Automating Cataloging and Discovery of Services for Service-Oriented Robotic Systems
Lucas Bueno Ruas de Oliveira, Diogo Martins, Felipe Amaral, Flavio Oquendo, Elisa Yumi Nakagawa

To cite this version:
Lucas Bueno Ruas de Oliveira, Diogo Martins, Felipe Amaral, Flavio Oquendo, Elisa Yumi Nakagawa. Automating Cataloging and Discovery of Services for Service-Oriented Robotic Systems. Doctoral. 11th Latin American Robotics Symposium (LARS), São Carlos, Brazil. 2014, pp.20. cel-01113218

HAL Id: cel-01113218
https://hal.archives-ouvertes.fr/cel-01113218
Submitted on 4 Feb 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.
Automating Cataloging and Discovery of Services for Service-Oriented Robotic Systems

Lucas Bueno R. Oliveira1,2, Diogo B. Martins1, Felipe A. Amaral1, Flavio Oquendo2, and Elisa Yumi Nakagawa1

buenolro@icmc.usp.br, dbrdem@usp.br, felipeaa@usp.br, flavio.oquendo@irisa.fr, and elisa@icmc.usp.br

1 Dept. of Computer Systems, University of São Paulo - USP, São Carlos, Brazil

2 IRISA Research Institute University of South Brittany, Vannes, France

LARS 2014, São Carlos/SP
Agenda

Introduction
Developing RoboSeT
Case Study
Discussion
Conclusion and Future Work
Introduction

• Robots have been used in several areas of the society
• Complexity and diversity challenge the development of robotic systems
• Service-Oriented Architecture (SOA) promotes better reusability and flexibility to robotic systems
• Several Service-Oriented Robotic Systems (SORS) can be found in the literature
• Development environments for SORS are also available
Introduction

• Motivation:
 • SORS development environments do not provide facilities for location and selection of services
Introduction

• Motivation:
 • SORS development environments do not provide facilities for location and selection of services
Introduction

• Motivation:
 • SORS development environments do not provide facilities for location and selection of services
Introduction

• Main goal:
 • To present RoboSeT (Robotics Services Semantic Search Tool), a mechanism that supports cataloging and discovery of services for robotic systems using semantic information.
Developing RoboSeT

• First step: Establishment of a common vocabulary [1]

Developing RoboSeT

• RoboSeT is divided into two main subsystems:
 • Service repository (Web Interface)
 • Service plug-ins (GUI or command line)
Developing RoboSeT

• Service repository:
 • Account management
 • Service publication
 • Service search and detailing
 • Service management
 • News about services

• Plug-ins:
 • Service search
 • Service identification
 • Service obtaining and deployment
 • Feedback about services (quality, bugs, comments)
Case study

• Design of a robotic system for robust navigation
 • Motion Planning
 • Trajectory generation
 • Obstacle detection and representation
 • Obstacle avoidance
 • Position and velocity control
 • Localization
 • Laser controller
 • Pioneer P3-DX controller
Case study

• Mapping requirements into service types

<table>
<thead>
<tr>
<th>Functionality</th>
<th>Service type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motion Planning</td>
<td>Service/Task/Path planning</td>
</tr>
<tr>
<td>Trajectory generation</td>
<td>Service/Task/Path planning</td>
</tr>
<tr>
<td>Obstacle detection and representation</td>
<td>Service/Task/Mapping</td>
</tr>
<tr>
<td>Obstacle avoidance</td>
<td>Service/Task/Path planning</td>
</tr>
<tr>
<td>Position and velocity control</td>
<td>Service/Task/Navigation</td>
</tr>
<tr>
<td>Localization</td>
<td>Service/Task/Localization</td>
</tr>
<tr>
<td>Encoder controller</td>
<td>Service/Device/Sensor/Movement</td>
</tr>
<tr>
<td>Differential drive controller</td>
<td>Service/Device/Actuator/Locomotion</td>
</tr>
<tr>
<td>Laser controller</td>
<td>Service/Device/Sensor/Distance</td>
</tr>
</tbody>
</table>
Case study

• Searching for ROS services
Case study

• Searching for ROS services (Part I)

<table>
<thead>
<tr>
<th>Functionality</th>
<th>Task service type</th>
<th>ROS Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motion Planning</td>
<td>Path planning/Heuristic Search</td>
<td>NavfnROS, CarrotPlanner</td>
</tr>
<tr>
<td>Trajectory generation</td>
<td>Path planning/Heuristic Search</td>
<td>TrajectoryPlannerROS, DWAPlannerROS</td>
</tr>
<tr>
<td>Obstacle detection and representation</td>
<td>Mapping/Metric/Grid</td>
<td>CostMap2D</td>
</tr>
<tr>
<td>Obstacle avoidance</td>
<td>Path planning/Heuristic Search</td>
<td>TrajectoryPlannerROS, DWAPlannerROS</td>
</tr>
<tr>
<td>Position and velocity control</td>
<td>Navigation</td>
<td>MoveBase</td>
</tr>
<tr>
<td>Localization</td>
<td>Localization/Probabilistic</td>
<td>Amcl</td>
</tr>
</tbody>
</table>
Case study

• Searching for ROS services (Part II)

<table>
<thead>
<tr>
<th>Functionality</th>
<th>Device service type</th>
<th>ROS Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encoder controller</td>
<td>Sensor/Movement</td>
<td>RosAria</td>
</tr>
<tr>
<td>Differential drive controller</td>
<td>Actuator/Locomotion</td>
<td>RosAria</td>
</tr>
<tr>
<td>Laser controller</td>
<td>Sensor/Distance</td>
<td>SICK Toolbox</td>
</tr>
</tbody>
</table>
Case study
Discussion

• Advantages:
 • Services can be transparently shared and discovered
 • Services that are easier to be found are more likely to be reused
 • Structured information can support identification of more suitable services
 • Reuse improvements positively influence productivity in software systems development
 • Community feedback can guide the development of services of better quality
Discussion

• Main limitation:
 • RoboSeT is depended on community adoption and cooperation

• Current initiatives to mitigate such limitation:
 • To promote RoboSeT in the robotics community
 • To release an open source version of RoboSeT
Conclusion and Future Work

- SOA is a promising architectural style for robotics
- A mechanism for supporting cataloging, publishing, and discovery of services can contribute to the SORS development
- Results indicate that RoboSeT can ease the discovery of services for SORS
- Future work:
 - To perform an experiment
 - To develop new functionalities and plug-ins
Automating Cataloging and Discovery of Services for Service-Oriented Robotic Systems

Lucas Bueno R. Oliveira1,2, Diogo B. Martins1, Felipe A. Amaral1, Flavio Oquendo2, and Elisa Yumi Nakagawa1

buenolro@icmc.usp.br, dbrdem@usp.br, felipeaa@usp.br, flavio.oquendo@irisa.fr, and elisa@icmc.usp.br

1 Dept. of Computer Systems, University of São Paulo - USP, São Carlos, Brazil

2 IRISA Research Institute
University of South Brittany, Vannes, France

LARS 2014, São Carlos/SP