solution (201) has
n free parameters and is therefore non-unique. That is we can prescribe n conditions
which can be satisfied by a certain choice of the Ci. In many cases nature defines such
conditions in terms of initial conditions, that is the defection X(t0) = X0, the velocity
v(t0) = DX(t0) up to the (n− 1)th time derivative Dn−1X(t0) have prescribed values to
a certain ”initial time” t0 (without loss of generality, often one puts this time t0 = 0 and
the time evolution of the system then takes place for times t > 0). This consideration
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leads us to the definition of a so referred to as Initial Value Problem (IVP): An IVP
is characterized by a ordinary differential equation of nth order of the form

L̂X(t) = b(t) (217)

with the (linear) operator

L̂ = Dn + an−1(t)D
n−1 + .. + ak(t)D

k + ..+ a1(t)D + a0 (218)

where D = d
dt

and with n initial conditions at t = t0 (where the number n of initial
conditions corresponds to the order of the differential equation), namely

X(t0) = A0

DX(t0) = A1

..

Dn−1X(t0) = An−1

(219)

with n given initial values (constants) Ak = DkX(t0) (k = 0, 1, .., n − 1) (where we
define D0 = 1). From our previous considerations we know that the general solution of
(217) has the form

X(t) = C1X1(t) + CnXn(t) +Xp(t) (220)

with the fundamental system X1, ..Xn constituting the complementary function and a
particular integral Xp(t). The n constants Ci are now not any more arbitrary, they are
uniquely determined by the initial conditions (219), i.e. entering the initial conditions
determine them uniquely as functions of the Ai. Inserting (220) into (219) leads to
following equation system for the coefficients Ci











X1(t0), .., Xn(t0)
DX1(t0), .., DXn(t0)
.. ..

.. .. ..

Dn−1X1(t0), .., Dn−1Xn(t0)











·











C1

C2

..

..

Cn











+











Xp(t0)
DXp(t0)
..

..

Dn−1Xp(t0)











=











A0

A1

..

..

An











(221)

or










C1

C2

..

..

Cn











=











X1(t0), .., Xn(t0)
DX1(t0), .., DXn(t0)
.. ..

.. .. ..

Dn−1X1(t0), .., Dn−1Xn(t0)











−1

·











A0 −Xp(t0)
A1 −DXp(t0)
..

..

An−1 −Dn−1Xp(t0)











(222)

We observe from (222) that the inverse of the matrix in (221) only exists if the Wronskian
(which is the determinant of this matrix) W(t0) 6= 0 is non-zero. This is guaranteed
when X1(t), .., Xn(t) are a fundamental system of solutions of the homogeneous problem.

In order to solve the IVP only the coefficients Ck of (222) need to be determined
e.g. by application of Cramer’s rule (100).

An alternative equivalent solution method which avoids this direct inversion is
the solution with Laplace transforms. Therefore as a rule, for initial value problems,
the Laplace transformation is more convenient, whereas the operator method is more
convenient when we only look for the general solution of an ordinary differential equation
without prescribed initial conditions. It is to be emphasized that both methods, the
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Laplace transformation and the Operator method, which are to be discussed in the next
sections, are equivalent and yield finally the same solutions X(t) for an IVP which we
will demonstrate by means of examples to follow. It is finally a matter of taste and
depends on the problem to judge which method is more convenient.

2.4 Solution methods: Solution by using Operators

Let us now solve the IVP (217), by determination the coefficients Ck of (222) for the
case that operator L̂ of (218) has constant coefficients ak 6= ak(t) and is of nth order in D

and has the form L̂ = P (D) = L̂ = Dn+ an−1D
n−1+ ..+ a1D+ a0 = (D−λ1)..(D−λn)

with λi 6= λj ∀i, j are the zeros of the characteristic polynomial P (λ)17 and λi 6= b ∀i,
i.e. we assume here all roots λi have multiplicity one. Further we prescribe the n initial
conditions

DkX(t = 0) = Ak, k = 0, 1, .., n− 1 (223)

where we define D0 = 1. As the sequence of the factors P (D) = (D − λ1)..(D − λn) is
arbitrary we can find a set of solutions Xi(t) of the homogeneous problem P (D) = 0
where the Xi(t) are solutions of

(D − λi)Xi = 0 (224)

or DXi = λiXi which has exponential solutions

Xi(t) = eλit (225)

Hence the complementary function Xh(t) writes

Xh(t) =
n∑

i=1

Cie
λit (226)

with constants Ci to be uniquely determined from the initial conditions (223) by employ-
ing (222). The Wronskian W(t = 0) is in this case is determined by the Vandermond
determinant which is evaluated in the appendix (eqs. (354) ff.) which indeed is non-
zero when the λi are all different to each other, which also guarantees that the set
eλ1t, eλ2t, .., eλnt constitutes a Fundamental System of Solutions for the Homoge-
neous Problem if λi 6= λj. Note: This is not anymore the case for multiple roots, as
we shall see in later examples.
In order to fulfill the given initial conditions we need to determine the Ci of (226) by
inverting (222). Then application of Cramer’s rule (100) yields by employing the Van-
dermond Determinant V defined in (355)18

Ck =
V(λ1, .., λk−1, D, λk+1, .., λn)

V(λ1, .., λk−1, λk, λk+1, ..λn)
[X(t = 0)−Xp(t = 0)]

=
(D − λ1)..(D − λk−1)(D − λk+1)..(D − λn)

(λk − λ1)..(λk − λk−1)(λk − λk+1)..(λk − λn)
[X(t = 0)−Xp(t = 0)]

=
n∏

j 6=k

(D − λj)

(λk − λj)
[X(t = 0)−Xp(t = 0)] (k = 1, .., n)

(227)

17Just replace D → λ in P (D) to obtain P (λ).
18Where the product in (227)3 is defined as

∏n

i=1
αi = α1..αn by omitting factor αk.
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where the Vandermond determinants V(λ1, .., λk−1, D, λk+1, .., λn) in the numerator is
generated by replacing λk by D in V(λ1, .., λk, ..λn) which becomes then an operator
polynomial of (n − 1)st order in D. Hence the Ck = Ck(A0, .., An−1) are expressed by
the given values for the initial conditions Ak = DkX(t = 0) by evaluating the operator
polynomial by applying it on X(t)−Xp(t) at t = 0.
With the coefficients Ck determined by (227) the complementary function (226) is de-
termined in terms of the given initial data Ak given in (223) and the complete solution
of the inhomogeneous IVP then is X(t) = Xh(t)+Xp(t) where Xp(t) the very particular
integral employed in (227). Moreover, since Xp(t) = 0 for the homogeneous problem
that by putting Xp(t = 0) = 0 in (227) yields the coefficient Ck of the IVP of the ho-
mogeneous differential equation P (D)X(t) = 0 with the same given initial conditions
(223), namely

C̃k =
n∏

j 6=k

(D − λj)

(λk − λj)
X(t = 0) (k = 1, .., n) (228)

and we can extract from (227) the coefficients for the inhomogeneous problem b(t) 6= 0
with homogeneous initial conditions (223) Ak = 0, namely

˜̃
Ck = −

n∏

j 6=k

(D − λj)

(λk − λj)
Xp(t = 0) (k = 1, .., n) (229)

Hence we get from (227) (i) the solution X̃(t) of the homogeneous IVP

P (D)X̃(t) = 0 (230)

with inhomogeneous initial conditions (223) DkX̃(t = 0) = Ak 6= 0 (for at least one Ak),
namely

X̃(t) =
n∑

j=1

C̃je
λjt (231)

with the C̃k given in (228). Thus X̃(t) is a complementary function fulfilling the (non-
zero) initial conditions.

Furthermore we get from (227) (ii) the solution ˜̃
X(t) of the inhomogeneous IVP

P (D) ˜̃X(t) = b(t) (232)

with b(t) 6= 0 fulfilling homogeneous initial conditions (223) Dk ˜̃X(t = 0) = Ak = 0,
namely

˜̃
X(t) = Xp(t) +

n∑

j=1

˜̃
Cje

λjt (233)

where ˜̃
Ck given in (229) and Xp(t) being any particular integral solving

P (D)Xp(t) = b(t).
Eventually we get from from (227) (iii) the solution X(t) of the inhomogeneous IVP

P (D)X(t) = b(t) (234)

with b(t) 6= 0 with inhomogeneous initial conditions (223) DkX(t = 0) = Ak 6= 0 (at
least for one Ak), namely

X(t) = X̃(t) + ˜̃
X(t) (235)
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with the Complementary Function X̃(t) given in (231) and the Particular Integral ˜̃
X(t)

given in (233).
Later in section (2.5) we will see that the use of Laplace transforms always leads to
a complementary function X̃(t) which fulfils the initial conditions and to a particular

integral ˜̃
X(t) which fulfils zero-initial conditions.

Let us now consider the inhomogeneous IVP with inhomogeneous initial conditions (223)
and specify b(t), namely

P (D)X(t) = ebt (236)

As we need to find only any possibly simple particular integral, we easily can find
one by trying Xp(t) = Cebt, with a constant C to be determined from the differential
equation. Inserting Xp(t) = Cebt into (236) yields a condition to determine the constant
C, namely

P (b)C = 1 (237)

or (λi 6= b)

C =
1

P (b)
(238)

where P (b) = bn + an−1b
n−1 + .. + a1b + a0 = (b − λ1)..(b − λn). For λi 6= b the general

solution writes then

X(t) =
n∑

i=1

Cie
λit

︸ ︷︷ ︸

complementary function

+
ebt

P (b)
︸ ︷︷ ︸

particular integral

(239)

In the next paragraph we show how we can get this result by using Laplace
transforms and the equivalence of both methods.
Let us consider now the case of multiple roots. Without loss of generality we consider
one root λ1 being multiple and the others having multiplicity one.
Given the ODE of nth order

P (D)X(t) = ebt (240)

where
P (D) = (D − λ1)

n1(D − λ2)..(D − λr) (241)

and again we assume b 6= λi, ∀i. The general solution is to be determined by using the
operator method: In this example we have the case of a n1-fold multiple root λ1 with
n1 > 1. To find a fundamental system we have to find solutions for

(D − λi)
n1X1 = 0 (242)

and
(D − λi)Xi = 0, i 6= 1 (243)

The last ones corresponding to i 6= 1 have the solutions Xi(t) = eλit, and also
(242) has one solution eλ1t. But as (242) is a differential equation of degree n1 we need
to find another n1−1 linear independent solutions in order to get enough functions for a
fundamental system. To this end let us try solutions X1 = eλ1tC1(t), i.e. finding further
solutions by variation of constants C(t)19. Then we have

(D − λi)
n1eλ1tC1(t) = 0 (244)

19This method can be also found in many standard mathematics textbooks.
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and because of (D − λi)e
λ1tC1(t) = eλ1tDC(t), (244) assumes

eλ1tDn1C1(t) = 0 (245)

or because of eλ1t 6= 0

Dn1C1(t) = 0 (246)

which has as solutions powers tk with 0 ≤ k < n1, which can be shown to be linear
independent, thus

X1(t) = C1(t)e
λ1t = (C

(0)
1 + C

(1)
1 t + ..+ C

(n−1)
1 t(n−1))eλ1t (247)

Hence the general solution of (240) is

X(t) = (C
(0)
1 + C

(1)
1 t+ ..+ C

(n−1)
1 t(n−1))eλ1t + C2e

λ2t + .. + Cne
λnt +

ebt

P (b)
(248)

2.5 Solution Methods: Laplace transforms

In this paragraph we consider the same example (236) and solve it for given initial con-
ditions by using Laplace transformation. The Laplace transformation of (236) writes20

∫ ∞

0
e−stP (D)X(t)dt =

∫ ∞

0
e−(s−b)tdt =

1

(s− b)
Re {s} > σc = Re {b} (249)

or

∫ ∞

0
P (D + s)[e−stX(t)]dt =

1

b− s
(250)

where e−stDX(t) = (D + s)[e−stX(t)] is used. (250) can be also written as

∫ ∞

0
(P (D + s)− P (s) + P (s))[e−stX(t)]dt =

1

b− s
(251)

or

P (s)X̃(s) +
∫ ∞

0
(P (D + s)− P (s))[e−stX(t)]dt =

1

b− s
(252)

where P (s) = (s − λ1)..(s − λn) (replace D by s in the characteristic operator P (D)).
Note that (P (D + s)− P (s)) starts at least with the first order in D, namely

P (D + s)− P (s) =
n∑

k=1

ak(s)D
k = D

n∑

k=1

ak(s)D
k−1 (253)

Hence (251) assumes the form

P (s)X̃(s) +
n∑

k=1

ak(s)
∫ ∞

0
Dk[e−stX(t)]dt

= P (s)X̃(s)−
n∑

k=1

ak(s)D
k−1[e−stX(t)]|t=0 =

1

b− s

(254)

20The Laplace transform of a (transformable) function f(t) is defined as f̃(s) =
∫
∞

0
e−stf(t)dt,

Res > σc.
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with Dk−1[X(t)]|t=0 = e−st(D − s)k−1X(t)|t = 0 = (D − s)k−1X(t = 0) (254) becomes

P (s)X̃(s) +
n∑

k=1

ak(s)
∫ ∞

0
Dk[e−stX(t)]dt = P (s)X̃(s)−

n∑

k=1

ak(s)(D − s)k−1 =
1

s− b

(255)
Because of (253) we have P (s+ λ)−P (s) =

∑n
k=1 ak(s)λ

k which becomes for λ = D− s

the expression

P (s+D − s)− P (s) = P (D)− P (s) =
n∑

k=1

ak(s)(D − s)k (256)

or with

n∑

k=1

ak(s)(D − s)k−1 =
n∑

k=1

ak(s)(D − s)k(D − s)−1 = (P (D)− P (s))(D − s)−1 (257)

is a polynomial of degree n − 1 in s which becomes important below. Hence (255)
becomes

P (s)X̃(s)− (P (D)− P (s))(D − s)−1X(t = 0) =
1

s− b
(258)

or

X̃(s) =
(P (D)− P (s))(D − s)−1

P (s)
X(t = 0) +

1

(s− b)P (s)
(259)

This equation (259) is the Laplace transform of the solution of the initial value
problem. (259) is the crucial relation in order to solve IVP with Laplace transforms. All
what remains is now to find the back-transformation of L−1(X̃(s)) = X(t) which gives
the time-domain solution of (236) for the IVP which obeys automatically the initial
conditions (223) which is shown below together with some examples.

Since (P (D)− P (s))(D − s)−1 =
∑n−1

k=0 bks
k is a polynomial of order n − 1 in s

there is partial decomposition of the form

(P (D)− P (s))(D − s)−1

P (s)
X(t = 0) =

m∑

i

C1

(s− λi)
(260)

where

Ci = (s− λi)
(P (D)− P (s))(D− s)−1

P (s)
|s=λi

X(t = 0) (261)

and by using P (s) = (s− λ1)..(s− λn) and P (s = λi) = 0, we obtain

Ci =

∏n
j 6=i(D − λj)

∏n
j 6=i(λi − λj)

X(t = 0) =
n∏

j 6=i

(D − λj)

(λi − λj)
X(t = 0) (262)

We recognize that this equation coincides with the previously derived coefficients
C̃k of eq. (228), i.e. when putting Xp = 0 thus the IVP is homogeneous thus Xh(t) =
X̃(t) coincides with eq. (231) and fulfills the initial conditions. That means both
methods yield the same coefficients Ck = C̃k for the homogeneous IVP (i.e. when b(t) =
0). Moreover we show in the questions (question 26) that the particular integral derived

from Laplace transforms coincides with ˜̃
X(t) of(233) and fulfills zero-initial conditions.

Both methods (Laplace transform and the solution with operators leading to (227)) are

completely equivalent and yield the same solution X(t) = Xp(t) +Xh(t) = X̃(t) + ˜̃
X(t)

of (235) for the inhomogeneous IVP with nonzero initial conditions.
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For the full partial decomposition of (259) we still need the decomposition of

1

(s− b)P (s)
=

1

P (b)

1

(s− b)
+

n∑

j=1

1

(λj − b)
∏

k 6=j(λj − λk)

1

(s− λj)
(263)

Hence because of L−1( 1
(s−a)

) = eat we find for the inverse transform of (263)

which gives a particular integral (particular solution) Xp(t) fulfilling homogeneous initial
conditions DkXp(t = 0) = 0 whereas the back-transformation of (260) yields a solution
for the homogeneous problem (complementary function Xh(t) which fulfills the initial
conditions (223), thus the complete solution X(t) = Xh(t) +Xp(t) fulfills (223). Back-
transformation into the time domain yields

Xp(t) =
ebt

P (b)
+

n∑

j=1

eλjt

(λj − b)
∏

k 6=j(λj − λk)
(264)

The back-transformation of (260) yields

Xh(t) =
m∑

i=1

Cie
λit (265)

where the Ci are determined in (262) which guaranteeXh(t) to fulfill the initial conditions
(223). The solution of the initial value problem then writes

X(t) = Xh(t) +Xp(t) (266)

where Xp(t) is given by (264) and Xh(t) is given by (265) with the constants Ci given
in (262).

Example: Given the IVP

(D + 1)(D + 2)X(t) = e3t (267)

with the initial conditions

X(t = 0) = 1, DX(t = 0) = 0 (268)

Solution with Laplace transformation: P (D) = (D+ 1)(D+ 2). The Laplace transform
of the solution which fulfills the initial condition is given by (266)

X(t) = Xh(t) +Xp(t) (269)

where the homogeneous is given in the form (265) with the coefficients Ci given by (261)
and particular solution of the form (264). In our case we have λ1 = −1 and λ2 = −2.
Then we find from (261) for C1, C2

C1 =
(D − λ2)

(λ1 − λ2)
X(t = 0) =

(D + 2)

(−1 + 2)
X(t = 0) = DX(t = 0) + 2X(t = 0) (270)

C2 =
(D − λ1)

(λ2 − λ1)
X(t = 0) =

(D + 1)

(−2 + 1)
X(t = 0) = −DX(t = 0)−X(t = 0) (271)
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which yield with the initial values (268).

C1 = 2, C2 = −1 (272)

Thus we find for the solution Xh(t) = C1e
λ1t + C2e

λ2t of the homogeneous problem

Xh(t) = 2e−t − e−2t (273)

which fulfills the initial conditions (268). Again this example is consistent with our pre-
vious finding: When applying Laplace transformation, the decomposition (266) is always

such, that Xh(t) = X̃(t) (eq. (231)) fulfills the initial conditions and Xp(t) = ˜̃
X(t)

(eq. (233)) fulfills zero initial conditions, thus the solution X(t) = Xh(t) + Xp(t) =

X̃(t) + ˜̃
X(t) (eq. (235)) again fulfills the initial conditions.

In order to complete the solution we still need to determine Xp(t) by using (264) which
assumes

Xp(t) =
ebt

P (b)
+

eλ1t

(λ1 − b)(λ1 − λ2)
+

eλ2t

(λ2 − b)(λ2 − λ1)
(274)

which yields with b = 3

Xp(t) =
e3t

(3 + 1)(3 + 2)
+

e−t

(−1 − 3)(−1 + 2)
+

e−2t

(−2− 3)(−2 + 1)
(275)

or

Xp(t) =
e3t

20
− e−t

4
+

e−2t

5
(276)

which fulfills as required zero initial conditions Xp(t = 0) = 0 and DXp(t = 0) = 0
which can easily be checked. Thus the complete solution of the IVP is the sum of (273)
and (276) which yields

X(t) = 2e2t − e−2t +
e3t

20
− e−t

4
+

e−2t

5

X(t) =
7

4
e−t − 4

5
e−2t +

1

20
e3t

(277)

where the initial conditions (268) are easily be verified to be fulfilled by this result.

Example: Harmonic Oscillator
Here we consider the initial value problem

P (D)X(t) = eiωt, P (D) = D2 + pD + q = (D − λ1)(D − λ2) (278)

with initial conditions (given displacement and velocity at t = 0)

X(t = 0) = X0, DX(t = 0) = V0 (279)

where λ1 6= λ2 and λ1, λ2 6= iω.
The solution with operator method (without Laplace transformation) is given by
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X(t) = A1e
λ1t + A2e

λ1t +
eiωt

P (iω)
(280)

where the Ai are to be determined uniquely from the initial conditions and P (iω) =
(iω − λ1)(iω − λ2) = −ω2 + ipω + q (replace D → iω in P (D)). This leads to

A1 + A2 = X0 −
1

P (iω)

λ1A1 + λ2A2 = V0 −
iω

P (iω)

(281)

which is invertible uniquely since the Wronskian W (t) 6= 0 and yields

A1 =
V0 − λ2

(λ1 − λ2)
− (λ2 − iω)

(λ1 − λ2)P (iω)
(282)

and

A2 =
V0 − λ1

(λ2 − λ1)
− (iω − λ1)

(λ2 − λ1)P (iω)
(283)

which we also can find by using Laplace transforms.

2.6 Systems of Linear Differential Equations

Linear Systems Of First Order. Many problems in dynamics are characterized by
a set of N variables ~X = (X1(t), .., XN(t))

t and are defined by a a matrix differential
equation of the form

d

dt
~X = A · ~X + ~f(t) (284)

where A denotes a constant (in time) n × n matrix ~f = (f1(t), .., fn(t))
t denotes an

external force. Additionally we impose the initial condition

~X(t = 0) = ~X0 (285)

where ~X0 contains n constant components. We can construct the solution by putting
(we proceeded in full analogy with variation of constants just as in the case of one degree
of freedom)

~X(t) = exp (At) · ~C(t) (286)

with a yet to be determined not constant vector ~C(t). Inserting into (284) yields

d

dt
~X = A exp (At) · ~C

︸ ︷︷ ︸

A· ~X

+exp (At) · d

dt
~C

︸ ︷︷ ︸

~f

(287)

thus d
dt
~C = exp(−At) · ~f or

~C(t) = ~C(0) +
∫ t

0
exp(−Aτ) · ~f(τ)dτ (288)
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The integration constant (vector) can be chosen such that ~C(0) = ~X0, thus our initial
condition (285) is fulfilled. With (286) we can thus write for the solution of our initial
value problem

~X(t) = exp (At) ·
(

~X0 +
∫ t

0
exp (−Aτ) · ~f(τ)dτ

)

(289)

In full analogy to our above considerations about IVPs the solution splits into
a complementary function solving the homogeneous problem and fulfilling the initial
condition and a particular solution (complementary function) solving the inhomogeneous
problem and and fulfilling zero initial conditions, namely

~X(t) = ~Xh(t) + ~Xp(t) (290)

where
~Xh(t) = exp (At) ~X0 (291)

which fulfills the initial condition and

~Xp(t) = exp (At)
∫ t

0
exp−(Aτ) · ~f(τ)dτ (292)

which fulfills homogeneous initial conditions. For a matrix A = VDV−1 having a
diagonal-formD = diag(λ1, .., λn) with eigenvalues λi and eigenvectors ~vi equation (289)
can be rewritten in explicit form (since expAt = V · diag(eλ1t, .., eλnt) ·V−1)21

~X(t) =
n∑

j=1

~vj

(

A0
j + eλjt

∫ t

0
e−λjτ f̃j(τ)dτ

)

(293)

where the A0
j are the initial conditions with respect to the eigenvector basis ( ~X0 =

∑n
j=1 ~vjA

0
j), and f̃j(t) are the components of ~f(t) with respect to the eigenvector basis,

namely







A0
1

A0
2

..

A0
n








= V −1 ~X0 ,









f̃ 0
1 (t)

f̃ 0
2 (t)
..

f̃ 0
n(t)









= V −1 ~f(t) (294)

Various examples are to be discussed below.
Linear Systems Of Second Order. As a rule engineering problems (such as the
motion of structures, vibration of bridges etc) are described by second order systems
which reflects the fact that these systems are representations of the Newtonian equation
of motion for in general multi-degree of freedom systems. When we assume the state
of the system is described by a vector of n variables ~u = (uj(t)) (j = 1, .., N), each
component representing one degree of freedom. The equation of motion then is written
in the form

M · d2

dt2
~u = −K · ~u+ ~f(t) (295)

where M is called the mass matrix (or matrix of inertia), ~u is the vector of (generalized)
displacements and K · ~u denotes the elastic or spring force (driving the system back
into its equilibrium ~u = 0) and K is called the (generalized) stiffness matrix. The

vector ~f(t) denotes external (applied) forces which are realized e.g. when wind affects
a structure or by an earthquake etc. We assume throughout our considerations that

21where this representation can also be derived by ’variation of constants by putting ~X(t) =
∑n

j ~vjCj(t) where Cj(t) are to be determined.
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M,K are constant time independent n× n matrices. We furthermore assume that both
M and K are positive definite invertible N ×N matrices. In most cases we can assume
that M = diag(m1, m2, .., mN) is a diagonal matrix with the masses mj in the diagonal.
The displacement vector ~u(t) are the unknowns to be determined. In order to make the
solution ~u(t) unique we can impose 2N initial conditions, namely N initial displacements

~u(t = 0) = ~U0 and N initial velocities d
dt
u(t = 0) = ~V0, thus

uj(t = 0) = Uj , (j = 1, .., N)

d

dt
uj(t = 0) = Vj, (j = 1, .., N)

(296)

i.e. with the initial conditions (295) we impose our physical system N initial displace-
ments (constants) Uj and N initial velocities (constants) Vj which uniquely determines

the physical displacement vector ~u(t) = ~u(~U, ~V , t) for all times t > 0. As a rule in real-life
engineering problems include often a huge number N of degrees of freedom. We mention
that a N degree of freedom problem of second order can be transformed into a 2N degree
of freedom problem of first order when introducing new variables d

dt
uj(t) = vj(t) and the

method of ’variation of constants’ as deduced in above Sec. ’Linear Systems Of First
Order’ can be applied.
Solution Method and Examples. Now we deduce a solution method of the second
order initial value problem defined by (295) together with (296) which is straight-forward
applicable to ’real-life’ engineering problems. We derive the method by means of exam-
ples which are close to ’real-life’ engineering problems. In order to construct the solution
of (295) we multiply these eq. with M−1 and get

d2

dt2
~u = −W~u+~b(t) (297)

where W = M−1 ·K and ~b(t) = M−1 ~f(t). The −-sign in front of W is introduced for
our convenience that we can handle W being a constant positive definite matrix22. As in
the above discussed examples we again assume that we can split our solution ~u(t) into

a solution of the homogeneous problem (complementary function) (i.e. ~b(t) = 0 and a

particular integral (s special solution of the inhomogeneous problem ~b 6= 0). To this end
let us first of all start with homogeneous problem.
Solution of the homogeneous initial value problem (295) (~b = 0) with initial
conditions (296). In view of what we derived about matrix functions, we can define the
cos and sin of a matrix Wt (where t denotes the time t) as

cos (W
1
2 t) =

∞∑

n=0

(−1)n
t2n

(2n)!

√
W

2n

sin (W
1
2 t) =

∞∑

n=0

(−1)n
t2n+1

(2n+ 1)!

√
W

2n+1

(298)

where we easily verify that the matricesY(t) = sin (Wt), cos (Wt) solve d2

dt2
Y = −W·Y,

thus we can write the solution of the homogeneous problem as

~uh(t) = cos (W
1
2 t) · ~U + sin (W

1
2 t)W− 1

2 · ~V (299)

22where positive definiteness of W means that all eigenvalues of W are positive.
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where ~U, ~V denote the constant vectors given as initial conditions (2N constants) of
(296). We observe that ~uh(t) of (299) solves the homogeneous system (295) and fulfills
the initial conditions (296). That (299) indeed is very handy in order to solve real-
life becomes more obvious when we write it in eigenvector coordinates. For the sake
of simplicity we confine on the (in most situations sufficient case) of a diagonalizable
matrix W = VḊ ·V−123 where V is the matrix consisting of the N eigenvectors ~v1, ..~vN
with W~vj = λj~vj where λj denote the eigenvalues. Then (299) can be conveniently
re-written as

~uh(t) =
N∑

j=1

~vj



Aj cos (t
√

λj) +
Bj
√

λj

sin (t
√

λj)



 (300)

where Aj , Bj are the initial conditions in eigenvector coordinates given by ( ~A = (Aj), ~B =
(Bj))

~A = V−1 · ~U, ~B = V−1 · ~V (301)

The inhomogeneous IVP (b(t) 6= 0) of (297) we then can solve by adding to
(300) a particular solution (particular integral) ~up which satisfies homogeneous initial
conditions, i.e. ~up(t = 0) = 0, and d

dt
~up(t = 0) = 0.

Especially in computational mathematics - discrete mathematics where Partial
Differential Equations (PDEs) are approximated by systems of differential equations.
This is done by approximating a continuous field quantity u(x) by a finite set of values
in certain point xi, thus u(x) → u(xn) = un that is a continuous field is mapped onto a
discrete vector ~u = (un) with N components. Often one uses xn = nh where n = 1, .., N .
For a constant x means N → ∞ (h → 0) that this approximation becomes more and
more accurate. In the following section we discuss some examples.

In the following we discuss the discrete approximation of a free vibrating string
which is discussed in its continuous formulation defined by a PDE (continuous wave
equation) in question 24.).

23In physical and engineering application W = Wt as a rule is is a symmetric matrix having real
eigenvalues and mutual orthogonal eigenvectors.

49



3 Questions

3.1 Questions to part I

1.) Determine the limiting case Y (x) = lim
n→∞

(1 +
x

n
)n by using the Binomial Theorem

(Relation (13)).

2.) Prove the well known relation et1 · et2 = e(t1 + t2) by multiplying their Mc-Laurin
Series. Hint: Make use of the Binomial Theorem.

(i) By using (i), show that e−t =
1

et
.

(ii) Determine the Taylor series of f(t) = at around a.) t = 0, b.) t = t0. Determine the
radii of convergence in either cases.
(iii) Determine (by using exp(t) = cosh(t) + sinh(t)) the expressions cosh(t1 + t2) and
sinh(t1 + t2) in terms of cosh(ti) and sinh(ti).
(iv) Do the same for sin(t1 + t2) and cos(t1 + t2)

3.) Show that ln(1 + x) = limn→∞ n[(1 + x)

1

n − 1]. Hint: Assume |x| < 1 and ex-

pand (1 + x)
1
n into a Taylor series.

4.) Expand (1 + x)−1 into a Mac-Laurin series, i.e. into a Taylor with respect to
x. This series is also referred to as Geometrical Series.
(i) Determine the radius of convergence.
(ii) What is the relation of this series to the series for ln(1 + x) (relation (48))?

5.) (i) Show that cosh2(t)− sinh2(t) = 1 and that cos2(t) + sin2(t) = 1
(ii) Give the Mac-Laurin series of cosh(t) and sinh(t), respectively.
(iii) Let x1(t) = cosh(t), x2(t) = sinh(t) and D = d

dt
is referred to as the Differential

Operator. Determine
a.) Dx1(t), Dx1(t)
b.) D2x1(t), D

2x1(t) and give the differential equation which obeys an arbitrary linear
combination y = c1x1(t) + c2x2(t).
c.) Let D = d

dt
and D−1f(t) =

∫ t f(t′)dt′ denotes the antiderivative (integral) Operator
(unique only up to a constant) and eλt = exp (λt). Determine
(i) Dn exp (λt), and the antiderivatives D−n exp (λt), n = 1, 2, ...
(ii) By using Taylor series and with the definition of unity operator D0 = 1, we can

define the operator exp (hD) = 1 + hD + (hD)2

2!
+ .. + (hD)k

k!
+ .. (D = d

dt
) where we can

calculate with D as with numbers, by keeping in mind that D is defined only by acting
on a function Df(t) = df(t)

dt
(e.g. Dtn = ntn−1). Determine exp (hD) exp (λt).

6.) Show that the harmonic series
∑∞

n=1
1
n
→ is divergent.

7.) Determine

(i) limn→∞ n
1
n ; (ii) the radius of convergence ρc and evaluate S for |x| < ρc:

a.) S =
∞∑

n=2

xn

10n
;

b) S =
∞∑

n=m

xn

bn
, where b = b1 = ib2.
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c.) S =
∑∞

n=0
xn

n!
lnn(a)

d.) S =
∑∞

n=1
xn

n

e.) S =
∑∞

n=1
xn

n(n+1)

f.) S =
∑∞

n=1(1 +
1
n2 )

n

8.) Find a shorter expression for
S = limn→∞ 1 + n + n(n− 1) + n(n− 1)(n− 2) + .. + n!

k!
+ ..+ n!

9.) Determine limx→∞ tanh(x)

10.) Express by hyperbolic functions: cos(ix), sin(ix)
(i) By using the identities (60)
(ii) By using their Mac-Laurin series and determine the radius of convergence of the
Mac-Laurin series of cos(z) and sin(z) (z = x+ iy).

11.) Express by circular (trigonometric functions) cosh(it), sinh(it).

12.) Show that

(

n

k

)

+

(

n

k − 1

)

=

(

n+ 1
k

)

.

13.) Evaluate the Vandermond determinant (354) of appendix 4.

14.) Evaluate (i) S = 1+ 1
32
+ 1

34
+ 1

36
+ ..+ 1

32n
+ .., (ii) S = 1+ 2

32
+ 3

34
+ 4

36
+ ..+ (n+1)

32n
+ ..

15.) Show if the geometrical multiplicity of each eigenvalue of A is one, then exists
a transformation D = V−1AV where D is the diagonal form of the matrix A.

16.) Express (i) cosmϕ and sinmϕ, respectively by cosϕ and sinϕ by using the Bino-
mial theorem.(ii) Do so for the corresponding hyperbolic functions.

17.) Given the recurrence Xn+1 = aXn + bYn, Yn+1 = bXn + aYn, with general Initial
conditions X0, Y0. Determine Xn, Yn in dependence of a, b,X0, Y0.

18.) Show that for a matrix A = V · DV−1 (where D = diag(λ1, .., λn) is its diag-
onal form) the relation Det[exp(At)] = exp [tT r(A)] where Tr(A) =

∑n
i=1Aii.

19.) Given the matrix

A =

(

1 3
3 1

)

(302)

Calculate
(i) The eigenvectors and eigenvalues of A; (ii) the expression

(

Y1

Y2

)

=

(

1 3
3 1

)n

·
(

1
3

)

(303)
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and determine the limiting case S = lim
n→∞

Y2

Y1
.

(iii) Determine the ratio X1

X2
for which holds

lim
n→∞

(

1 3
3 1

)n

·
(

X1

X2

)

=

(

0
0

)

(304)

Hint. Decompose the start vector ~X = C1 ~v1 + C2 ~v2 into a linear combination of eigen-
vectors.
(iv) Determine exp(At) where t is a scalar (real) parameter, e.g. the time and calculate

(

Z1

Z2

)

= exp

{(

1 3
3 1

)}

·
(

1
3

)

(305)

and determine lim
t→∞

Z2

Z1

.

(v) Determine the matrix B =
d

dt
exp(At)t=0.

(vi) Determine C =
√
A

(vii) Expand the matrix 1
I+tA

into a Taylor series with respect to t around t = 0 and
give the radius of convergence.

Further questions to part I:
Determine the complex zeros and write them also in polar form z = ρ eiϕ, ρ =
|z|, ϕ = arg(z), −π < arg(z) < +π and prove the results by factorizing the given
polynomials.

x2 + 2x+ 10 = 0
x3 + 8 = 0
x4 − 1

16
= 0

x3 + 2x2 − 5x− 6 = 0
x2 + 2ix− 1 = 0x4 + 2x2 + 2 = 0
x3 − 2x2 − 11x+ 12 = 0
x3 − 2x2 − 11x+ 12 = 0
x4 + x2 − 2 = 0
2x4 − 9x3 + 14x2 − 9x+ 2 = 0
x4 − 5x+ 2 = 0
x4 − 5x2 − 36 = 0

(306)

Find the coefficients A,B,C,D,E such that

x4 + 2x3 + 2x2 + 5x+ 1 = A(x− 1)4 +B(x− 1)3 + C(x− 1)2 +D(x− 1) + E (307)

Find a quadratic function y = ax2+bx+c which contains the three points (xi, yi))
1) (0, 0), (1, 1), (5, 2)
2) (−1, 1), (0, 0), (1, 1)
3) (1, 2), (3, 5), (5,−10)

Determine the real- and imaginary parts of the given complex numbers by writing
them in the form z = x+ iy, i =

√
−1

1

(1 + i)
,

1

(1− i
√
3)
, (1 + i)2, (1 + i)4, e3πi,

3 + i

5− i
,
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2 + i

(1− i)(2 − i)
,

√
x+ iy ,

√

(4 + 3i)(4− 3i)

Decompose into partial fractions

(x+ 3)

(x+ 1)(x− 2)
,

x

x2 − 1
,

x2 + 2x+ 1

(x+ 1)4
,

3x+ 4

(x2 − 6x+ 9)(x− 1)
,

1

x2 + 2x+ 10
,

50 + 10x

x3 − 8
,

1

(x4 + 16)
,

(x+ 2)

(x− 1)(x+ 4i)
,

Determine an antiderivative of
∫ dx

x(x−1)(x−2)
by finding the partial fractions.

Determine lim
n→∞

(x + iy)
1
n , and lim

n→∞
tanh (nx), for (i) x > 0 and (ii) x < 0, respec-

tively

Express

tanh (2φ) by tanh (φ)
cosh (2φ) by (i) cosh (φ), (ii) sinh (φ), respectively
sinh (2φ) by (i) cosh (φ), (ii) sinh (φ), respectively
cos (2ϕ) by (i) cos (ϕ), (ii) sin (ϕ), respectively
sin (2ϕ) by (i) cos (ϕ), (ii) sin (ϕ), respectively

Express in circular and hyperbolic functions, respectively: cos it, sin it, cosx+ iy,
sin x+ iy, cos it, cosh it, sinh it, cosh x+ iy, sinh x+ iy, tan it, tanh it

Determine all n complex roots zi of zn = 1, i.e. all n complex values of 1
1
n by

taking into account that arg(z) ∈ (−π, π].

Determine the real and imaginary parts, the moduli and the arguments ∈ (−π, π]
of tanh (x+ iy), tan (x+ iy).

Given the recurrence (i) cn+1 =

√

(1 + cn)

2
, initial value 0 < c0 < 1.

Determine cn in dependence of ϕ0 and determine the limiting case limn→∞ cn
Hint: Since 0 < c0 < 1 put c0 = cosϕ0 and cos (ϕ

2
) by cos (ϕ).

Solve the recurrence problem for an initial value c0 > 1

Express tanh (2φ) by tanh (φ) and use it to determine the recurrence

Xn+1 =
2Xn

(1 +X2
n)

(308)

for a given initial value X0 = tanhΦ0, Φ0 > 0.
Determine X∞ = limn→∞Xn

Evaluate the recurrence xn+1 = axn + b for the initial value x0. (i) Determine xn

in dependence from x0. (ii) Now let x0 = 1 and a = e
πi
5 . Determine the smallest value
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of n0 for which holds xn = x0 and show that n0 is independent of b.

3.2 Questions to part II

20.) Determine the Laplace transforms of
a.) f(t) = 3e5t + te−2t + t2 and give the abscissa of convergence σc.
b.) Determine the Laplace transforms of the matrix exp(At) of 19.) (iv) and give the
abscissa of convergence.
c.) Determine the time domain representations of the Laplace transforms

1
(s+1)

, 1
(s−5+3i)2

, s2+2s
(s3−1)

, 1
(s2+1)

by using partial fractions.

21.) Evaluate the Fibonacci numbers defined by the recurrence (148) for x0 = 0 and
x1 = 1 and determine the ratio r = limn → ∞Xn+1

Xn
.

22.) Determine the ratio r = limn → ∞Xn+1

Xn
of the Fibonacci numbers directly from

Xn+1 = Xn +Xn−1 for the same initial values x0 = 0 and x1 = 1 by using for large n:
Xn+1 = rXnwith r > 0.

23.)
a) Single degree of freedom analysis
We consider the deflection X(t) of a jetty structure responding to a periodic water wave
impact. The (Newtonian) equation of motion for the deflection X(t) is given by

MẌ + CẊ +KX = f(t) (309)

where M denotes the effective mass, C > 0 the damping coefficient and K the effective
elastic module and f(t) is the exciting force due to the wave impact. We assume a peri-
odically repeating wave impact with period T . Then f(t) has the Fourier representation

f(t) =
∞∑

m=−∞

bme
jωmt (310)

where j =
√

(−1) denotes here the imaginary unit and with the angular frequency

ωm = 2πfm = 2πm
T

.

(i) Show that the series (310) fulfills the periodicity condition f(t0) = f(t0 + nT ),
n = 0,±1,±2, ...

(ii) The steady state solution X(t) can be written in a Fourier series with the same
frequencies as (310), namely

X(t) =
∞∑

m=−∞

am ejωmt (311)

Determine the Fourier components am of (311) by using the equation of motion (309)
together with (310) and determine the transfer function

H(ωm) = |am
bm

| (312)

(iii) For which values of the frequency ωm takes the transfer function a maximum?

(iv) Deliver a schematic sketch of the function H(ωm)
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b) Response on a periodic square-pule wave impact.
We now consider a wave impact which we idealize with a step function profile f(t) =
(H(t)−H(t− T

2
))f0 (f0 = const) where Θ(τ) denotes the Heaviside unit step function

being defined as Θ(τ) = 1 for τ > 0 and Θ(τ) = 0 for τ < 0.

We assume that the wave impact f(t) = (H(t) − H(t − T
2
))f0 (f0 = const) repeats

periodically with period T . Then f(t) has a Fourier series of the form (310).

(i) Determine the Fourier components bm by using the relation

bm =
1

T

∫ T

0
e−jωmtf(t)dt (313)

where ωm = 2πjm
T

. Write the result for even and odd m and consider m = 0 separately.
(Hint: e±jπ = −1).

(ii) Determine

S =
∞∑

m=−∞

|bm|2 (314)

by using the Parseval Identity

∫ T

0
f 2(t)dt = T

∞∑

m=−∞

|bm|2 (315)

24.)
a) Vibrating String
We consider a string of length L the vibrations u(x, t) of a string which is constraints
at its ends by u(0, t) = u(L, t) = 0. The governing (partial) differential equation (wave
equation) is

(
1

c2
∂2

∂t2
− ∂2

∂x2
)u(x, t) = 0 (316)

(i) Determine the displacement field u(x, t) for f = 0 (Homogeneous solution) for the
given initial conditions24:

u(x, t = 0) = g(x)
∂
∂t
u(x, t = 0) = v(x)

(317)

for given (with the boundary conditions compatible25) functions g(x) and v(x).

25.) Demonstrate the equivalence of (300) and (301) when W = VDV−1 with the
diagonal form D = diag(λ1, ..λN) and V = (~v1, .., ~vn).

26.) Proof the equivalence of the solution methods of IVP by employing operators
and Laplace transform by means of the inhomogeneous IVP

P (D)X(t) = b(t) , P (D) =
n∏

j

(D − λj) (318)

24An IVP with initial conditions (317) is referred to as Cauchy problem.
25i.e. g(0) = g(L) = v(0) = v(L) = 0.

55



with λj 6= λj for i 6= j and the n initial conditions

DkX(t = 0) = Ak (319)

Hint: Make use when applying Laplace transformation that the decomposition (266) is

always such, thatXh(t) = X̃(t) (eq. (231)) fulfills the initial conditions andXp(t) =
˜̃
X(t)

(eq. (233)) fulfills zero initial conditions and show that the solution X(t) = Xh(t) +

Xp(t) = X̃(t) + ˜̃
X(t) (eq. (235)) again fulfills the initial conditions.
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Some suggested solutions

23.)

a.) Single degree of freedom analysis:

(i) Periodicity

f(t0 + nT ) =
∞∑

m=−∞

bm e

2πjm

T
(t0 + nT )

=
∞∑

m=−∞

bm ejωmt0 e2πjmn
︸ ︷︷ ︸

=1, as nm=±integer

= F (t)

(320)
(and in the same way for X(t)).

(ii) By using the ansatz (311) we find by inserting it into (309)

∞∑

m=−∞

(−Mω2
m + jCωm +K)am ejωmt =

∞∑

m=−∞

bm ejωmt (321)

which leads (by using the orthogonality of the ejωmt) to the equation

(−Mω2
m + jCωm +K)am = bm (322)

or

am =
bm

(K −Mω2
m + jCωm)

(323)

which is a complex function. Hence the transfer function is

H(ωm) = |am
bm

| = 1

|(K −Mω2
m + jCωm)|

=
1

√

(K −Mω2
m)

2 + C2ω2
m)

(324)

(iii) H(ωm) assumes maxima when y(x = ω2) = (K−Mx)2+C2x) which are determined
by d

dx
y(x = ω2

max) = 0
d

dx
y = 2M(Mxmax −K) + C2 (325)

putting this equation to zero yields

xmax =
C2 − 2KM

2M2
= ω2

max (326)

and hence H(ω) assumes maxima for the two frequencies

ωmax = ±
√

C2 − 2KM

2M2
(327)

b) Response of a square pulse periodic wave impact:

(i) The Fourier coefficient are determined by
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bm =
1

T

∫ T

0
e−jωmtf(t)dt =

1

T

∫ T
2

0
e−j 2πmt

T dt =
1

(−jωmT )
e−j 2πmt

T |
T
2
0

bm =
j

ωmT
(ejπm − 1) =

j

2πm
[(−1)m − 1], m 6= 0

b0 =
1

2
, m = 0

(328)

that is b0 =
1
2
, bm = 0 for m even, and bm = −2j

2πm
= −j

πm
for m odd. Hence f(t) assumes

f(t) =
1

2
− j

∞∑

n=−∞

1

π(2n+ 1)
e

2πj(2n+ 1)t

T (329)

which yields by summarizing the terms for ±|(2n + 1)|

f(t) =
1

2
− j

∞∑

n=0

1

π(2n+ 1)
(e

2πj(2n+ 1)t

T − e

−2πj(2n+ 1)t

T ) (330)

or more beautifully written

f(t) =
1

2
+

∞∑

n=0

2

π(2n+ 1)

(e

2πj(2n+ 1)t

T − e

−2πj(2n+ 1)t

T )

2j
︸ ︷︷ ︸

=sin(
2πj(2n+ 1)t

T

(331)

or

f(t) =
1

2
+

∞∑

n=0

2

π(2n+ 1)
sin(

2πj(2n+ 1)t

T
) (332)

which must be a real function (f(t) − 1
2
is an odd function with respect to t which is

reflected by the fact that in (332) only sin-terms occur).

(ii) Parseval identity

∫ T

0
f 2(t)dt =

∫ T
2

0
dt =

T

2
= T

∞∑

m=−∞

|bm|2 = TS (333)

Thus

S =
∑

|bm|2 =
1

2
=

1

4
+

∞∑

n=0

2

π2(2n+ 1)2
(334)

which yields the remarkable relation

∞∑

n=0

1

(2n + 1)2
=

π2

8
(335)

24.) Vibrating string. (i) The solution of the homogeneous problem can be written as

u(x, t) =
∞∑

n=−∞

vn(t) sin(knx) + wn(t) cos(knx) (336)
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then the boundary conditions u(0, t) = u(L, t) = 0 leads to u(0, t) = 0 thus for any
component wn = 0. Further u(L, t) = 0 leads to sin(knL) = 0 thus knL = nπ, (n =
±1,±2, ..) thus kn = nπ

L
. The functions vn(t) we can now determine from the differential

equation which needs to hold for any Fourier component

sin(knx)
d2

dt2
vn(t) = c2vn(t)

d2

dx2
sin(knx) (337)

or
d2

dt2
vn(t) = −c2k2

nvn(t) (338)

hence
vn(t) = An cos(cknt) +Bn sin(cknt) (339)

thus the homogeneous solution of (316) assumes

u(x, t) =
∞∑

n=1

(An cos(ct
nπ

L
) +Bn sin(ct

nπ

L
)) sin(

nπ

L
x) (340)

where An, Bn are arbitrary constants26 which can be determined uniquely by prescribing
the initial displacements u(x, 0) = g(x) and the initial velocities ∂

∂t
u(x, t)|t=0 = v(x). The

sin(nπ
L
x)-terms are called eigen-modes or simply modes (in analogy to eigenvectors). The

mode with n = 1 is called fundamental mode with fundamental frequency ω0 =
cπ
L
. The

other modes with n > 1 have integer multiple frequencies ωn = nω0 of the fundamental
frequency and their sum is called overtone series. The model of the vibrating string is
the basis of the acoustics of string music instruments such as violins, pianos etc.

In (340) the constants An, Bn occur as Fourier coefficients of g and v and are to
be determined from

u(x, t = 0) =
∞∑

n=0

An sin(
nπ

L
x) = g(x) (341)

and
∂

∂t
u(x, t)|t=0 =

∞∑

n=0

c
nπ

L
Bn sin(

nπ

L
x) = v(x) (342)

where g(x), v(x) must be given compatible with the boundary conditions, namely g(0) =
g(L) = 0 and v(0) = v(L) = 0, thus

An =
2

L

∫ L

0
g(x) sin(

nπ

L
x)dx (343)

and

Bn =
2

L
(c
nπ

L
)−1

∫ L

0
v(x) sin(

nπ

L
x)dx =

2

nπc

∫ L

0
v(x) sin(

nπ

L
x)dx (344)

Thus we have with (340) together with (343), (344) solved the homogeneous initial value
problem of a constraint string for the given initial conditions (initial displacements and
velocities) g(x) and v(x). However to get the solution explicitly in terms of g(x), v(x)
we can make use of

sin (
nπ

L
ct) sin (

nπ

L
x) =

1

2
(cos (

nπ

L
(x− ct))− cos (

nπ

L
(x+ ct))) (345)

cos (
nπ

L
ct) sin (

nπ

L
x) =

1

2
(sin (

nπ

L
(x− ct)) + sin (

nπ

L
(x+ ct))) (346)

26which need to fulfil
∑

∞

n=0
|An|2 + |Bn|2 < ∞.
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Then we have for the first product sum in (340) with (341) with (346)

∞∑

n=1

An cos(ct
nπ

L
) sin(

nπ

L
x) =

1

2
(g(x− ct) + g(x+ ct)) (347)

and for the second product sum in (340) with (342) and (345)

∞∑

n=1

Bn cos(ct
nπ

L
) sin(

nπ

L
x) =

1

2

∞∑

n=1

Bn(cos (
nπ

L
(x− ct))− cos (

nπ

L
(x+ ct))) (348)

the last equation can be re-written by integrating (342)

1

2c

∫ x+ct

x−ct
v(s)ds =

1

2c

∞∑

n=0

c
nπ

L
Bn

∫ x+ct

x−ct
sin(

nπ

L
s)ds (349)

With (347) and (349) we just have expressed the displacement u(x, t) of (340) in
terms of the given initial conditions u(x, 0) = g(x) and ∂u

∂t
(x, 0) = v(x), namely

u(x, t) =
1

2
(g(x− ct) + g(x+ ct)) +

1

2c

∫ x+ct

x−ct
v(s)ds (350)

Solution (350) is know in the literature as D’Alembert solution. It is easily
verified that the D’Alembert solution indeed solve the wave equation and fulfills the ini-
tial conditions. The D’Alembert solution (350) applies not only for the vibrating string,
generally solves Cauchy problems which are defined a homogeneous wave equation
(316) together with the initial conditions (317).
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4 Appendix

Here we give the proof for (108) which corresponds to the case that the set of n eigen-
vectors are linear independent if the eigenvalues are all different to each other: To this
end we assume the set of eigenvalues {~vi} are linear dependent. Then the n×n-equation
system

n∑

i=1

Ci~vi = V · ~C = 0 (351)

would have nontrivial (non-zero) solution-vector ~C = (Ci). Successive Multiplication
with matrix A,A2, ..An−1 yields27, taking into account Ak~vi = λk

i ~vi

AkV · ~C =
n∑

i=1

Ci~viλ
k
i = 0 (352)

where we generate n such equation systems (k = 0, .., n− 1). When we look at the pth

component of these n equation systems we obtain n equations of the form where (~vi)p
denotes the pth component of eigenvector ~vi

n∑

i=1

Ci~vipλ
k
i = P~̃

C = 0 (353)

with ~̃
C = (Ci(vi)p)

P =








1, .., 1
λ1, .., λn

..

λn−1
1 , .., λn−1

n








(354)

The determinant V = DetP is known as the Vandermond Determinant playing
an important rule in many cases. In the questions (Question 13.)) we show that the
Vandermond determinant indeed is non-vanishing for λi 6= λj (i 6= j) and yields

V(λ1, λ2, .., λn) =

DetP = (λ2 − λ1)..(λn − λ1)(λ3 − λ2)..(λn − λ2)..(λn − λn−1)
︸ ︷︷ ︸

n(n−1)
2

factors

=
∏

i<j

(λj − λi)

(355)
Because of V(λ1, λ2, .., λn) 6= 0, i.e. the column vectors of P are linear inde-

pendent (because the λi 6= λj are all different) it follows that (352) has only the trivial

solution vector ~̃C = 0 and hence ~C = (Ci) = 0 which means that (351) has only the triv-
ial solution. Hence the set of n eigenvectors ~v1, .., ~vn are indeed linear independent,
which proves (108).

5 Literature

There is a vast amount of textbooks which cover the contents of this lecture. The two fol-
lowing books are a suggested as they cover most of the contents of the lecture. There are
plenty of other standard textbooks which cover this materials as well. Further reading

27Ak = A · .. ·A
︸ ︷︷ ︸

k times
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is explicitly encouraged (also in other than the below referenced textbooks). However,
as the lecture does not strictly follow any textbook, these notes should be sufficient for
the comprehensive understanding of the topics addressed in this lecture.
Part I:

[1] Glyn James (2004) Advanced Modern Engineering Mathematics, Pearson Education
2004 (Third Edition).
ISBN: 0 130 45425 7
[2] Glynn James (2004) Modern Engineering Mathematics, Pierson Education.
ISBN 0 130 45425 7 18319 9
Part II:

[2] Bender, C. M.; Orszag, S. A., Advanced Mathematical Methods for Scientists and
Engineers, New York: Springer, 1999
ISBN 978-0-387-98931-0
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6 Mock Exam

The following questions which comprise the complete module CIV6400 ”Mathematics
for Dynamicists” are similar to those of previous exams. Answering of these questions
thus is highly recommended.

Question 1

(
d2

dt2
+ 2a

d

dt
+ b2)X = f(t) (356)

for a, b ∈ R, b 6= 0, a > 0.
1.) Give a fundamental solution system of the homogeneous problem (i.e. put f(t) = 0).

2.) Show by using the Wronskian determinant that the system of solutions of the
homogeneous problem you gave in 1.) indeed is a fundamental system.

3.) Determine the general solution X(t) for f(t) = eαt for α2 + 2aα + b2 6= 0.

4.) Solve the initial value problem

(
d2

dt2
+ 2a

d

dt
+ b2)X = 2 cos t (357)

with initial conditions
X(t = 0) = A0,
dX
dt
(t = 0) = A1.

Hint: make use of 2 cos t = eit + e−it, i =
√
−1 by using:

(i) Operator method
(ii) Laplace transformation

5.) Consider now (356) for α = iω, i.e. a driving external force f(t) = eiωt where
ω ∈ R is the frequency of this force. Determine for this case the so called enhancement
factor V which is defined by

V =: lim
t→∞

|xp(t)|
|f(t)| (358)

where xp(t) denotes any particular solution of the non-homogeneous problem. For this
limiting case which leads to the ’steady state’ solution the fact that a > 0 (which guar-
antees exponential damping of the homogeneous solution) is important.

(i) Why is definition (358) unique, i.e. independent of given initial conditions?

(ii) For which values of the exciting frequency ω the enhancement factor V takes a
maximum?

(iii) Determine the maximum value of V .

(iv) Sketch V (ω) vs ω schematically.
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6.) Determine the so referred to as phase shift of the solution 3.) which is defined
by

φ =: lim
t→∞

{arg(Xp(t))− arg(f(t))} = lim
t→∞

arg[
Xp(t)

f(t)
] (359)

Question 2
Given the recursion

Xn+1 = aXn + bYn; Yn+1 = bXn + aYn; n = 0, 1, 2, .. (360)

initial values X0 = 2, Y0 = 1. Hint: It is convenient to consider the given recursion in
matrix form, i.e. ~xn+1 = M~xn with start vector ~x0.
1.) Determine ~xn = (Xn, Yn) in dependence of ~x0 = (X0, Y0).
2.) Determine the limiting case A = limn→∞(Xn

Yn
) for b > 0.

(i) Does the result depend on c for initial conditions X0 = c, Y0 = c?

3.) Consider now the modified recursion

Xn+1 = α(aXn + bYn); Yn+1 = α(bXn + aYn);n = 0, 1, 2, .. (361)

for a > b > 0.

(i) For which values α > 0 exist the sums Sx =
∑∞

n=0Xn, Sy =
∑∞

n=0 Yn? Hint: Reduce
the problem to the consideration of geometrical series of the form

∑∞
n=0[α(a± b)]n and

consider for what values of α > 0 this series is convergent.

(ii) In the case of convergence, determine the values of these sums for the initial condi-
tion (X0 = 1, Y0 = −1).

Question 3
Given the recursion

Xn+1 = Xnρ cosϕ− Ynρ sinϕ; Yn+1 = Xnρ sinϕ+ Ynρ cosϕ;n = 0, 1, 2, .. (362)

with ϕ ∈ R and ρ ∈ R with initial conditions X0 = A, Y0 = B. For which ρ hold

(i) limn→∞X2
n + Y 2

n = 0?

(ii) limn→∞X2
n + Y 2

n = A2 +B2?

(iii) limn→∞X2
n + Y 2

n = ∞?

Question 4

Determine the solution for the initial value problem (D = d
dt
)

P (D)X = e−3t; P (D) = D2 + 6D + 9 (363)

with initial conditions X(t = 0) = 1, d
dt
X(t = 0) = 0 by using

(i) Operator method
(ii) Laplace transformation
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Question 5

Given the differential equation L[u] = f(t) where L[u] = u
′′ − 6u

′

+ 25u.

a) Determine the general solution uh(t) of the homogeneous differential equation (f(t) =
0).

b) Determine that special solution (particular integral) up(t) for f(t) = eiωt which is
periodic.

c) Determine the frequency of resonance, i.e. the frequency ωr for which |up| is a maxi-
mum.

d) Determine the times τn > 0 when the periodic solution up(t) is purely real?

e) Determine the special solution of the non-homogeneous differential equation for
f(t) = eiωt which fulfills the initial conditions
u(t = 0) = A

u
′

(t = 0) = B

Question 6
Given the differential equation L[u] = f(t) where
L[u] = u

′′′ − 3u
′′

λ+ 3u′λ2 − λ3.

a) Determine the special solution (complementary function) uh(t) of the homogeneous
differential equation (f(t) = 0) which fulfills the conditions
u(t = 0) = A

u
′

(t = 0) = 0
u

′′

(t = 0) = 0
b) For which value of A holds uh(1) = e?

c) Determine a particular solution up(t) for f(t) = ebt

(i) for b 6= λ

(ii) for the case b = λ

d) Consider now the case b = λ, i.e. f(t) = eλt:
(i) Give the general solution u(t) = uh(t) + up(t).

Question 7

Given the set of functions: X1 = e−t, X2 = et, X3 = e(2+i)t, X4 = e(2−i)t.
Determine the homogeneous differential equation P (D)X(t) = 0 from which this set of
functions constitutes a fundamental system.
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