F. O. Alves, P. Frau, and J. M. Girart, A&A, vol.569, p.1, 2014.

B. Andersson, A. Lazarian, and J. E. Vaillancourt, ARA&A, vol.53, p.501, 2015.

P. Andre, D. Ward-thompson, and M. Barsony, ApJ, vol.406, p.122, 1993.

P. Andre, D. Ward-thompson, and M. Barsony, Protostars and Planets IV, p.59, 2000.

M. Attard, M. Houde, and G. Novak, ApJ, vol.702, p.1584, 2009.

R. Bachiller, J. Martin-pintado, and P. Planesas, A&A, vol.251, p.639, 1991.

R. Bachiller, S. Guilloteau, A. Dutrey, P. Planesas, and J. Martin-pintado, A&A, vol.299, p.857, 1995.

R. Bachiller, S. Guilloteau, and F. Gueth, A&A, vol.339, p.49, 1998.

R. Bachiller, F. Gueth, S. Guilloteau, M. Tafalla, and A. Dutrey, A&A, vol.362, p.33, 2000.

R. Bachiller, M. Pérez-gutiérrez, M. S. Kumar, and M. Tafalla, A&A, vol.372, p.899, 2001.

J. Bally, ARA&A, vol.54, p.491, 2016.

M. Barsony, D. Ward-thompson, P. André, and J. Linger, ApJ, vol.509, p.733, 1998.

A. Belloche, , vol.62, p.25, 2013.

A. Belloche, P. Hennebelle, and P. André, A&A, vol.453, p.145, 2006.

G. Bertrang, S. Wolf, and H. S. Das, A&A, vol.565, p.94, 2014.

T. J. Bethell, A. Chepurnov, A. Lazarian, and J. Kim, ApJ, vol.663, p.1055, 2007.

D. C. Bock, .. Bolatto, A. D. Hawkins, and D. W. , Proc. SPIE, vol.6267, p.626713, 2006.

P. Bodenheimer, ARA&A, vol.33, p.199, 1995.

S. Bontemps, P. Andre, S. Terebey, and S. Cabrit, A&A, vol.311, p.858, 1996.

R. Brauer, S. Wolf, and S. Reissl, A&A, vol.588, p.129, 2016.

P. Caselli, P. J. Benson, P. C. Myers, and M. Tafalla, ApJ, vol.572, p.238, 2002.

A. Chacón-tanarro, P. Caselli, and L. Bizzocchi, A&A, vol.606, p.142, 2017.

C. J. Chandler and J. S. Richer, ApJ, vol.530, p.851, 2000.

C. J. Chandler, C. L. Brogan, Y. L. Shirley, and L. Loinard, ApJ, vol.632, p.371, 2005.

N. L. Chapman, J. A. Davidson, and P. F. Goldsmith, ApJ, vol.770, p.151, 2013.

X. Chen, R. Launhardt, and T. Henning, ApJ, vol.669, p.1058, 2007.

X. Chen, R. Launhardt, and T. Henning, ApJ, vol.691, p.1729, 2009.

X. Chen, H. G. Arce, and Q. Zhang, ApJ, vol.768, p.110, 2013.

H. Chiang, L. W. Looney, and J. J. Tobin, ApJ, vol.756, p.168, 2012.

T. Ching, S. Lai, and Q. Zhang, ApJ, vol.819, p.159, 2016.

M. Choi, ApJ, vol.553, p.219, 2001.

M. Choi, ApJ, vol.630, p.976, 2005.

A. Ciardi and P. Hennebelle, MNRAS, vol.409, p.39, 2010.

D. R. Ciardi, C. M. Telesco, and J. P. Williams, ApJ, vol.585, p.392, 2003.

J. C. Correia, M. Griffin, and P. Saraceno, A&A, vol.418, p.607, 2004.

N. Crimier, C. Ceccarelli, and S. Maret, A&A, vol.519, p.65, 2010.

R. M. Crutcher, ARA&A, vol.50, p.29, 2012.

R. M. Crutcher, D. J. Nutter, D. Ward-thompson, and J. M. Kirk, ApJ, vol.600, p.279, 2004.

S. Curiel, J. C. Raymond, J. M. Moran, L. F. Rodriguez, and J. Canto, ApJ, vol.365, p.85, 1990.

S. Curiel, J. M. Torrelles, L. F. Rodríguez, J. F. Gómez, and G. Anglada, ApJ, vol.527, p.310, 1999.

R. L. Curran and A. Chrysostomou, MNRAS, vol.382, p.699, 2007.

J. A. Davidson, G. Novak, and T. G. Matthews, ApJ, vol.732, p.97, 2011.

D. Francesco, J. Myers, P. C. Wilner, D. J. Ohashi, N. Mardones et al., ApJ, vol.562, p.770, 2001.

D. Francesco, J. Johnstone, D. Kirk, H. Mackenzie, T. Ledwosinska et al., ApJS, vol.175, p.277, 2008.

J. L. Dotson, ApJ, vol.470, p.566, 1996.

M. L. Enoch, S. Corder, and G. Duchêne, ApJS, vol.195, p.21, 2011.

I. I. Evans, N. J. Dunham, M. M. Jørgensen, and J. K. , ApJS, vol.181, p.321, 2009.

I. I. Evans, N. J. Di-francesco, J. Lee, and J. , ApJ, vol.814, p.22, 2015.

D. Falceta-gonçalves, A. Lazarian, and G. Kowal, ApJ, vol.679, p.537, 2008.

P. Frau, D. Galli, and J. M. Girart, A&A, vol.535, p.44, 2011.

M. Gâlfalk and G. Olofsson, A&A, vol.475, p.281, 2007.

D. Galli, S. Lizano, F. H. Shu, and A. Allen, ApJ, vol.647, p.374, 2006.

J. M. Girart, R. M. Crutcher, and R. Rao, ApJ, vol.525, p.109, 1999.

J. M. Girart, R. Rao, and D. P. Marrone, Science, vol.313, p.812, 2006.

J. M. Girart, P. Frau, and Q. Zhang, ApJ, vol.772, p.69, 2013.

J. M. Girart, R. Estalella, A. Palau, J. M. Torrelles, and R. Rao, ApJ, vol.780, p.11, 2014.

J. Gonçalves, D. Galli, and J. M. Girart, A&A, vol.490, p.39, 2008.

A. A. Goodman, P. J. Benson, G. A. Fuller, and P. C. Myers, ApJ, vol.406, p.528, 1993.

F. Gueth, S. Guilloteau, and R. Bachiller, A&A, vol.307, p.891, 1996.

D. W. Harvey, D. J. Wilner, P. C. Myers, and M. Tafalla, ApJ, vol.596, p.383, 2003.

P. Hennebelle and A. Ciardi, A&A, vol.506, p.29, 2009.

T. Henning, S. Wolf, R. Launhardt, and R. Waters, ApJ, vol.561, p.871, 2001.

R. H. Hildebrand, QJRAS, vol.24, p.267, 1983.

N. Hirano, O. Kameya, M. Nakayama, and K. Takakubo, ApJ, vol.327, p.69, 1988.

N. Hirano, P. P. Ho, and S. Liu, ApJ, vol.717, p.58, 2010.

T. Hirota, T. Bushimata, and Y. K. Choi, PASJ, vol.60, p.37, 2008.

T. Hirota, M. Honma, and H. Imai, PASJ, vol.63, p.1, 2011.

P. T. Ho, J. M. Moran, and K. Y. Lo, ApJ, vol.616, p.1, 2004.

T. Hoang and A. Lazarian, ApJ, vol.695, p.1457, 2009.

W. S. Holland, E. I. Robson, and W. K. Gear, MNRAS, vol.303, p.659, 1999.

C. L. Hull, R. L. Plambeck, and A. D. Bolatto, ApJ, vol.768, p.159, 2013.

C. L. Hull, R. L. Plambeck, and W. Kwon, ApJS, vol.213, p.13, 2014.

C. L. Hull, J. M. Girart, and ?. Tychoniec, ApJ, vol.847, p.92, 2017.

R. E. Jennings, D. H. Cameron, W. Cudlip, and C. J. Hirst, MNRAS, vol.226, p.461, 1987.

T. J. Jones, M. Bagley, M. Krejny, B. Andersson, and P. Bastien, AJ, vol.149, p.31, 2015.

T. J. Jones, M. Gordon, and D. Shenoy, AJ, vol.151, p.156, 2016.

M. Joos, P. Hennebelle, and A. Ciardi, A&A, vol.543, p.128, 2012.

, Kanzo, vol.41, issue.supl1, pp.A139-A143, 2000.

M. Galametz, A. Maury, J. M. Girart, R. Rao, Q. Zhang et al., SMA observations of polarized dust emission in solar-type Class 0 protostars: Magnetic field properties at envelope scales, Astronomy & Astrophysics, vol.616, p.A139, 2018.
URL : https://hal.archives-ouvertes.fr/cea-03004435

J. K. Jørgensen, P. M. Harvey, . Evans, and N. J. Ii, ApJ, vol.645, p.1246, 2006.

J. K. Jørgensen, T. L. Bourke, and P. C. Myers, ApJ, vol.659, p.479, 2007.

J. K. Jørgensen, M. H. Van-der-wiel, and A. Coutens, A&A, vol.595, p.117, 2016.

A. Kataoka, M. N. Machida, and K. Tomisaka, ApJ, vol.761, p.40, 2012.

A. Kataoka, T. Muto, and M. Momose, ApJ, vol.809, p.78, 2015.

J. Kauffmann, F. Bertoldi, T. L. Bourke, . Evans, N. J. Ii et al., A&A, vol.487, p.993, 2008.

J. Keene, J. A. Davidson, and D. A. Harper, ApJ, vol.274, p.43, 1983.

J. Knude and E. Hog, A&A, vol.338, p.897, 1998.

E. Koumpia, F. F. Van-der-tak, and W. Kwon, A&A, vol.595, p.51, 2016.

M. R. Krumholz, R. M. Crutcher, and C. L. Hull, ApJ, vol.767, p.11, 2013.

W. Kwon, L. W. Looney, R. M. Crutcher, and J. M. Kirk, ApJ, vol.653, p.1358, 2006.

W. Kwon, L. W. Looney, L. G. Mundy, H. Chiang, and A. J. Kemball, ApJ, vol.696, p.841, 2009.

W. Kwon, M. Fernández-lópez, I. W. Stephens, and L. W. Looney, ApJ, vol.814, p.43, 2015.

S. Lai, R. M. Crutcher, J. M. Girart, and R. Rao, ApJ, vol.566, p.925, 2002.

R. Launhardt, The Formation of Binary Stars, IAU Symp, vol.200, p.117, 2001.

R. Launhardt, Star Formation at High Angular Resolution, IAU Symp, vol.221, p.213, 2004.

R. Launhardt, A. M. Stutz, and A. Schmiedeke, A&A, vol.551, p.98, 2013.

A. Lazarian, J. Quant. Spectr. Rad. Transf, vol.106, p.225, 2007.

K. I. Lee, M. M. Dunham, and P. C. Myers, ApJ, vol.814, p.114, 2015.

J. W. Lee, C. L. Hull, and S. S. Offner, ApJ, vol.834, p.201, 2017.

B. Lefloch, A. Castets, J. Cernicharo, W. D. Langer, and R. Zylka, A&A, vol.334, p.269, 1998.

Z. Li, R. Krasnopolsky, and H. Shang, ApJ, vol.774, p.82, 2013.

H. Li, A. Goodman, and T. K. Sridharan, Protostars and Planets VI, p.101, 2014.

H. B. Liu, S. Lai, and Y. Hasegawa, ApJ, vol.821, p.41, 2016.

L. Loinard, L. A. Zapata, and L. F. Rodríguez, MNRAS, vol.430, p.10, 2013.

L. W. Looney, L. G. Mundy, and W. J. Welch, ApJ, vol.529, p.477, 2000.

L. W. Looney, L. G. Mundy, and W. J. Welch, ApJ, vol.592, p.255, 2003.

L. W. Looney, J. J. Tobin, and W. Kwon, ApJ, vol.670, p.131, 2007.

A. López-sepulcre, N. Sakai, and R. Neri, A&A, vol.606, p.121, 2017.

M. N. Machida, T. Matsumoto, K. Tomisaka, and T. Hanawa, MNRAS, vol.362, p.369, 2005.

M. N. Machida, S. Inutsuka, and T. Matsumoto, ApJ, vol.670, p.1198, 2007.

D. P. Marrone and R. Rao, Proc. SPIE, Millimeter and Submillimeter Detectors and Instrumentation for Astronomy IV, vol.7020, p.70202, 2006.

K. B. Marvel, B. A. Wilking, M. J. Claussen, and A. Wootten, ApJ, vol.685, p.285, 2008.

F. Massi, C. Codella, J. Brand, L. Di-fabrizio, and J. G. Wouterloot, A&A, vol.490, p.1079, 2008.

B. C. Matthews and C. D. Wilson, ApJ, vol.531, p.868, 2000.

B. C. Matthews, C. A. Mcphee, L. M. Fissel, and R. L. Curran, ApJS, vol.182, p.143, 2009.

A. J. Maury, P. André, and P. Hennebelle, A&A, vol.512, p.40, 2010.

A. J. Maury, P. André, A. Men'shchikov, V. Könyves, and S. Bontemps, A&A, vol.535, p.77, 2011.

A. J. Maury, A. Belloche, and P. André, A&A, vol.563, p.2, 2014.

A. J. Maury, J. M. Girart, and Q. Zhang, MNRAS, vol.477, p.2760, 2018.

F. Motte and P. André, A&A, vol.365, p.440, 2001.

N. Ohashi, K. Saigo, and Y. Aso, ApJ, vol.796, p.131, 2014.

J. O'linger, G. Wolf-chase, M. Barsony, and D. Ward-thompson, ApJ, vol.515, p.696, 1999.

V. Ossenkopf and T. Henning, A&A, vol.291, p.943, 1994.

Y. Oya, N. Sakai, and A. López-sepulcre, ApJ, vol.824, p.88, 2016.

P. Padoan, A. Goodman, and B. T. Draine, ApJ, vol.559, p.1005, 2001.

A. Palau, L. A. Zapata, and L. F. Rodríguez, MNRAS, vol.444, p.833, 2014.

G. Pech, L. A. Zapata, L. Loinard, and L. F. Rodríguez, ApJ, vol.751, p.78, 2012.

V. Pelkonen, M. Juvela, and P. Padoan, A&A, vol.502, p.833, 2009.

J. E. Pineda, A. J. Maury, and G. A. Fuller, A&A, vol.544, p.138, 2012.

A. L. Plunkett, H. G. Arce, and S. A. Corder, ApJ, vol.774, p.22, 2013.

L. Podio, C. Codella, and F. Gueth, A&A, vol.593, p.4, 2016.

F. Poidevin, P. Bastien, and B. C. Matthews, ApJ, vol.716, p.893, 2010.

R. E. Pudritz and C. A. Norman, ApJ, vol.274, p.677, 1983.

K. Qiu, Q. Zhang, K. M. Menten, H. B. Liu, and Y. Tang, ApJ, vol.779, p.182, 2013.

R. Rao, R. M. Crutcher, R. L. Plambeck, and M. C. Wright, ApJ, vol.502, p.75, 1998.

R. Rao, J. M. Girart, D. P. Marrone, S. Lai, and S. Schnee, ApJ, vol.707, p.921, 2009.

B. Reipurth, S. Heathcote, and F. Vrba, A&A, vol.256, p.225, 1992.

B. Reipurth, L. F. Rodríguez, G. Anglada, and J. Bally, AJ, vol.124, p.1045, 2002.

L. F. Rodríguez, G. Anglada, and S. Curiel, ApJ, vol.480, p.125, 1997.

S. I. Sadavoy, J. Di-francesco, and P. Andre, ApJ, vol.787, p.18, 2014.

M. Saito, K. Sunada, R. Kawabe, Y. Kitamura, and N. Hirano, ApJ, vol.518, p.334, 1999.

G. Santangelo, C. Codella, and S. Cabrit, A&A, vol.584, p.126, 2015.

F. Schuller, K. M. Menten, and Y. Contreras, A&A, vol.504, p.415, 2009.

D. M. Segura-cox, L. W. Looney, and I. W. Stephens, ApJ, vol.798, p.2, 2015.

D. M. Segura-cox, R. J. Harris, and J. J. Tobin, ApJ, vol.817, p.14, 2016.

D. Seifried, R. Banerjee, R. E. Pudritz, and R. S. Klessen, MNRAS, vol.446, p.2776, 2015.

F. H. Shu, J. R. Najita, H. Shang, and Z. Li, Protostars and Planets IV, p.789, 2000.

I. W. Stephens, L. W. Looney, and W. Kwon, ApJ, vol.769, p.15, 2013.

V. Straizys, K. Cernis, A. Kazlauskas, and E. Meistas, Balt. Astron, vol.1, p.149, 1992.

A. M. Stutz, M. Rubin, and M. W. Werner, ApJ, vol.687, p.389, 2008.

M. Tafalla and R. Bachiller, ApJ, vol.443, p.37, 1995.

M. Tafalla, M. S. Kumar, and R. Bachiller, A&A, vol.456, p.179, 2006.

Y. Tang, P. T. Ho, P. M. Koch, S. Guilloteau, and A. Dutrey, ApJ, vol.763, p.135, 2013.

S. Terebey, C. J. Chandler, and P. Andre, ApJ, vol.414, p.759, 1993.

S. Terebey and D. L. Padgett, IAU Symp., Herbig-Haro Flows and the Birth of Stars, vol.182, p.507, 1997.

J. J. Tobin, L. W. Looney, L. G. Mundy, W. Kwon, and M. Hamidouche, ApJ, vol.659, p.1404, 2007.

J. J. Tobin, L. Hartmann, and H. Chiang, ApJ, vol.740, p.45, 2011.

J. J. Tobin, C. J. Chandler, and D. J. Wilner, ApJ, vol.779, p.93, 2013.

J. J. Tobin, L. W. Looney, and D. J. Wilner, ApJ, vol.805, p.125, 2015.

J. J. Tobin, L. W. Looney, and Z. Li, ApJ, vol.818, p.73, 2016.

D. M. Watson, C. J. Bohac, and C. Hull, Nature, vol.448, p.1026, 2007.

W. J. Welch, D. D. Thornton, and R. L. Plambeck, PASP, vol.108, p.93, 1996.

D. C. Whittet, J. H. Hough, A. Lazarian, and T. Hoang, ApJ, vol.674, p.304, 2008.

S. Wolf, R. Launhardt, and T. Henning, ApJ, vol.592, p.233, 2003.

G. A. Wolf-chase, M. Barsony, and J. Linger, aj, vol.120, p.1467, 2000.

J. Wu, M. M. Dunham, . Evans, N. J. Ii, T. L. Bourke et al., AJ, vol.133, p.1560, 2007.

S. C. Yeh, N. Hirano, and T. L. Bourke, ApJ, vol.675, p.454, 2008.

H. Yen, S. Takakuwa, and N. Ohashi, ApJ, vol.710, p.1786, 2010.

H. Yen, S. Takakuwa, and N. Ohashi, ApJ, vol.742, p.57, 2011.

H. Yen, S. Takakuwa, N. Ohashi, and P. T. Ho, ApJ, vol.772, p.22, 2013.

H. Yen, P. M. Koch, and S. Takakuwa, ApJ, vol.799, p.193, 2015.

Q. Zhang, P. T. Ho, M. C. Wright, and D. J. Wilner, ApJ, vol.451, p.71, 1995.

Q. Zhang, K. Qiu, and J. M. Girart, ApJ, vol.792, p.116, 2014.

B. and C. Looney, SVS13-A is a Class I protostar while SVS13-B and C are Class 0. A large filamentary structure encompasses the three sources at 450 µm (Chandler & Richer 2000) and at millimeter wavelengths, SVS13 SVS13 is a multiple system in the NGC 1333 star-forming region. It possesses three main submillimeter continuum sources aligned in the northeast-southwest direction named A, 1987.

;. Ouflows and . Plunkett, Supplementary file 8. Summary of published reports of LFY function in a range of angiosperm species.

H. Observations, This large gradient could suggest that the wide binary system is physically bound, 2009.

S. Our and . Observations, We resolve the two sources while SVS13-C is only marginally detected in the southwest. The continuum emission of SVS13-A is slightly elongated in the southwest direction toward the position of VLA3. The 0.87 mm emission of SVS13-B extends in the north-northwest direction. That extension aligns with that of the SiO jet driven by the protostar. The continuum emission also extends in the southwest direction of SVS13-B. The extension is also observed in the elongated N 2 H + map but not in the PdBI 1.4 mm and 3 mm observations, The SMA 0.87 mm observations trace the extended envelope around SVS13-A and SVS13-B, 2009.

, Supplementary file 1. Previous proteomic studies of HIV-infected cells.

, Table 1. Drive performances of synthetic target site and split drives compared with the standard drives from our previous studies (Champer et al., 2017; Champer et al., 2018b)., pp.1448-1450

;. Outflows and . Bachiller, The source drives an outflow in which various velocity components are observed, in particular a high-velocity (?60 km s ?1 ) jet with fast molecular clumps detected along the outflow axis surrounded by a less collimated and more standard velocity (?20 km s ?1 ) outflow, 1991.

. Tobin, N 2 H + and NH 3 observations were used to trace the large-scale velocity gradient of the envelope that is mostly distributed along the outflow direction, 2011.

S. Our and . Looney, The N 2 H + and NH 3 maps present an elongation along the north-south direction. Our SMA 0.87 mm map presents a similar elongation. The southern elongation is also very similar to that observed at 350 µm by Wu et al. (2007) with SHARC-II. NGC 1333 IRAS4A NGC 1333 IRAS4A is a Class 0 object located in the south of NGC 1333. It hosts two sources (IRAS4A1 and IRAS4A2) in a close (1.8 ) binary pair that was resolved with interferometers at submillimeter and millimeter wavelengths using the SMA or BIMA, 2000.

. López-sepulcre, IRAS4A1 dominates the submillimeter and millimeter emission. Outflows. An arcmin-long outflow, 2017.

. Santangelo, Chapitre I. Angle et Angle de Contingence, Angles et Grandeur, pp.7-86, 2015.

D. Francesco, Supplementary file 8. Summary of published reports of LFY function in a range of angiosperm species.

. Belloche, detected a centroid velocity gradient of about 10 km s ?1 pc ?1 , with a position angle of 38 ? , while Ching et al. (2016) found a velocity gradient along the axis linking NGC 1333 IRAS4A1 and IRAS4A2. Both Belloche et al. (2006) and Gaudel et al (in prep.) showed however that the interpretation of these velocity gradients in terms of rotation is not, 2006.

S. Our and . Girart, Figure 6: Wind speed and direction change around the sampling area observed by Lhasa Airport from 1980?2006 (Li et al., 2010).

. Looney, IRAS4B2 is not detected at centimeter wavelengths, suggesting that it is at a different stage of its evolution (Reipurth et al. 2002) or just not associated at all with IRAS4B. There is still some debate on smaller scales on whether the disk of IRAS 4B is observed face-or edge-on, NGC 1333 IRAS4B NGC 1333 IRAS4B is also a Class 0 protostar and belongs to the same N 2 H + arcmin-scale filament as IRAS4A, vol.4, 2000.

. Outflows, Fig. 5. Sr-Nd-Pb isotopic ratios in the rocks of the Uksichan volcanic center. MORB of the Pacific and Indian Ocean (Class, Lehnert, 2012), GDP (Perepelov, 2014; Churikova et al., 2001; Münker et al., 2004; Kepezhinskas et al., 1997; Widom, Kepezhinskas, 2003; Dorendorf et al., 2000), CX (Volynets et al., 2010; Churikova et al., 2001; Perepelov, 2014), CKD (Churikova et al., 2001; Münker et al., 2004; Kepezhinskas et al., 1997; Dosseto et al., 2003; Portnyagin et al., 2005, 2007, 2015; Kersting, Arculus, 1995; Hochstaedter, 1996; Saha et al., 2005). NHRL (North Hemisphere Referece Line) is a line of medium compositions of basalts of the northern hemisphere (Hart, 1984). Legend, see figure. 2

S. Our, ;. , and Y. , Table 2: Measurements of cervical vertebrae of Galeamopus pabsti SMA 0011 (in mm).

. Correia, IRAS16293 IRAS16293 is a Class 0 protostar system located in the ? Ophiuchi molecular cloud. It possesses a bolometric luminosity of ?25 L M and a massive envelope, 2004.

. Crimier, Figure 2?source data 3. Examples of [2Fe-2S], [3Fe-4S], and [4Fe-4S] cluster binding motifs that are not found in Cgr2 (Zhang et al., 2010; Nakamaru-Ogiso et al., 2002; Lee et al., 2004; Pandelia et al., 2011; Schnackerz et al., 2004; Leech et al., 2003; Gorodetsky et al., 2008; Lee et al., 2010; Weiner et al., 2007; Klinge et al., 2007; Dickert et al., 2002; Conover et al., 1990; Schneider and Schmidt, 2005; Iwasaki et al., 2000; Banci et al., 2013; Dailey and Dailey, 2002; Jung et al., 2000)., IRAS16293-A is an edge-on system and IRAS16293-B is nearly face-on

;. Outflows and . Yeh, This much younger outflow is probably a more robust tracer of the rotation axis, as recent studies revealed at various scales an almost edge-on rotational pattern whose axis match the SiO outflow orientation, 2008.

. Girart, Table 1. Key peptide and nitrate substrate interacting amino acid residues from selected studies (Doki et al., 2013; Solcan et al., 2012; Parker and Newstead, 2014; Sun et al., 2014; Aduri et al., 2015; Newstead et al., 2011; Lyons et al., 2014; Jørgensen et al., 2015).

, Kanzo, vol.41, issue.supl1, pp.A139-A143, 2000.

. Girart, 2014) probably because of the infalling motion of the rotating envelope. A disk-like rotation is also detected at 40-60 au with ALMA with the same orientation (Oya et al. 2016). In IRAS16293-B, recent ALMA observations reveal inverse P-Cygni profiles toward the center of IRAS16293-B in the CH 3 OCHO-A CH 3 OCHO-E and H 2 CCO lines, here again indicative of infall motions, IRAS16293-A, C 34 S observations reveal a clear velocity gradient along PA 40-45 ? , i.e., perpendicular to the SiOtraced outflow, vol.616, 2012.

. Outflows, It possesses a spectacular bipolar outflow asymmetric on large scales. Its prominent CO cavities are likely created by the propagation of large bow shocks (also traced via the NH 3 or SiO molecular lines

M. Tafalla and R. Bachiller, Ammonia emission from bow shocks in the L1157 outflow, The Astrophysical Journal, vol.443, p.L37, 1995.

. Gueth, FIG. 3. Schematic geological section along the line ABC (according to Stepanov et al., 2016; Melnikov et al., 2014; Eirish, 2002; Buryak et al., 2000). Legend: See FIG. 2

S. Our and . Chen, Figure 1?figure supplement 3. Comparison of Pol I in our Initial Transcribing Complex reconstruction with previous published models.

. Massi, CB230 CB 230 is an isolated globule hosting a dense core, itself hosting two deeply embedded young stellar objects (YSOs), 2001.

;. Outflows and . Tobin, More recent 7 mm high-resolution observations of IRS1 led to the detection of two continuum sources separated by ?100 au, which have an unresolved primary source at the origin of the outflow and an extended companion source located in a direction perpendicular to the outflow direction, 2013.

C. , Figure 1. Cerebellum gradients and relationship with discrete task activity maps (from Guell et al., 2018a) and resting-state maps (from Buckner et al., 2011)., CB230 presents a velocity gradient >10 km s ?1 pc ?1 increasing from east to west along the axis connecting the two embedded YSOs